You are here:

International Journal of Clinical and Experimental Neurology

ISSN (Print): ISSN Pending

ISSN (Online): ISSN Pending

Website: http://www.sciepub.com/journal/IJCEN

Article

Lipocalin-2: a New Regulator of Non-Pathogen-Associated Neuroinflammation

1Department of Biomedical Sciences, Texas Tech University HSC, Amarillo, Amarillo, TX


International Journal of Clinical and Experimental Neurology. 2014, 2(1), 8-15
DOI: 10.12691/ijcen-2-1-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
Manoj Banjara. Lipocalin-2: a New Regulator of Non-Pathogen-Associated Neuroinflammation. International Journal of Clinical and Experimental Neurology. 2014; 2(1):8-15. doi: 10.12691/ijcen-2-1-3.

Correspondence to: Manoj  Banjara, Department of Biomedical Sciences, Texas Tech University HSC, Amarillo, Amarillo, TX. Email: manoj.banjara@ttuhsc.edu

Abstract

Lipocalin is a family of small molecules transporting extracellular proteins. Lipocalin-2 (LCN2) is a member of the family that sequesters iron-bound bacterial siderophores. The well-accepted function of LCN2 protein is its anti-bacterial behavior, however, its role in iron regulation, cellular migration, death and morphology modulation have been speculated. Several reports have correlated the presence of LCN2 in the infected, injured and stressed brain, and its effect in neuronal and non-neuronal cell types in the central nervous system. This article reviews studies that demonstrated mechanisms and functions of LCN2 expression in inflammed brain (acute and chronic), particularly in non-pathogen-associated neuroinflammation. This review predicts that LCN2 can be an attractive target to reduce mortality and morbidity associated with uncontrollable neuroinflammation.

Keywords

References

[1]  Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 413: 732-738.
 
[2]  Asea A (2008) Heat shock proteins and toll-like receptors. Handb Exp Pharmacol: 111-127.
 
[3]  Ashhab MU, Omran A, Kong H, Gan N, He F, Peng J, Yin F (2013) Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J Mol Neurosci. 51: 950-958.
 
[4]  Axelsson L, Bergenfeldt M, Ohlsson K (1995) Studies of the release and turnover of a human neutrophil lipocalin. Scand J Clin Lab Invest. 55: 577-588.
 
[5]  Bahmani P, Halabian R, Rouhbakhsh M, Roushandeh AM, Masroori N, Ebrahimi M, Samadikuchaksaraei A, Shokrgozar MA, Roudkenar MH (2010) Neutrophil gelatinase-associated lipocalin induces the expression of heme oxygenase-1 and superoxide dismutase 1, 2. Cell Stress Chaperones. 15: 395-403.
 
Show More References
[6]  Basu A, Krady JK, Levison SW (2004) Interleukin-1: a master regulator of neuroinflammation. J Neurosci Res. 78: 151-156.
 
[7]  Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N, Friedl A (2008) Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat. 108: 389-397.
 
[8]  Berger T, Cheung CC, Elia AJ, Mak TW (2010) Disruption of the Lcn2 gene in mice suppresses primary mammary tumor formation but does not decrease lung metastasis. Proc Natl Acad Sci U S A. 107: 2995-3000.
 
[9]  Bi F, Huang C, Tong J, Qiu G, Huang B, Wu Q, Li F, Xu Z, Bowser R, Xia XG, Zhou H (2013) Reactive astrocytes secrete lcn2 to promote neuron death. Proc Natl Acad Sci U S A. 110: 4069-4074.
 
[10]  Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl). 83: 876-886.
 
[11]  Bong JJ, Seol MB, Kim HH, Han O, Back K, Baik M (2004) The 24p3 gene is induced during involution of the mammary gland and induces apoptosis of mammary epithelial cells. Mol Cells. 17: 29-34.
 
[12]  Bradbury MW (1997) Transport of iron in the blood-brain-cerebrospinal fluid system. J Neurochem. 69: 443-454.
 
[13]  Brea D, Blanco M, Ramos-Cabrer P, Moldes O, Arias S, Perez-Mato M, Leira R, Sobrino T, Castillo J (2011) Toll-like receptors 2 and 4 in ischemic stroke: outcome and therapeutic values. J Cereb Blood Flow Metab. 31: 1424-1431.
 
[14]  Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL, Connor JR (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res. 66: 1198-1207.
 
[15]  Chakraborty S, Kaur S, Guha S, Batra SK (2012) The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta. 1826: 129-169.
 
[16]  Chang SY, Kim DB, Ko SH, Jo YH, Kim MJ (2013) Induction mechanism of lipocalin-2 expression by co-stimulation with interleukin-1beta and interferon-gamma in RINm5F beta-cells. Biochem Biophys Res Commun. 434: 577-583.
 
[17]  Chen Z, Gao C, Hua Y, Keep RF, Muraszko K, Xi G (2011) Role of iron in brain injury after intraventricular hemorrhage. Stroke. 42: 465-470.
 
[18]  Chia WJ, Dawe GS, Ong WY (2011) Expression and localization of the iron-siderophore binding protein lipocalin 2 in the normal rat brain and after kainate-induced excitotoxicity. Neurochem Int. 59: 591-599.
 
[19]  Choi J, Lee HW, Suk K (2011) Increased plasma levels of lipocalin 2 in mild cognitive impairment. J Neurol Sci. 305: 28-33.
 
[20]  Clausen BH, Lambertsen KL, Babcock AA, Holm TH, Dagnaes-Hansen F, Finsen B (2008) Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation. 5: 46.
 
[21]  Coles M, Diercks T, Muehlenweg B, Bartsch S, Zolzer V, Tschesche H, Kessler H (1999) The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. J Mol Biol. 289: 139-157.
 
[22]  Correnti C, Richardson V, Sia AK, Bandaranayake AD, Ruiz M, Suryo Rahmanto Y, Kovacevic Z, Clifton MC, Holmes MA, Kaiser BK, Barasch J, Raymond KN, Richardson DR, Strong RK (2012) Siderocalin/Lcn2/NGAL/24p3 Does Not Drive Apoptosis Through Gentisic Acid Mediated Iron Withdrawal in Hematopoietic Cell Lines. PLoS One. 7: e43696.
 
[23]  Cowland JB, Sorensen OE, Sehested M, Borregaard N (2003) Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1 beta, but not by TNF-alpha. J Immunol. 171: 6630-6639.
 
[24]  Crutcher KA, Gendelman HE, Kipnis J, Perez-Polo JR, Perry VH, Popovich PG, Weaver LC (2006) Debate: "is increasing neuroinflammation beneficial for neural repair?". J Neuroimmune Pharmacol. 1: 195-211.
 
[25]  Danielisova V, Gottlieb M, Burda J (2002) Iron deposition after transient forebrain ischemia in rat brain. Neurochem Res. 27: 237-242.
 
[26]  Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S, Paquette N, Deane RJ, Thiyagarajan M, Zarcone T, Fritz G, Friedman AE, Miller BL, Zlokovic BV (2012) A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest. 122: 1377-1392.
 
[27]  Devireddy LR, Gazin C, Zhu X, Green MR (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell. 123: 1293-1305.
 
[28]  Devireddy LR, Hart DO, Goetz DH, Green MR (2010) A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell. 141: 1006-1017.
 
[29]  Dong M, Xi G, Keep RF, Hua Y (2013) Role of iron in brain lipocalin 2 upregulation after intracerebral hemorrhage in rats. Brain Res. 1505: 86-92.
 
[30]  Dringen R, Bishop GM, Koeppe M, Dang TN, Robinson SR (2007) The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res. 32: 1884-1890.
 
[31]  Fernandez-Pol JA (1978) Isolation and characterization of a siderophore-like growth factor from mutants of SV40-transformed cells adapted to picolinic acid. Cell. 14: 489-499.
 
[32]  Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 432: 917-921.
 
[33]  Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener. 4: 47.
 
[34]  Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev. 20: 269-287.
 
[35]  Glaros T, Fu Y, Xing J, Li L (2012) Molecular mechanism underlying persistent induction of LCN2 by lipopolysaccharide in kidney fibroblasts. PLoS One. 7: e34633.
 
[36]  Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 10: 1033-1043.
 
[37]  Haacke EM, Makki M, Ge Y, Maheshwari M, Sehgal V, Hu J, Selvan M, Wu Z, Latif Z, Xuan Y, Khan O, Garbern J, Grossman RI (2009) Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. J Magn Reson Imaging. 29: 537-544.
 
[38]  He RL, Zhou J, Hanson CZ, Chen J, Cheng N, Ye RD (2009) Serum amyloid A induces G-CSF expression and neutrophilia via Toll-like receptor 2. Blood. 113: 429-437.
 
[39]  Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 303: 1526-1529.
 
[40]  Hirsch R, Dent C, Pfriem H, Allen J, Beekman RH, 3rd, Ma Q, Dastrala S, Bennett M, Mitsnefes M, Devarajan P (2007) NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol. 22: 2089-2095.
 
[41]  Iori V, Maroso M, Rizzi M, Iyer AM, Vertemara R, Carli M, Agresti A, Antonelli A, Bianchi ME, Aronica E, Ravizza T, Vezzani A (2013) Receptor for Advanced Glycation Endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiol Dis. 58: 102-114.
 
[42]  Ip JP, Nocon AL, Hofer MJ, Lim SL, Muller M, Campbell IL (2011) Lipocalin 2 in the central nervous system host response to systemic lipopolysaccharide administration. J Neuroinflammation. 8: 124.
 
[43]  Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA, Leemans JC, Sutterwala FS (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci U S A. 106: 20388-20393.
 
[44]  Jang E, Kim JH, Lee S, Kim JH, Seo JW, Jin M, Lee MG, Jang IS, Lee WH, Suk K (2013a) Phenotypic polarization of activated astrocytes: the critical role of lipocalin-2 in the classical inflammatory activation of astrocytes. J Immunol. 191: 5204-5219.
 
[45]  Jang E, Lee S, Kim JH, Kim JH, Seo JW, Lee WH, Mori K, Nakao K, Suk K (2013b) Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J. 27: 1176-1190.
 
[46]  Jayaraman A, Roberts KA, Yoon J, Yarmush DM, Duan X, Lee K, Yarmush ML (2005) Identification of neutrophil gelatinase-associated lipocalin (NGAL) as a discriminatory marker of the hepatocyte-secreted protein response to IL-1beta: a proteomic analysis. Biotechnol Bioeng. 91: 502-515.
 
[47]  Jones RL, Peterson CM, Grady RW, Cerami A (1980) Low molecular weight iron-binding factor from mammalian tissue that potentiates bacterial growth. J Exp Med. 151: 418-428.
 
[48]  Kim H, Lee S, Park HC, Lee WH, Lee MS, Suk K (2011) Modulation of glial and neuronal migration by lipocalin-2 in zebrafish. Immune Netw. 11: 342-347.
 
[49]  Kooncumchoo P, Sharma S, Porter J, Govitrapong P, Ebadi M (2006) Coenzyme Q(10) provides neuroprotection in iron-induced apoptosis in dopaminergic neurons. J Mol Neurosci. 28: 125-141.
 
[50]  Kratchmarova I, Kalume DE, Blagoev B, Scherer PE, Podtelejnikov AV, Molina H, Bickel PE, Andersen JS, Fernandez MM, Bunkenborg J, Roepstorff P, Kristiansen K, Lodish HF, Mann M, Pandey A (2002) A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes. Mol Cell Proteomics. 1: 213-222.
 
[51]  Kubben FJ, Sier CF, Hawinkels LJ, Tschesche H, van Duijn W, Zuidwijk K, van der Reijden JJ, Hanemaaijer R, Griffioen G, Lamers CB, Verspaget HW (2007) Clinical evidence for a protective role of lipocalin-2 against MMP-9 autodegradation and the impact for gastric cancer. Eur J Cancer. 43: 1869-1876.
 
[52]  Lee S, Kim JH, Kim JH, Seo JW, Han HS, Lee WH, Mori K, Nakao K, Barasch J, Suk K (2011) Lipocalin-2 Is a chemokine inducer in the central nervous system: role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J Biol Chem. 286: 43855-43870.
 
[53]  Lee S, Lee J, Kim S, Park JY, Lee WH, Mori K, Kim SH, Kim IK, Suk K (2007) A dual role of lipocalin 2 in the apoptosis and deramification of activated microglia. J Immunol. 179: 3231-3241.
 
[54]  Lee S, Park JY, Lee WH, Kim H, Park HC, Mori K, Suk K (2009) Lipocalin-2 is an autocrine mediator of reactive astrocytosis. J Neurosci. 29: 234-249.
 
[55]  Lee YC, Elangovan N, Tzeng WF, Chu ST (2005) Mouse uterine 24p3 protein as a suppressor of sperm acrosome reaction. Mol Biol Rep. 32: 237-245.
 
[56]  Liu Q, Nilsen-Hamilton M (1995) Identification of a new acute phase protein. J Biol Chem. 270: 22565-22570.
 
[57]  Liu QS, Nilsen-Hamilton M, Xiong SD (2003) Synergistic regulation of the acute phase protein SIP24/24p3 by glucocorticoid and pro-inflammatory cytokines. Sheng li xue bao : [Acta physiologica Sinica]. 55: 525-529.
 
[58]  Lively S, Brown IR (2008) Extracellular matrix protein SC1/hevin in the hippocampus following pilocarpine-induced status epilepticus. J Neurochem. 107: 1335-1346.
 
[59]  Luheshi NM, Kovacs KJ, Lopez-Castejon G, Brough D, Denes A (2011) Interleukin-1alpha expression precedes IL-1beta after ischemic brain injury and is localised to areas of focal neuronal loss and penumbral tissues. J Neuroinflammation. 8: 186.
 
[60]  Macco R, Pelizzoni I, Consonni A, Vitali I, Giacalone G, Martinelli Boneschi F, Codazzi F, Grohovaz F, Zacchetti D (2013) Astrocytes acquire resistance to iron-dependent oxidative stress upon proinflammatory activation. J Neuroinflammation. 10: 130.
 
[61]  MacManus JP, Graber T, Luebbert C, Preston E, Rasquinha I, Smith B, Webster J (2004) Translation-state analysis of gene expression in mouse brain after focal ischemia. J Cereb Blood Flow Metab. 24: 657-667.
 
[62]  Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, Bianchi ME, Vezzani A (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med. 16: 413-419.
 
[63]  Meheus LA, Fransen LM, Raymackers JG, Blockx HA, Van Beeumen JJ, Van Bun SM, Van de Voorde A (1993) Identification by microsequencing of lipopolysaccharide-induced proteins secreted by mouse macrophages. J Immunol. 151: 1535-1547.
 
[64]  Mesquita SD, Ferreira AC, Falcao AM, Sousa JC, Oliveira TG, Correia-Neves M, Sousa N, Marques F, Palha JA (2013) Lipocalin 2 produced in response to amyloid beta. Paper presented at the Society for Neuroscience, San Diego, CA, Sunday, Nov 10, 2013
 
[65]  Michaluk P, Wawrzyniak M, Alot P, Szczot M, Wyrembek P, Mercik K, Medvedev N, Wilczek E, De Roo M, Zuschratter W, Muller D, Wilczynski GM, Mozrzymas JW, Stewart MG, Kaczmarek L, Wlodarczyk J (2011) Influence of matrix metalloproteinase MMP-9 on dendritic spine morphology. J Cell Sci. 124: 3369-3380.
 
[66]  Mills E, Dong XP, Wang F, Xu H (2010) Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Med Chem. 2: 51-64.
 
[67]  Mucha M, Skrzypiec AE, Schiavon E, Attwood BK, Kucerova E, Pawlak R (2011) Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation. Proc Natl Acad Sci U S A. 108: 18436-18441.
 
[68]  Naude PJ, Nyakas C, Eiden LE, Ait-Ali D, van der Heide R, Engelborghs S, Luiten PG, De Deyn PP, den Boer JA, Eisel UL (2012) Lipocalin 2: novel component of proinflammatory signaling in Alzheimer's disease. FASEB J. 26: 2811-2823.
 
[69]  Ni J, Ma X, Zhou M, Pan X, Tang J, Hao Y, Lu Z, Gao M, Bao Y, Jia W (2013) Serum lipocalin-2 levels positively correlate with coronary artery disease and metabolic syndrome. Cardiovasc Diabetol. 12: 176.
 
[70]  Nocon AL, Ip JP, Terry R, Lim SL, Getts DR, Muller M, Hofer MJ, King NJ, Campbell IL (2014) The bacteriostatic protein lipocalin 2 is induced in the central nervous system of mice with west Nile virus encephalitis. J Virol. 88: 679-689.
 
[71]  Okuma Y, Liu K, Wake H, Zhang J, Maruo T, Date I, Yoshino T, Ohtsuka A, Otani N, Tomura S, Shima K, Yamamoto Y, Yamamoto H, Takahashi HK, Mori S, Nishibori M (2012) Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol. 72: 373-384.
 
[72]  Oudit GY, Trivieri MG, Khaper N, Husain T, Wilson GJ, Liu P, Sole MJ, Backx PH (2004) Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation. 109: 1877-1885.
 
[73]  Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim JY, Strassheim D, Sohn JW, Yamada S, Maruyama I, Banerjee A, Ishizaka A, Abraham E (2006) High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol. 290: C917-924.
 
[74]  Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem. 279: 7370-7377.
 
[75]  Pekar T, Stojakovic T, Haas J, Simmet NE, Scharnagl H, Gattringer T, Fazekas F, Storch MK, Seifert-Held T (2013) Plasma neutrophil gelatinase-associated lipocalin and functional outcome in ischemic stroke. J Neurol Sci. 333: e171.
 
[76]  Pico RM, Gall CM (1994) Hippocampal epileptogenesis produced by electrolytic iron deposition in the rat dentate gyrus. Epilepsy Res. 19: 27-36.
 
[77]  Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 282: 2085-2088.
 
[78]  Popovich PG, Longbrake EE (2008) Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci. 9: 481-493.
 
[79]  Provatopoulou X, Gounaris A, Kalogera E, Zagouri F, Flessas I, Goussetis E, Nonni A, Papassotiriou I, Zografos G (2009) Circulating levels of matrix metalloproteinase-9 (MMP-9), neutrophil gelatinase-associated lipocalin (NGAL) and their complex MMP-9/NGAL in breast cancer disease. BMC Cancer. 9: 390.
 
[80]  Qian ZM, To Y, Tang PL, Feng YM (1999) Transferrin receptors on the plasma membrane of cultured rat astrocytes. Exp Brain Res. 129: 473-476.
 
[81]  Raz E, Jensen JH, Ge Y, Babb JS, Miles L, Reaume J, Grossman RI, Inglese M (2011) Brain iron quantification in mild traumatic brain injury: a magnetic field correlation study. AJNR Am J Neuroradiol. 32: 1851-1856.
 
[82]  Reis K, Halldin J, Fernaeus S, Pettersson C, Land T (2006) NADPH oxidase inhibitor diphenyliodonium abolishes lipopolysaccharide-induced down-regulation of transferrin receptor expression in N2a and BV-2 cells. J Neurosci Res. 84: 1047-1052.
 
[83]  Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol. 9: 429-439.
 
[84]  Sandri S, Rodriguez D, Gomes E, Monteiro HP, Russo M, Campa A (2008) Is serum amyloid A an endogenous TLR4 agonist? J Leukoc Biol. 83: 1174-1180.
 
[85]  Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H, Takahashi T, Imaizumi H, Asai Y, Kuroki Y (2003) Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol. 171: 417-425.
 
[86]  Savage CD, Lopez-Castejon G, Denes A, Brough D (2012) NLRP3-Inflammasome Activating DAMPs Stimulate an Inflammatory Response in Glia in the Absence of Priming Which Contributes to Brain Inflammation after Injury. Front Immunol. 3: 288.
 
[87]  Schulze J, Zierath D, Tanzi P, Cain K, Shibata D, Dressel A, Becker K (2013) Severe stroke induces long-lasting alterations of high-mobility group box 1. Stroke. 44: 246-248.
 
[88]  Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ (1999) Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem. 274: 17406-17409.
 
[89]  Seong SY, Matzinger P (2004) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 4: 469-478.
 
[90]  Shen F, Hu Z, Goswami J, Gaffen SL (2006) Identification of common transcriptional regulatory elements in interleukin-17 target genes. J Biol Chem. 281: 24138-24148.
 
[91]  Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R, Takada I, Sekiya T, Ooboshi H, Kitazono T, Yanagawa T, Ishii T, Takahashi H, Mori S, Nishibori M, Kuroda K, Akira S, Miyake K, Yoshimura A (2012) Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med. 18: 911-917.
 
[92]  Siddappa AJ, Rao RB, Wobken JD, Leibold EA, Connor JR, Georgieff MK (2002) Developmental changes in the expression of iron regulatory proteins and iron transport proteins in the perinatal rat brain. J Neurosci Res. 68: 761-775.
 
[93]  Skrzypiec AE, Shah RS, Schiavon E, Baker E, Skene N, Pawlak R, Mucha M (2013) Stress-induced lipocalin-2 controls dendritic spine formation and neuronal activity in the amygdala. PLoS One. 8: e61046.
 
[94]  Sloviter RS, Zappone CA, Harvey BD, Frotscher M (2006) Kainic acid-induced recurrent mossy fiber innervation of dentate gyrus inhibitory interneurons: possible anatomical substrate of granule cell hyper-inhibition in chronically epileptic rats. J Comp Neurol. 494: 944-960.
 
[95]  Srinivasan G, Aitken JD, Zhang B, Carvalho FA, Chassaing B, Shashidharamurthy R, Borregaard N, Jones DP, Gewirtz AT, Vijay-Kumar M (2012) Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis. J Immunol. 189: 1911-1919.
 
[96]  Sroga JM, Jones TB, Kigerl KA, McGaughy VM, Popovich PG (2003) Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol. 462: 223-240.
 
[97]  Streit WJ (2006) Microglial senescence: does the brain's immune system have an expiration date? Trends Neurosci. 29: 506-510.
 
[98]  Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 1: 14.
 
[99]  Sunil VR, Patel KJ, Nilsen-Hamilton M, Heck DE, Laskin JD, Laskin DL (2007) Acute endotoxemia is associated with upregulation of lipocalin 24p3/Lcn2 in lung and liver. Exp Mol Pathol. 83: 177-187.
 
[100]  Tan BK, Adya R, Shan X, Syed F, Lewandowski KC, O'Hare JP, Randeva HS (2009) Ex vivo and in vivo regulation of lipocalin-2, a novel adipokine, by insulin. Diabetes Care. 32: 129-131.
 
[101]  Tansey MG, McCoy MK, Frank-Cannon TC (2007) Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol. 208: 1-25.
 
[102]  Triebel S, Blaser J, Reinke H, Tschesche H (1992) A 25 kDa alpha 2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase. FEBS Lett. 314: 386-388.
 
[103]  van Beijnum JR, Buurman WA, Griffioen AW (2008) Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis. 11: 91-99.
 
[104]  Velez-Pardo C, Jimenez Del Rio M, Verschueren H, Ebinger G, Vauquelin G (1997) Dopamine and iron induce apoptosis in PC12 cells. Pharmacol Toxicol. 80: 76-84.
 
[105]  Venkatesha S, Hanai J, Seth P, Karumanchi SA, Sukhatme VP (2006) Lipocalin 2 antagonizes the proangiogenic action of ras in transformed cells. Mol Cancer Res. 4: 821-829.
 
[106]  Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med. 13: 1042-1049.
 
[107]  Wallis LI, Paley MN, Graham JM, Grunewald RA, Wignall EL, Joy HM, Griffiths PD (2008) MRI assessment of basal ganglia iron deposition in Parkinson's disease. J Magn Reson Imaging. 28: 1061-1067.
 
[108]  Wang D, Zhu D, Wei XE, Li YH, Li WB (2013a) Using susceptibility-weighted images to quantify iron deposition differences in amnestic mild cognitive impairment and Alzheimer's disease. Neurol India. 61: 26-34.
 
[109]  Wang G, Weng Y-C, X.Han, Chou W-H (2013b) Lipocalin 2 is a detrimental factor induced after stroke-reperfusion injury. Paper presented at the Society for Neuroscience, San Diego, Sunday, Nov 10, 2013
 
[110]  Wang Q, Du F, Qian ZM, Ge XH, Zhu L, Yung WH, Yang L, Ke Y (2008) Lipopolysaccharide induces a significant increase in expression of iron regulatory hormone hepcidin in the cortex and substantia nigra in rat brain. Endocrinology. 149: 3920-3925.
 
[111]  Wang YC, Lin S, Yang QW (2011) Toll-like receptors in cerebral ischemic inflammatory injury. J Neuroinflammation. 8: 134.
 
[112]  Wessling-Resnick M (2010) Iron homeostasis and the inflammatory response. Annu Rev Nutr. 30: 105-122.
 
[113]  Woo JS, Kim KM, Kang JS, Zodpe P, Chae SW, Hwang SJ, Lee HM (2007) Expression of neutrophil gelatinase-associated lipocalin in human salivary glands. Ann Otol Rhinol Laryngol. 116: 599-603.
 
[114]  Yan L, Borregaard N, Kjeldsen L, Moses MA (2001) The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem. 276: 37258-37265.
 
[115]  Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL, Strong RK, Zurakowski D, Moses MA (2009) Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci U S A. 106: 3913-3918.
 
[116]  Yang J, Goetz D, Li JY, Wang W, Mori K, Setlik D, Du T, Erdjument-Bromage H, Tempst P, Strong R, Barasch J (2002) An iron delivery pathway mediated by a lipocalin. Mol Cell. 10: 1045-1056.
 
[117]  Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci. 32: 6391-6410.
 
[118]  Zhang JG, Czabotar PE, Policheni AN, Caminschi I, Wan SS, Kitsoulis S, Tullett KM, Robin AY, Brammananth R, van Delft MF, Lu J, O'Reilly LA, Josefsson EC, Kile BT, Chin WJ, Mintern JD, Olshina MA, Wong W, Baum J, Wright MD, Huang DC, Mohandas N, Coppel RL, Colman PM, Nicola NA, Shortman K, Lahoud MH (2012) The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity. 36: 646-657.
 
[119]  Zhang SJ, Li XW, Wang Y, Wei D, Jiang W (2010) [Expression of IL-1 mRNA in the dentate gyrus of adult rats following lithium-pilocarione-induced seizures]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 26: 288-290.
 
[120]  Zhao P, Stephens JM (2013) STAT1, NF-kappaB and ERKs play a role in the induction of lipocalin-2 expression in adipocytes. Mol Metab. 2: 161-170.
 
[121]  Zurolo E, Iyer A, Maroso M, Carbonell C, Anink JJ, Ravizza T, Fluiter K, Spliet WG, van Rijen PC, Vezzani A, Aronica E (2011) Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain. 134: 1015-1032.
 
Show Less References

Article

Ameliorative Potential of Resveratrol on Experimentally-Induced Seizures

1Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia

2Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt


International Journal of Clinical and Experimental Neurology. 2014, 2(2), 16-23
DOI: 10.12691/ijcen-2-2-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Ahmed M Kabel. Ameliorative Potential of Resveratrol on Experimentally-Induced Seizures. International Journal of Clinical and Experimental Neurology. 2014; 2(2):16-23. doi: 10.12691/ijcen-2-2-1.

Correspondence to: Ahmed  M Kabel, Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia. Email: drakabel@gmail.com

Abstract

The aim of this study was to investigate the potential enhancement effects of resveratrol on the anticonvulsant effect of diazepam in pilocarpine induced seizures in rats. This study was carried out in 50 male albino rats subdivided into five equal groups; group1 received saline 0.9 % intraperitoneally and served as the control group; group 2 received pilocarpine; group 3 received resveratrol 30 min prior to pilocarpine; group 4 received diazepam 30 min prior to pilocarpine; group 5 received resveratrol/ diazepam combination 30 min prior to pilocarpine. Then, animals were decapitated and the hippocampus was collected and homogenized for determination of tissue interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), nitric oxide (NO), malondialdehyde level (MDA), superoxide dismutase (SOD) and catalase (CAT) activity. Resveratrol/diazepam combination produced significant decrease in tissue cytokines, NO and MDA while produced significant increase in tissue SOD and CAT activity compared to the use of diazepam alone. Also, this combination produced significant delay in the onset of convulsions and significant decrease in the mortality rates compared to the use of diazepam alone. In conclusion, resveratrol potentiates the anticonvulsant effect of diazepam and this may be beneficial in lowering the incidence of resistance to diazepam and also may allow reduction of its dose and side effects.

Keywords

References

[1]  Zhao Q, Luo JJ (2014). Epilepsy in Elderly. Brain Disord Ther; 3: 115.
 
[2]  Goldenberg MM (2010). Overview of Drugs Used For Epilepsy and Seizures. Pharmacy and Therapeutics; 35(7): 392-415.
 
[3]  Beghi M, Savica R, Beghi E, Nobili A, Garattini L (2009) Utilization and costs of antiepileptic drugs in the elderly: still an unsolved issue. Drugs Aging; 26: 157-168.
 
[4]  Gomez-Ibañeza A, Gasca-Salasa C, Urrestarazuc E, Viteri C (2013). Clinical phenotypes within non-surgical patients with mesial temporal lobe epilepsy caused by hippocampal sclerosis based on response to antiepileptic drugs. Seizure; 22 (1): 20-23.
 
[5]  Marchi N, Fan Q, Ghosh C, FazioV, Bertolini F, Betto G, Batra A, Carlton E, Najm I, Granata T, Janigro D (2009). Antagonism of Peripheral Inflammation Reduces the Severity of Status Epilepticus. Neurobiol Dis; 33(2): 171-181.
 
Show More References
[6]  Reddy DS, Kuruba R (2013). Experimental Models of Status Epilepticus and Neuronal Injury for Evaluation of Therapeutic Interventions. Int J Mol Sci; 14(9): 18284-18318.
 
[7]  Aguiar CCT, Almeida AB, Araújo PVP, et al., (2012). Oxidative Stress and Epilepsy: Literature Review. Oxidative Medicine and Cellular Longevity; vol. 2012, article ID 795259.
 
[8]  Devi PU, Manocha A, Vohora D (2008). Seizures, antiepileptics, antioxidants and oxidative stress: an insight for researchers. Expert Opin Pharmacother; 9 (18): 3169-3177.
 
[9]  Vezzani A, French J, Bartfai T, Baram TZ (2011). The role of inflammation in epilepsy. Nat Rev Neurol; 7: 31-40
 
[10]  Järvelä JT, Lopez-Picon FR, Plysjuk A, Ruohonen S, Holopainen IE (2011). Temporal profiles of age-dependent changes in cytokine mRNA expression and glial cell activation after status epilepticus in postnatal rat hippocampus. Journal of Neuroinflammation; 8: 29.
 
[11]  Rao RS, Prakash A, Medhi B (2009). Role of different cytokines and seizure susceptibility: A new dimension towards epilepsy research. Indian Journal of Experimental Biology; 47: 625-634.
 
[12]  Brisdelli F, D'Andrea G, Bozzi A (2009). Resveratrol: a natural polyphenol with multiple chemopreventive properties. Curr Drug Metab; 10(6):530-46.
 
[13]  Ramprasath VR, Jones PJH (2010). Anti-atherogenic effects of resveratrol. European Journal of Clinical Nutrition; 64: 660-668.
 
[14]  Venugopal R, Liu RH (2012). Phytochemicals in diets for breast cancer prevention: The importance of resveratrol and ursolic acid. Food Science and Human Wellness; 1(1): 1-13.
 
[15]  Shetty AK (2011). Promise of resveratrol for easing status epilepticus and epilepsy. Pharmacology and Therapeutics; 131(3): 269-286.
 
[16]  Gupta YK, Chaudhary G, Srivastava AK (2002). Protective Effect of Resveratrol against Pentylenetetrazole-Induced Seizures and Its Modulation by an Adenosinergic System. Pharmacology; 65 (3): 170-4.
 
[17]  Serdiuk SE, Gmiro VE (2012). Adrenaline potentiates antiepileptic but not sedative action of diazepam in rats. Ross Fiziol Zh Im I M Sechenova.; 98(2):236-41.
 
[18]  Wilhelm EA, Jesse CR, Bortolatto CF, Nogueira CW, Savegnago LA (2009). Anticonvulsant and antioxidant effects of 3-alkynyl selenophene in 21-day-old rats on pilocarpine model of seizures. Brain Res Bull; 79(5): 281-7.
 
[19]  Turski WA, Czuczwar SJ, Kleinrok Z, Turski L (1983). Cholinomimetics produce seizures and brain damage in rats. Experientia; 39:1408-1411.
 
[20]  Kabel AM, Abdel-Rahman MN, El-Sisi Ael-D, Haleem MS, Ezzat NM, El Rashidy MA (2013). Effect of atorvastatin and methotrexate on solid Ehrlich tumor. Eur J Pharmacol; 713 (1-3): 47-53.
 
[21]  Alderton WK, Cooper CE, Knowles RG (2001). Nitric oxide synthases: structure, function and inhibition. Biochem J; 357: 593-615.
 
[22]  Draper HH, Hadley M (1990). Malondialdehyde determination as index of lipid peroxidation. Methods in Enzymology; 186: 421-431.
 
[23]  Tsai HL, Chang CN, Chang SJ (2010). The effects of pilocarpine-induced status epilepticus on oxidative stress/damage in developing animals. Brain and Development; 32 (1): 25-31.
 
[24]  Aebi H (1984). Catalase in vitro. Methods Enzymol; 105: 121-6.
 
[25]  Acharya MM, Hattiangady B, Shetty AK (2008). Progress in Neuroprotective Strategies for Preventing Epilepsy. Prog Neurobiol; 84(4): 363-404.
 
[26]  Jope RS, Morrisett RA, Snead OC (1986). Characterization of lithium potentiation of pilocarpine-induced status epilepticus in rats. Exp Neurol; 91: 471-480.
 
[27]  Curia G, Longo D, Biagini G, Jones RSG, Avoli M (2008). The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods; 172(2-4): 143-157.
 
[28]  Tomé AR, Ferreira PMP, Freitas RM (2010). Inhibitory action of antioxidants (ascorbic acid or α-tocopherol) on seizures and brain damage induced by pilocarpine in rats. Arquivos de Neuro-Psiquiatria; 68(3): 355-361.
 
[29]  Marchi N, Oby E, Batra A, Uva L, De Curtis M, Hernandez N, Van Boxel Dezaire A, Najm I, Janigro D (2007). In vivo and in vitro effects of pilocarpine: relevance to ictogenesis. Epilepsia; 48:1934-1946.
 
[30]  Harvey L, Boksa P (2012). Prenatal and postnatal animal models of immune activation: Relevance to a range of neurodevelopmental disorders. Developmental Neurobiology; 72 (10): 1335-1348
 
[31]  Galic MA, Riazi K, Heida JG, Mouihate A, Fournier NM, Spencer SJ, Kalynchuk LE, Teskey GC, Pittman QJ (2008). Postnatal inflammation increases seizure susceptibility in adult rats. J Neurosci ; 28: 6904-6913.
 
[32]  Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ (2008). Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci USA; 105: 17151-17156.
 
[33]  Vezzani A (2009). Pilocarpine-Induced Seizures Revisited: What Does the Model Mimic?. Epilepsy Curr; 9 (5): 146-148.
 
[34]  Vezzani A, Balosso S, Ravizza T (2008). The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun; 22: 797-803.
 
[35]  Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A (2008). Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis; 29: 142-160.
 
[36]  Hrncic D, Rasic-Markovic A, Bjekic-Macut J, et al., (2012). Gaseous neurotransmitter nitric oxide: Its role in experimental models of epilepsy. Arch Biol Sci; 64 (3): 1207-1216.
 
[37]  Dos Santos PS, Costa JP, Tomé Ada R, Saldanha GB, de Souza GF, Feng D, de Freitas RM (2011). Oxidative stress in rat striatum after pilocarpine-induced seizures is diminished by alpha-tocopherol. Eur J Pharmacol; 668(1-2): 65-71.
 
[38]  Lehtim¨aki KA, Ker¨anen T, Huhtala H (2004). Regulation of IL-6 system in cerebrospinal fluid and serum compartments by seizures: the effect of seizure type and duration. Journal of Neuroimmunology; 152(1-2): 121-125.
 
[39]  Uludag IF, Bilgin S, Zorlu Y, Tuna G, Kirkali G (2013). Interleukin-6, interleukin-1 beta and interleukin-1 receptor antagonist levels in epileptic seizures. Seizure; 22 (6): 457-461.
 
[40]  Wu Z, Xu Q, Zhang L, Kong D, Ma R, Wang L (2009). Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem Res; 34(8): 1393-400.
 
[41]  Mokni M, Elkahoui S, Limam F, Amri A, Aouani E (2007). Effect of resveratrol on antioxidant enzyme activities in the brain of healthy rat Neurochem Res; 32: 981-987.
 
[42]  Grissa KA, Mornagui B, Aouani 1E, Hammami M, Gharbi N, Kamoun A, El-fazaa S (2006). Protective effect of resveratrol on ethanol-induced lipid peroxidation in rats. Alcohol & Alcoholism; 41(3): 236-239.
 
[43]  Quincozes-Santos A, Bobermin LD, Wajner M, Souza DO, Gonçalves CA, Gottfried C (2013). Resveratrol Protects C6 Astrocyte Cell Line against Hydrogen Peroxide-Induced Oxidative Stress through Heme Oxygenase 1. PLoS ONE; 8(5): e64372.
 
[44]  Bi XL, Yang JY, Dong YX, Wang JM, Cui YH, Ikeshima T (2005). Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysaccharide-activated microglia. Int Immunopharmacol; 5: 185-193.
 
[45]  Lu X, Ma L, Ruan L, Kong Y, Mou H, Zhang Z, Wang Z, Wang JM, Le Y (2010). Resveratrol differentially modulates inflammatory responses of microglia and astrocytes. J Neuroinflammation; 7: 46.
 
[46]  Pitkanen A, Kharatishvili I, Narkilahti S, Lukasiuk K, Nissinen J (2005). Administration of diazepam during status epilepticus reduces development and severity of epilepsy in rat. Epilepsy Res; 63: 27-42.
 
[47]  Bianchi MT (2010). Context Dependent Benzodiazepine Modulation of GABAA Receptor Opening Frequency. Curr Neuropharmacol; 8 (1): 10-17.
 
[48]  Richter L, de Graaf C, Sieghart W, Varagic Z, Mörzinger M, de Esch IJ, Ecker GF, Ernst M (2012). Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. Nat Chem Biol; 8 (5): 455-464.
 
[49]  Paul V, Subramanian EH, Rajasekaran K (2001). Pharmacological evidence for a role of gamma-aminobutyric acid A receptor mechanism in modulating nitric oxide synthase activity in rat brain. Neurochem Int; 38(3): 209-11.
 
[50]  Seçkin S, Alsancak S, Başaran-Küçükgergin C, Uysal M (2007). The effect of chronic diazepam administration on lipid peroxidation and Ca2+-ATPase activity in rat liver. Acta Biol Hung; 58(4): 441-3.
 
Show Less References

Article

Tumor Necrosis Factor-α in Rats Following Transient Focal Cerebral Ischemia Reperfusion and Its Relation to Oxidative Stress

1Department of Physiology, Faculty of Medicine and Heath Sciences, Alneelain University, Khartoum, Sudan

2Department of Biochemistry, Faculty of Medicine and Heath Sciences, Alexandria University, Alexandria, Egypt

3Department of Physiology, Faculty of Medicine and Heath Sciences, University of Khartoum, Khartoum, Sudan


International Journal of Clinical and Experimental Neurology. 2014, 2(2), 24-28
DOI: 10.12691/ijcen-2-2-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Hiba A Awooda, Gihan M Sharara, Saeed A Mahmoud. Tumor Necrosis Factor-α in Rats Following Transient Focal Cerebral Ischemia Reperfusion and Its Relation to Oxidative Stress. International Journal of Clinical and Experimental Neurology. 2014; 2(2):24-28. doi: 10.12691/ijcen-2-2-2.

Correspondence to: Hiba  A Awooda, Department of Physiology, Faculty of Medicine and Heath Sciences, Alneelain University, Khartoum, Sudan. Email: h_alsheekh82@yahoo.com

Abstract

Background: The role of TNF-α in ischemic/reperfusion (I/R) is still controversial. The aim of this study was to assess TNF-α in rats subjected to transient cerebral I/R and to correlate their levels with the resulting neurological deficits and oxidative stress biomarkers malondialdehyde and total antioxidant capacity (TAC). Material and Method: Experimental procedures were performed on 30 adult male Wistar rats. Divided into two groups fifteen rats in each, test group subjected to transient focal cerebral I/R by occlusion of the left common carotid artery (CCA) for 30 minutes followed by reperfusion for 24-hours. A control group underwent the surgery at the same neck region without occlusion of the CCA. Neurobehavioral assessments were evaluated. TNF-α was measured using ELISA method. Malondialdehyde and TAC were estimated colorimetry. Results: In the test group TNF-α and Malondialdehyde concentration in both serum and brain tissue were significantly higher than control group (P =0.000). In contrast, the serum and brain tissue levels of TAC in the test group was significantly lower compared to the sham operated rats (P = 0.000). The brain tissue and serum level of TNF-α were correlated negatively with neurological deficit and TAC and positively with Malondialdehyde (P = 0.000). Conclusion: the present study revealed a potential injurious role of TNF-α in rats subjected to cerebral I/R and demonstrated a direct relationship between TNF-α and oxidative stress biomarkers and the consequent neurological deficits.

Keywords

References

[1]  Harrer JU, Seet RC. Warfarin treatment and thrombolysis in acute stroke: Are the procrastinators right? Neurology. 2012 May; 2012.
 
[2]  Wong CH, Crack PJ. Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr Med Chem. 2008; 15(1): 1-14.
 
[3]  Zhang L, Zhang ZG, Liu XS, Hozeska-Solgot A, Chopp M. The PI3K/Akt pathway mediates the neuroprotective effect of atorvastatin in extending thrombolytic therapy after embolic stroke in the rat. Arterioscler Thromb Vasc Biol. 2007 Nov; 27(11): 2470-5.
 
[4]  Simao F, Matte A, Matte C, Soares FM, Wyse AT, Netto CA, et al. Resveratrol prevents oxidative stress and inhibition of Na(+)K(+)-ATPase activity induced by transient global cerebral ischemia in rats. J Nutr Biochem. 2011 2011; 22(10): 921-8.
 
[5]  Cherubini A, Ruggiero C, Polidori MC, Mecocci P. Potential markers of oxidative stress in stroke. Free Radic Biol Med. 2005 Oct 1; 39(7): 841-52.
 
Show More References
[6]  Gariballa SE, Hutchin TP, Sinclair AJ. Antioxidant capacity after acute ischaemic stroke. QJM. 2002 Oct; 95(10): 685-90.
 
[7]  Ryan M, Grayson L, Clarke DJ. The total antioxidant capacity of human serum measured using enhanced chemiluminescence is almost completely accounted for by urate. Ann Clin Biochem. 1997 Nov; 34 ( Pt 6): 688-9.
 
[8]  Emsley HC, Tyrrell PJ. Inflammation and infection in clinical stroke. J Cereb Blood Flow Metab. 2002 Dec; 22(12): 1399-419.
 
[9]  Watters O, O'Connor JJ. A role for tumor necrosis factor-alpha in ischemia and ischemic preconditioning. J Neuroinflammation. 8: 87.
 
[10]  Keefer LK, Garland WA, Oldfield NF, Swagzdis JE, Mico BA. Inhibition of N-nitrosodimethylamine metabolism in rats by ether anesthesia. Cancer Res. 1985 Nov; 45(11 Pt 1): 5457-60.
 
[11]  Renolleau S, Aggoun-Zouaoui D, Ben-Ari Y, Charriaut-Marlangue C. A model of transient unilateral focal ischemia with reperfusion in the P7 neonatal rat: morphological changes indicative of apoptosis. Stroke. 1998 Jul; 29(7): 1454-60; discussion 61.
 
[12]  Kuluz JW, Prado RJ, Dietrich WD, Schleien CL, Watson BD. The effect of nitric oxide synthase inhibition on infarct volume after reversible focal cerebral ischemia in conscious rats. Stroke. 1993 Dec; 24(12): 2023-9.
 
[13]  Furuya K, Zhu L, Kawahara N, Abe O, Kirino T. Differences in infarct evolution between lipopolysaccharide-induced tolerant and nontolerant conditions to focal cerebral ischemia. J Neurosurg. 2005 Oct; 103(4): 715-23.
 
[14]  Star RA. Treatment of acute renal failure. Kidney Int. 1998 Dec; 54(6): 1817-31.
 
[15]  Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov; 193(1): 265-75.
 
[16]  Leist M, Gantner F, Naumann H, Bluethmann H, Vogt K, Brigelius-Flohe R, et al. Tumor necrosis factor-induced apoptosis during the poisoning of mice with hepatotoxins. Gastroenterology. 1997 Mar; 112(3): 923-34.
 
[17]  Satoh K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta. 1978 Nov 15; 90(1): 37-43.
 
[18]  Hosomi N, Ban CR, Naya T, Takahashi T, Guo P, Song XY, et al. Tumor necrosis factor-alpha neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2005 Aug; 25(8): 959-67.
 
[19]  Murakami Y, Saito K, Hara A, Zhu Y, Sudo K, Niwa M, et al. Increases in tumor necrosis factor-alpha following transient global cerebral ischemia do not contribute to neuron death in mouse hippocampus. J Neurochem. 2005 Jun; 93(6): 1616-22.
 
[20]  Sriram K, O'Callaghan JP. Divergent roles for tumor necrosis factor-alpha in the brain. J Neuroimmune Pharmacol. 2007 Jun; 2(2): 140-53.
 
[21]  Ferretti G, Bacchetti T, Masciangelo S, Nanetti L, Mazzanti L, Silvestrini M, et al. Lipid peroxidation in stroke patients. Clin Chem Lab Med. 2008; 46(1): 113-7.
 
[22]  Lu Q, Xia N, Xu H, Guo L, Wenzel P, Daiber A, et al. Betulinic acid protects against cerebral ischemia-reperfusion injury in mice by reducing oxidative and nitrosative stress. Nitric Oxide. 2011 Apr 30; 24(3): 132-8.
 
[23]  Liu Y, Liu W, Sun X, Li R, Sun Q, Cai J, et al. Hydrogen saline offers neuroprotection by reducing oxidative stress in a focal cerebral ischemia-reperfusion rat model. Med Gas Res. 2011; 1(1): 15.
 
[24]  Zhang JY, Jr., Si YL, Liao J, Yan GT, Deng ZH, Xue H, et al. Leptin administration alleviates ischemic brain injury in mice by reducing oxidative stress and subsequent neuronal apoptosis. J Trauma Acute Care Surg. 2012 2012; 72(4): 982-91.
 
[25]  Liu Y, Liu W, Sun X, Li R, Sun Q, Cai J, et al. Hydrogen saline offers neuroprotection by reducing oxidative stress in a focal cerebral ischemia-reperfusion rat model. Med Gas Res. 1(1): 15.
 
[26]  Jung HW, Mahesh R, Bae HS, Kim YH, Kang JS, Park YK. The antioxidant effects of Joongpoongtang 05 on brain injury after transient focal cerebral ischemia in rats. J Nat Med. Apr; 65(2): 322-9.
 
[27]  Berti R, Williams AJ, Moffett JR, Hale SL, Velarde LC, Elliott PJ, et al. Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia-reperfusion brain injury. J Cereb Blood Flow Metab. 2002 Sep; 22(9): 1068-79.
 
[28]  Haddad M, Rhinn H, Bloquel C, Coqueran B, Szabo C, Plotkine M, et al. Anti-inflammatory effects of PJ34, a poly(ADP-ribose) polymerase inhibitor, in transient focal cerebral ischemia in mice. Br J Pharmacol. 2006 Sep; 149(1): 23-30.
 
[29]  Clausen BH, Lambertsen KL, Babcock AA, Holm TH, Dagnaes-Hansen F, Finsen B. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation. 2008; 5: 46.
 
[30]  Sairanen T, Carpen O, Karjalainen-Lindsberg ML, Paetau A, Turpeinen U, Kaste M, et al. Evolution of cerebral tumor necrosis factor-alpha production during human ischemic stroke. Stroke. 2001 Aug; 32(8): 1750-8.
 
[31]  Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, et al. Intrathecal release of pro- and anti-inflammatory cytokines during stroke. Clin Exp Immunol. 1997 Dec; 110(3): 492-9.
 
[32]  Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience. 2009 Feb 6; 158(3): 1021-9.
 
Show Less References

Article

The Prevalence, Incidence and Etiology of Epilepsy

1Basic Medical Science, Khyber Medical University Peshawar Phase IV, Hayatabad, Peshawar, Pakistan


International Journal of Clinical and Experimental Neurology. 2014, 2(2), 29-39
DOI: 10.12691/ijcen-2-2-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
Shakirullah, Niaz Ali, Aslam khan, Muhammad Nabi. The Prevalence, Incidence and Etiology of Epilepsy. International Journal of Clinical and Experimental Neurology. 2014; 2(2):29-39. doi: 10.12691/ijcen-2-2-3.

Correspondence to:  Shakirullah, Basic Medical Science, Khyber Medical University Peshawar Phase IV, Hayatabad, Peshawar, Pakistan. Email: shakir_pharmacist@yahoo.com

Abstract

Epilepsy is a neuronal disorder that is observed globally but still it is not explored very well in most parts of the world. This disease is linked to different provocative causes and affects almost all generation, ethnicity and age population. Therefore, the aim of this article is to systemically review the literature about the prevalence, incidence and etiology of epilepsy to find possible approaches to control epilepsy. The worldwide prevalence of epilepsy is variable and varied among countries. High prevalence is found in adolescent and early age group population. In North America, Central and South America high prevalence is found in male except in New York, Bolivia, Honduras and Argentina where prevalence is high in female. In Asian countries such as China, India, Turkey and Saudi Arabia the prevalence is high in Male except in Pakistan here prevalence is high in female similarly to European countries where also prevalence is high in female. The prevalence of epilepsy in male and female is variable in African countries. Generalized seizure is high in America, Asia, Europe, and Africa than the other types of epilepsies. Very limited data is available about the incidence of epilepsy especially from low and lower middle income countries. The incidence rate of epilepsy is higher in the developing countries than the industrialized countries. Similarly, the incidence is also higher in male than female. Head injury, birth trauma, cerebrovascular disease, and intracranial infections (neurocysticercosis or meningoencephalitis) and genetic factors are the main causes of epilepsy.

Keywords

References

[1]  Eucare., European white paper on epilepsy-call to action. Epilepsia, 2003. 44(6): p. 4-8.
 
[2]  Leon Shargel, et al., Comprehensive pharmacy Review for NAPLEX 8th Edition. Wolters Kluwer/ Lippincott Williams & Wilikin, 2000: p. pp743.
 
[3]  Saraceno., B., EPILEPSY IN THE WHO EUROPEAN REGION. 2005.
 
[4]  R., K., Bringing epilepsy out of the shadows. BMJ, 1997. 315: p. 2-3.
 
[5]  Giuliano Avanzini and L. Prilipko., Epilepsy Care in the World WHO 2005. Epilepsy Atlas, 2005.
 
Show More References
[6]  Ngugi AK, et al., Estimation of the burden of active and life‐time epilepsy: A meta‐analytic approach. Epilepsia., 2010. 51(5): p. 883-890.
 
[7]  Organization., W.H., Epilepsy: aetiology, epidemiology and prognosis. WHO Fact Sheet., 2009. No. 999.
 
[8]  Khatri I, et al., Epidemiology of epilepsy in Pakistan: review of literature. Epidemiology., 2003.
 
[9]  Khan N, et al., Audit of 100 cases of epilepsy in a tertiary care hospital. Gomal Journal of Medical Sciences., 2010. 9(1).
 
[10]  Malik MA, et al., Childhood epilepsy. Journal of College Physicians Surgeon Pakistan., 2011. 21(2): p. 74-8.
 
[11]  Mac TL, et al., Epidemiology, aetiology, and clinical management of epilepsy in Asia: a systematic review. The Lancet Neurology., 2007. 6(6): p. 533-43.
 
[12]  Aziz H, Akhtar SW, and H. KZ., Epilepsy in Pakistan: Stigma and Psychosocial Problems. A Population‐Based Epidemiologic Study. Epilepsia., 1997. 38(10): p. 1069-73.
 
[13]  Aziz H, et al., Comparative Epidemiology of Epilepsy in Pakistan and Turkey: Population‐Based Studies Using Identical Protocols. Epilepsia., 1997. 38(6): p. 716-22.
 
[14]  Sridharan, R. and B. Murthy, Prevalence and pattern of epilepsy in India. Epilepsia, 1999. 40(5): p. 631-636.
 
[15]  Radhakrishnan, K., et al., Prevalence, knowledge, attitude, and practice of epilepsy in Kerala, South India. Epilepsia, 2000. 41(8): p. 1027-1035.
 
[16]  Khadilkar, S., Neurology: the scenario in India. J Assoc Physicians India, 2012. 60: p. 42-4.
 
[17]  Das, K., et al., Evaluation of socio-economic factors causing discontinuation of epilepsy treatment resulting in seizure recurrence: a study in an urban epilepsy clinic in India. Seizure, 2007. 16(7): p. 601-607.
 
[18]  Leonardi, M. and T.B. Ustun, The global burden of epilepsy. Epilepsia, 2002. 43(s6): p. 21-25.
 
[19]  Mani, K., et al., The Yelandur study: a community-based approach to epilepsy in rural South India—epidemiological aspects. Seizure, 1998. 7(4): p. 281-288.
 
[20]  PS, R., et al., Quality of life among people with epilepsy: A cross-sectional study from rural southern India. Natl Med J India, 2012. 25: p. 261-4.
 
[21]  Huang, M., et al., [The prevalence of epilepsy in rural Jinshan in Shanghai]. Zhonghua liu xing bing xue za zhi= Zhonghua liuxingbingxue zazhi, 2002. 23(5): p. 345-346.
 
[22]  Gu, L., et al., Prevalence of epilepsy in the People's Republic of China: A systematic review. Epilepsy research, 2013. 105(1): p. 195-205.
 
[23]  Wang, W., et al., [Epidemiological survey on epilepsy among rural populations in five provinces in China]. Zhonghua yi xue za zhi, 2002. 82(7): p. 449-452.
 
[24]  de Boer, H.M., et al., ILAE/IBE/WHO Global Campaign Against Epilepsy: a partnership that works. Current opinion in neurology, 2013. 26(2): p. 219-225.
 
[25]  Mannan, M., Epilepsy in Bangladesh. Neurol Asia, 2004. 9(1): p. 18.
 
[26]  abu nasar rizvi, et al., Epileptic Patients Attending in a Tertiary Care Hospital:A 4 (four) Years Study. Bangladesh Journal of Neuroscience 2011. 27(1): p. 18-21.
 
[27]  Ebrahimi, H., M. Shafa, and S. Hakimzadeh Asl, Prevalence of active epilepsy in Kerman, Iran: a house based survey. Acta Neurol Taiwan, 2012. 21(3): p. 115-24.
 
[28]  Inaloo, S. and P. Katibeh, An epidemiologic study of 389 children with epilepsy in southern Iran. IJCN, 2011. 5(4): p. 15-20.
 
[29]  Khedr, E.M., et al., A community based epidemiological study of epilepsy in Assiut Governorate/Egypt. Epilepsy research, 2013. 103(2): p. 294-302.
 
[30]  Benamer, H.T. and D.G. Grosset, A systematic review of the epidemiology of epilepsy in Arab countries. Epilepsia, 2009. 50(10): p. 2301-2304.
 
[31]  Theodore, W.H., et al., Epilepsy in North America: a report prepared under the auspices of the global campaign against epilepsy, the International Bureau for Epilepsy, the International League Against Epilepsy, and the World Health Organization. Epilepsia, 2006. 47(10): p. 1700-1722.
 
[32]  Kelvin, E.A., et al., Prevalence of self-reported epilepsy in a multiracial and multiethnic community in New York City. Epilepsy research, 2007. 77(2): p. 141-150.
 
[33]  Haerer, A.F., D.W. Anderson, and B.S. Schoenberg, Prevalence and clinical features of epilepsy in a biracial United States population. Epilepsia, 1986. 27(1): p. 66-75.
 
[34]  Melcon, M.O., S. Kochen, and R.H. Vergara, Prevalence and clinical features of epilepsy in Argentina. Neuroepidemiology, 2006. 28(1): p. 8-15.
 
[35]  Cruz, M.E., et al., Pilot study to detect neurologic disease in Ecuador among a population with a high prevalence of endemic goiter. Neuroepidemiology, 1985. 4(2): p. 108-116.
 
[36]  Russ, S.A., K. Larson, and N. Halfon, A national profile of childhood epilepsy and seizure disorder. Pediatrics, 2012. 129(2): p. 256-264.
 
[37]  Frieden, T.R., Epilepsy in adults and access to care--United States, 2010. Center for disease control and prevention MMWR. Morbidity and mortality weekly report, 2012. 61(45): p. 909.
 
[38]  Tellez-Zenteno, J.F., et al., National and Regional Prevalence of Self‐reported Epilepsy in Canada. Epilepsia, 2004. 45(12): p. 1623-1629.
 
[39]  Tekle-Haimanot, R., et al., Clinical and electroencephalographic characteristics of epilepsy in rural Ethiopia: a community-based study. Epilepsy research, 1990. 7(3): p. 230-239.
 
[40]  Purcell, B., et al., Epilepsy prevalence and prescribing patterns in England and Wales. Health Statistics Quarterly, 2002. 15(Autumn): p. 23-30.
 
[41]  Forsgren, L., et al., The epidemiology of epilepsy in Europe–a systematic review. European Journal of Neurology, 2005. 12(4): p. 245-253.
 
[42]  Berg, A.T., et al., Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia, 2010. 51(4): p. 676-685.
 
[43]  43.Blume, W.T., et al., Glossary of descriptive terminology for ictal semiology: report of the ILAE task force on classification and terminology. Epilepsia, 2001. 42(9): p. 1212-1218.
 
[44]  Brown, S., et al., Epilepsy needs revisited: a revised epilepsy needs document for the UK. Seizure, 1998. 7(6): p. 435-446.
 
[45]  Shorvon, S.D., Handbook of epilepsy treatment. 2005: John Wiley & Sons.
 
[46]  Sander, J.W., The use of antiepileptic drugs—principles and practice. Epilepsia, 2004. 45(s6): p. 28-34.
 
[47]  WHO, Fact sheet 999, epilepsy.
 
[48]  Forsgren, L., et al., Incidence and Clinical Characterization of Unprovoked Seizures in Adults: A Prospective Population‐Based Study. Epilepsia, 1996. 37(3): p. 224-229.
 
[49]  Linehan, C., The Prevalence of Epilepsy in Ireland: Brainwave The Irish Epilepsy Association Summary Report 2009. 2012.
 
[50]  Gekht, A., et al., An epidemiological study of epilepsy in Moscow. Zhurnal nevrologii i psikhiatrii imeni SS Korsakova/Ministerstvo zdravookhraneniia i meditsinskoĭ promyshlennosti Rossiĭskoĭ Federatsii, Vserossiĭskoe obshchestvo nevrologov [i] Vserossiĭskoe obshchestvo psikhiatrov, 1999. 99(10): p. 51.
 
[51]  MacDonald, B., et al., The incidence and lifetime prevalence of neurological disorders in a prospective community-based study in the UK. Brain, 2000. 123(4): p. 665-676.
 
[52]  M. Belhocine, H.M. de Boer, and C. Mandlhate., The global campaign against epilepsy: out of the shadows. WHO, 2004.
 
[53]  Diagana, M., et al., Dépistage de l’épilepsie en zones tropicales: validation d’un questionnaire en Mauritanie. Bull Soc Pathol Exot, 2000. 93: p. 276-8.
 
[54]  M., D.-C., Epilepsie en Afrique subsaharienne. Thèse, Universitéde Limoges, France, 2002.
 
[55]  Rwiza, H., et al., Prevalence and Incidence of Epilepsy in Ulanga, a Rural Tanzanian District: A Community‐Based Study. Epilepsia, 1992. 33(6): p. 1051-1056.
 
[56]  Hackett, M.L., et al., Sydney epilepsy incidence study to measure illness consequences: the SESIMIC observational epilepsy study protocol. BMC neurology, 2011. 11(1): p. 3.
 
[57]  D’Souza, W.J., et al., The Tasmanian Epilepsy Register–a community-based cohort. Neuroepidemiology, 2008. 29(3-4): p. 255-263.
 
[58]  Noronha, A.L., et al., Prevalence and pattern of epilepsy treatment in different socioeconomic classes in Brazil. Epilepsia, 2007. 48(5): p. 880-885.
 
[59]  Reggio, A., et al., Prevalence of epilepsy. A door-to-door survey in the Sicilian community of Riposto. The Italian Journal of Neurological Sciences, 1996. 17(2): p. 147-151.
 
[60]  Rocca, W., et al., Door-to-door prevalence survey of epilepsy in three Sicilian municipalities. Neuroepidemiology, 2001. 20(4): p. 237-241.
 
[61]  Onal, A.E., et al., Epilepsy prevalence in a rural area in Istanbul. Seizure, 2002. 11(6): p. 397-401.
 
[62]  Karaaĝaç, N., et al., Prevalence of epilepsy in Silivri, a rural area of Turkey. Epilepsia, 1999. 40(5): p. 637-642.
 
[63]  Chong-Tin, T., Differences in epilepsy and seizures between Asia and the West. Neurology Asia, 2007. 12: p. 59-60.
 
[64]  Jallon, P., Epilepsy in developing countries. Epilepsia, 1997. 38(10): p. 1143-1151.
 
[65]  Õun, A., S. Haldre, and M. Mägi, Prevalence of adult epilepsy in Estonia. Epilepsy research, 2003. 52(3): p. 233-242.
 
[66]  Lavados, J., et al., A descriptive study of epilepsy in the district of El Salvador, Chile, 1984–1988. Acta neurologica scandinavica, 1992. 85(4): p. 249-256.
 
[67]  Basch, E., et al., Prevalence of epilepsy in a migrant population near Quito, Ecuador. Neuroepidemiology, 1997. 16(2): p. 94-98.
 
[68]  Olafsson, E. and W.A. Hauser, Prevalence of Epilepsy in Rural Iceland: A Population‐Based Study. Epilepsia, 1999. 40(11): p. 1529-1534.
 
[69]  Birbeck, G.L. and E. Kalichi, Epilepsy prevalence in rural Zambia: a door-to-door survey. Tropical Medicine & International Health, 2004. 9(1): p. 92-95.
 
[70]  Forsgren, L., Prevalence of epilepsy in adults in northern Sweden. Epilepsia, 1992. 33(3): p. 450-458.
 
[71]  Placencia, M., et al., Epileptic seizures in an Andean region of Ecuador: incidence and prevalence and regional variation. Brain, 1992. 115(3): p. 771-782.
 
[72]  Nicoletti, A., et al., Prevalence of epilepsy in rural Bolivia A door-to-door survey. Neurology, 1999. 53(9): p. 2064-2064.
 
[73]  Medina, M.T., et al., Prevalence, incidence, and etiology of epilepsies in rural Honduras: the Salama Study. Epilepsia, 2005. 46(1): p. 124-131.
 
[74]  Li, S.c., et al., Epidemiology of epilepsy in urban areas of the People's Republic of China. Epilepsia, 1985. 26(5): p. 391-394.
 
[75]  Koul, R., S. Razdan, and A. Motta, Prevalence and pattern of epilepsy (Lath/Mirgi/Laran) in rural Kashmir, India. Epilepsia, 1988. 29(2): p. 116-122.
 
[76]  Al Rajeh, S., et al., The prevalence of epilepsy and other seizure disorders in an Arab population: a community-based study. Seizure, 2001. 10(6): p. 410-414.
 
[77]  Osuntokun, B.O., et al., Research protocol for measuring the prevalence of neurologic disorders in developing countries. Neuroepidemiology, 1982. 1(3): p. 143-153.
 
[78]  Osuntokun, B., et al., Prevalence of the Epilepsies in Nigerian Africans: A Community‐Based Study. Epilepsia, 1987. 28(3): p. 272-279.
 
[79]  Longe, A. and B. Osuntokun, Prevalence of neurological disorders in Udo, a rural community in southern Nigeria. Tropical and geographical medicine, 1989. 41(1): p. 36-40.
 
[80]  Kaiser, C., et al., Rating D, Leichsenring M, 1996. The prevalence of epilepsy follows the distribution of onchocerciasis in a west Ugandan focus. Bull World Health Organ. 74: p. 361-367.
 
[81]  Attia-Romdhane, N., A. Mrabet, and M.B. Hamida, Prevalence of epilepsy in Kelibia, Tunisia. Epilepsia, 1993. 34(6): p. 1028-1032.
 
[82]  Snow, R., et al., The prevalence of epilepsy among a rural Kenyan population. Its association with premature mortality. Tropical and geographical medicine, 1993. 46(3): p. 175-179.
 
[83]  Dent, W., et al., Prevalence of Active Epilepsy in a Rural Area in South Tanzania: A Door‐to‐Door Survey. Epilepsia, 2005. 46(12): p. 1963-1969.
 
[84]  Bharucha, N.E., et al., Prevalence of epilepsy in the Parsi community of Bombay. Epilepsia, 1988. 29(2): p. 111-115.
 
[85]  Wright, J., et al., A population-based study of the prevalence, clinical characteristics and effect of ethnicity in epilepsy. Seizure, 2000. 9(5): p. 309-313.
 
[86]  Banerjee, P.N., D. Filippi, and W. Allen Hauser, The descriptive epidemiology of epilepsy—a review. Epilepsy research, 2009. 85(1): p. 31-45.
 
[87]  Kotsopoulos, I.A., et al., Systematic Review and Meta‐analysis of Incidence Studies of Epilepsy and Unprovoked Seizures. Epilepsia, 2002. 43(11): p. 1402-1409.
 
[88]  Benn, E.K., et al., Estimating the incidence of first unprovoked seizure and newly diagnosed epilepsy in the low‐income urban community of Northern Manhattan, New York City. Epilepsia, 2008. 49(8): p. 1431-1439.
 
[89]  Hauser, W.A., J.F. Annegers, and L.T. Kurland, Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia, 1993. 34(3): p. 453-458.
 
[90]  Graaf, A.d., Epidemiological aspects of epilepsy in northern Norway. Epilepsia, 1974. 15(3): p. 291-299.
 
[91]  Stephen, L.J. and M.J. Brodie, Epilepsy in elderly people. The Lancet, 2000. 355(9213): p. 1441-1446.
 
[92]  Granieri, E., et al., A descriptive study of epilepsy in the district of Copparo, Italy, 1964–1978. Epilepsia, 1983. 24(4): p. 502-514.
 
[93]  Olafsson, E., et al., Incidence of unprovoked seizures and epilepsy in Iceland and assessment of the epilepsy syndrome classification: a prospective study. The Lancet Neurology, 2005. 4(10): p. 627-634.
 
[94]  Klein, P., L.M. van Passel-Clark, and J.C. Pezzullo, Onset of epilepsy at the time of menarche. Neurology, 2003. 60(3): p. 495-497.
 
[95]  Kaneko, S., et al., Genetics of epilepsy: current status and perspectives. Neuroscience research, 2002. 44(1): p. 11-30.
 
[96]  Epilepsy, C.o.T.D.o.t.I.L.A., Relationship between epilepsy and tropical diseases. Epilepsia, 1994. 35: p. 89–93.
 
[97]  Garcia, H.H. and O.H. Del Brutto, Neurocysticercosis: updated concepts about an old disease. The Lancet Neurology, 2005. 4(10): p. 653-661.
 
[98]  Murthy, J., et al., Acute symptomatic seizures associated with neurocysticercosis: A community-based prevalence study and comprehensive rural epilepsy study in South India. Neurol Asia, 2004. 9(Suppl 1): p. 86.
 
[99]  Tran, D.-S., et al., Prevalence of epilepsy in a rural district of central Lao PDR. Neuroepidemiology, 2006. 26(4): p. 199-206.
 
[100]  Kuruvilla, A., et al., Neurocysticercosis: a clinical and radiological appraisal from Kerala State, South India. Singapore medical journal, 2001. 42(7): p. 297-303.
 
[101]  Jain, S., et al., Twin birth and epilepsy: an expanded India study. Neurol J Southeast Asia, 1999. 4: p. 19-23.
 
[102]  Sharma, K., Genetic epidemiology of epilepsy: a twin study. Neurology India, 2005. 53(1): p. 93.
 
[103]  Lu, J., et al., The gene encoding GABBR1 is not associated with childhood absence epilepsy in the Chinese Han population. Neuroscience letters, 2003. 343(3): p. 151-154.
 
[104]  Ren, L., et al., Lack of GABABR1 gene variation (G1465A) in a Chinese population with temporal lobe epilepsy. Seizure, 2005. 14(8): p. 611-613.
 
[105]  Chen, Y., et al., [Association of child absence epilepsy with T-STAR gene]. Zhonghua yi xue za zhi, 2003. 83(13): p. 1134-1137.
 
[106]  Chen, Y., et al., T-type calcium channel gene alpha (1G) is not associated with childhood absence epilepsy in the Chinese Han population. Neuroscience letters, 2003. 341(1): p. 29-32.
 
[107]  Nair, R.R. and S.V. Thomas, Genetic liability to epilepsy in Kerala State, India. Epilepsy research, 2004. 62(2): p. 163-170.
 
[108]  Ramasundrum, V. and C.T. Tan, Consanguinity and risk of epilepsy. Neurol Asia, 2004. 9(Suppl 1): p. 10-11.
 
Show Less References

Article

Tumor Necrosis Factor-α and Nuclear Factor Kappa-β Expression in Rats Following Transient Focal Cerebral Ischemia Reperfusion

1Department of Physiology, Faculty of Medicine, Alneelain University, Khartoum, Sudan

2Department of Biochemistry, Faculty of Medicine and Heath Sciences, Alexandria University, Alexandria, Egypt

3Department of Physiology, Faculty of Medicine, Hormozgan University of Medical Science, Bandar Abbas, Iran

4Department of Physiology – Faculty of Medicine–University of Khartoum – Khartoum, Sudan


International Journal of Clinical and Experimental Neurology. 2014, 2(2), 40-46
DOI: 10.12691/ijcen-2-2-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
Hiba A Awooda, Gihan M Sharara, Nepton Soltani, Amal M Saeed. Tumor Necrosis Factor-α and Nuclear Factor Kappa-β Expression in Rats Following Transient Focal Cerebral Ischemia Reperfusion. International Journal of Clinical and Experimental Neurology. 2014; 2(2):40-46. doi: 10.12691/ijcen-2-2-4.

Correspondence to: Hiba  A Awooda, Department of Physiology, Faculty of Medicine, Alneelain University, Khartoum, Sudan. Email: h_alsheekh82@yahoo.com

Abstract

Ischemic stroke usually initiates inflammation that potentiates neuronal death. The aim of this study was to evaluate the role of TNF-α and NF- қB in rats subjected to transient cerebral ischemia and to correlate their levels with the resulting of neurological deficits. Experimental procedures were performed on 30 adult male Wistar rats. In fifteen rats transient focal cerebral ischemia was induced by occlusion of the left common carotid artery (CCA) for 30 minutes followed by reperfusion for 24 hours (test group). Another 15 rats underwent the surgery at the same neck region without occlusion of CCA and served as a control group. Neurobehavioral assessments were evaluated. TNF-α was measured in the serum and brain tissue using ELISA method, and the expression of NF-қβ was done via western blotting as well. TNF-α concentration in both serum and brain tissue in the test group were significantly higher than control group (P < 0.001). The expression of NF- қB in the test group was significantly higher than control group (P < 0.001). Neurological deficit of the test group correlated negatively with both NF-қβ and TNF-α. Another positive correlation found between NF-қβ of the test group with the brain tissue and serum TNF-α. From the results of this study we can concluded that TNF-α and NF-қβ were significantly expressed in the affected brain tissue following cerebral ischemia/reperfusion in rats, with demonstration of a direct relationship between this inflammatory biomarkers and the consequent neurological deficits.

Keywords

References

[1]  Bi Q, Wang T, Zhang W: Frequency and etiological diagnosis of ischemic stroke in Chinese young adults. Neurol Res 2012, 34: 354-358.
 
[2]  Donnan GA: The 2007 Feinberg lecture: a new road map for neuroprotection. Stroke 2008, 39: 242.
 
[3]  Deb P, Sharma S, Hassan KM: Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology 2010, 17: 197-218.
 
[4]  Durukan A, Tatlisumak T: Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 2007, 87: 179-197.
 
[5]  Strickland I, Ghosh S: Use of cell permeable NBD peptides for suppression of inflammation. Ann Rheum Dis 2006, 65 Suppl 3: iii75-82.
 
Show More References
[6]  Emsley HC, Tyrrell PJ: Inflammation and infection in clinical stroke. J Cereb Blood Flow Metab 2002, 22: 1399-1419.
 
[7]  Watters O, O'Connor JJ: A role for tumor necrosis factor-alpha in ischemia and ischemic preconditioning. J Neuroinflammation 2011, 8: 87.
 
[8]  Desai A, Singh N, Raghubir R: Neuroprotective potential of the NF-kappaB inhibitor peptide IKK-NBD in cerebral ischemia-reperfusion injury. Neurochem Int 2010, 57: 876-883.
 
[9]  Tak PP, Firestein GS: NF-kappaB: a key role in inflammatory diseases. J Clin Invest 2001, 107: 7-11.
 
[10]  Gidday JM, Gasche YG, Copin JC, Shah AR, Perez RS, Shapiro SD, Chan PH, Park TS: Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol 2005, 289: H558-568.
 
[11]  Hayden MS, Ghosh S: Signaling to NF-kappaB. Genes Dev 2004, 18: 2195-2224.
 
[12]  Albensi BC, Mattson MP: Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse 2000, 35: 151-159.
 
[13]  Ridder DA, Schwaninger M: NF-kappaB signaling in cerebral ischemia. Neuroscience 2009, 158: 995-1006.
 
[14]  Liu Y, Zhang XJ, Yang CH, Fan HG: Oxymatrine protects rat brains against permanent focal ischemia and downregulates NF-kappaB expression. Brain Res 2009, 1268: 174-180.
 
[15]  Keefer LK, Garland WA, Oldfield NF, Swagzdis JE, Mico BA: Inhibition of N-nitrosodimethylamine metabolism in rats by ether anesthesia. Cancer Res 1985, 45: 5457-5460.
 
[16]  Renolleau S, Aggoun-Zouaoui D, Ben-Ari Y, Charriaut-Marlangue C: A model of transient unilateral focal ischemia with reperfusion in the P7 neonatal rat: morphological changes indicative of apoptosis. Stroke 1998, 29: 1454-1460; discussion 1461.
 
[17]  Kuluz JW, Prado RJ, Dietrich WD, Schleien CL, Watson BD: The effect of nitric oxide synthase inhibition on infarct volume after reversible focal cerebral ischemia in conscious rats. Stroke 1993, 24: 2023-2029.
 
[18]  Furuya K, Zhu L, Kawahara N, Abe O, Kirino T: Differences in infarct evolution between lipopolysaccharide-induced tolerant and nontolerant conditions to focal cerebral ischemia. J Neurosurg 2005, 103: 715-723.
 
[19]  Star RA: Treatment of acute renal failure. Kidney Int 1998, 54: 1817-1831.
 
[20]  Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193: 265-275.
 
[21]  Leist M, Gantner F, Naumann H, Bluethmann H, Vogt K, Brigelius-Flohe R, Nicotera P, Volk HD, Wendel A: Tumor necrosis factor-induced apoptosis during the poisoning of mice with hepatotoxins. Gastroenterology 1997, 112: 923-934.
 
[22]  Bers G, Garfin D: Protein and nucleic acid blotting and immunobiochemical detection. BioTechniques 1985, 3: 276-288.
 
[23]  Hosomi N, Ban CR, Naya T, Takahashi T, Guo P, Song XY, Kohno M: Tumor necrosis factor-alpha neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2005, 25: 959-967.
 
[24]  Murakami Y, Saito K, Hara A, Zhu Y, Sudo K, Niwa M, Fujii H, Wada H, Ishiguro H, Mori H, Seishima M: Increases in tumor necrosis factor-alpha following transient global cerebral ischemia do not contribute to neuron death in mouse hippocampus. J Neurochem 2005, 93: 1616-1622.
 
[25]  Sriram K, O'Callaghan JP: Divergent roles for tumor necrosis factor-alpha in the brain. J Neuroimmune Pharmacol 2007, 2: 140-153.
 
[26]  Clausen BH, Lambertsen KL, Babcock AA, Holm TH, Dagnaes-Hansen F, Finsen B: Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation 2008, 5: 46.
 
[27]  Ekdahl CT, Kokaia Z, Lindvall O: Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009, 158: 1021-1029.
 
[28]  Haddad M, Rhinn H, Bloquel C, Coqueran B, Szabo C, Plotkine M, Scherman D, Margaill I: Anti-inflammatory effects of PJ34, a poly(ADP-ribose) polymerase inhibitor, in transient focal cerebral ischemia in mice. Br J Pharmacol 2006, 149: 23-30.
 
[29]  Lotocki G, Alonso OF, Dietrich WD, Keane RW: Tumor necrosis factor receptor 1 and its signaling intermediates are recruited to lipid rafts in the traumatized brain. J Neurosci 2004, 24: 11010-11016.
 
[30]  Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel UL: Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. J Biol Chem 2004, 279: 32869-32881.
 
[31]  Intiso D, Zarrelli MM, Lagioia G, Di Rienzo F, Checchia De Ambrosio C, Simone P, Tonali P, Cioffi Dagger RP: Tumor necrosis factor alpha serum levels and inflammatory response in acute ischemic stroke patients. Neurol Sci 2004, 24: 390-396.
 
[32]  Sairanen T, Carpen O, Karjalainen-Lindsberg ML, Paetau A, Turpeinen U, Kaste M, Lindsberg PJ: Evolution of cerebral tumor necrosis factor-alpha production during human ischemic stroke. Stroke 2001, 32: 1750-1758.
 
[33]  Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, Tarkowski A: Intrathecal release of pro- and anti-inflammatory cytokines during stroke. Clin Exp Immunol 1997, 110: 492-499.
 
[34]  Mao DJ, Guo RY, Tang YC, Zang YH: [Expression of sCD40L in peripheral blood and NF-kappaBp65 in PBMC of patients with acute progressive cerebral infarction]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2011, 27: 177-179.
 
[35]  Jeong HJ, Choi IY, Kim MH, Kim HM, Moon PD, Hong JW, Kim SH: Chungsim-Yeunja-Tang decreases the inflammatory response in peripheral blood mononuclear cells from patients with cerebral infarction through an NF-kappaB dependent mechanism. J Neuroinflammation 2010, 7: 85.
 
[36]  Lou HY, Wei XB, Zhang B, Sun X, Zhang XM: Hydroxyethylpuerarin attenuates focal cerebral ischemia-reperfusion injury in rats by decreasing TNF-alpha expression and NF-kappaB activity. Yao Xue Xue Bao 2007, 42: 710-715.
 
[37]  Zheng JM, Chen XC, Lin M, Zhang J, Lin ZY, Zheng GY, Li KZ: [Mechanism of the reduction of cerebral ischemic-reperfusion injury through inhibiting the activity of NF-kappaB by propyl gallate]. Yao Xue Xue Bao 2011, 46: 158-164.
 
Show Less References

Article

Synkinesis of Facial Musculature in a Patient with Facial Paralysis

1Department of Prosthodontics, College of dentistry, Jazan University, Jazan, (KSA)

2Department of Prosthodontics, IDEAS, Madhya Pradesh University of health sciences, M.P (India)

3Department of Prosthodontics, Subharti Dental College, Subharti University, Meerut, India


International Journal of Clinical and Experimental Neurology. 2015, 3(1), 1-3
DOI: 10.12691/ijcen-3-1-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Khurshid A Mattoo, Manas Singh, Pooja Arora. Synkinesis of Facial Musculature in a Patient with Facial Paralysis. International Journal of Clinical and Experimental Neurology. 2015; 3(1):1-3. doi: 10.12691/ijcen-3-1-1.

Correspondence to: Khurshid  A Mattoo, Department of Prosthodontics, College of dentistry, Jazan University, Jazan, (KSA). Email: drkamattoo@rediffmail.com

Abstract

Facial Synkinesis is a clinical condition that is the sequel to facial nerve paralysis which develops during nerve repair like axon myelination and regeneration. Involuntary muscle activity is accompanied by voluntary muscle activity and may involve facial and extra ocular muscles. This article describes an uncommon variation of facial Synkinesis that manifested clinically in weak voluntary chewing and frequent cheek biting in the form of mucosal erosion on the buccal mucosa. Managing a case of facial paralysis that has associated facial Synkinesis has also been discussed.

Keywords

References

[1]  Rubin DI, Matsumoto JY, Suarez GA, Auger RG. Facial trigeminal synkinesis associated with a trigeminal schwannoma. Neurology, 1999; 53 (3): 635-7.
 
[2]  Buckley EG, Ellis FD, Postel E, Saunders T. Post Traumatic Abducens to Oculomotor Nerve Misdirection. Journal of AAPOS, 2005; 9 (1): 12-16.
 
[3]  Beurskens CH, Heymans PG. Mime therapy improves facial symmetry in people with long-term facial nerve paresis: a randomized controlled trial. Aust J Physiother 2006; 52 (3): 177-83.
 
[4]  Nakamura K, Toda N, Sakamaki K, Kashima K, Takeda N. Biofeedback rehabilitation for prevention of synkinesis after facial palsy. Otolaryngol Head Neck Surg, 2003; 128 (4): 539-43.
 
[5]  Manikandan N. Effect of facial neuromuscular re-education on facial symmetry in patients with Bell's palsy: a randomized controlled trial. Clin Rehabil. 2007; 21 (4): 338-43.
 
Show More References
[6]  Pfeiffer N, Simonsz HJ, Kommerell G. Misdirected regeneration of abducens nerve neurons into the parasympathetic pupillary pathway. Graefes Arch Clin Exp Ophthalmol, 1992; 230 (2): 150-3.
 
[7]  Montoya FJ, Riddell CE, Caesar R, Hague S. Treatment of gustatory hyper lacrimation (crocodile tears) with injection of botulinum toxin into the lacrimal gland. Eye, 2002; 16 (6): 705-09.
 
[8]  Mehta RP, Robinson WM, Hadlock TA. Validation of the Synkinesis Assessment Questionnaire. Laryngoscope, 2007; 117 (5): 923-6.
 
[9]  Kothari M, Hussain A, Kar D, Toshniwal S. Primary superior oblique muscle-levator muscle synkinesis. J Aapos. 2007; 11 (2): 204-5.
 
[10]  Choi D, Raisman G. After facial nerve damage, regenerating axons become aberrant throughout the length of the nerve and not only at the site of the lesion: an experimental study. Br J Neurosurg. 2004; 18(1): 45-8.
 
[11]  Sadjadpour K. After Postfacial palsy phenomena: faulty nerve regeneration or ephaptic transmission? Brain Res. 1975; 95 (2-3): 403-6.
 
[12]  Moran CJ, Neely JG. Patterns of facial nerve synkinesis. Laryngoscope 1996; 106 (12): 1491-6.
 
[13]  Brach JS, VanSwearingen JM, Lenert J, Johnson PC. Facial neuromuscular retraining for oral synkinesis. Plast Reconstr Surg. 1997; 99 (7): 1922-31.
 
[14]  Beurskens CH, Heymans PG, Oostendorp RA. Stability of benefits of mime therapy in sequelae of facial nerve paresis during a 1-year period. Otol Neurotol 2006; 27 (7): 1037-42.
 
Show Less References

Article

Variations in Hotspot Region of β-amyloid Precursor Protein (APP) Gene in Various Neurological Disorders from Hyderabad, a Cosmopolitan City of South India

1Department of Genetics and Molecular Medicine, Vasavi Medical and Research Centre, Lakdi-ka-pool, Hyderabad, Andhra Pradesh, India

2Department of Neurology, Apollo Hospital, Jubilee Hills, Hyderabad, Andhra Pradesh, India

3Department of Medical Sciences, National Institute of Mentally Handicapped (NIMH), Bowenpally, Hyderabad, India

4Department of Genetics and Molecular Medicine, Kamineni Hospital, LB Nagar, Hyderabad, Andhra Pradesh, India
Hyderabad science society, Mehdipatnam, Hyderabad, Telangana


International Journal of Clinical and Experimental Neurology. 2015, 3(1), 4-10
DOI: 10.12691/ijcen-3-1-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Winnie Thomas, Sireesha Divyakolu, Vemula Ramana Sreekanth, Vallomkonda Ramesh Om Sai, Vallomkonda Nagaratna, Qurratulain Hasan, Yog Raj Ahuja. Variations in Hotspot Region of β-amyloid Precursor Protein (APP) Gene in Various Neurological Disorders from Hyderabad, a Cosmopolitan City of South India. International Journal of Clinical and Experimental Neurology. 2015; 3(1):4-10. doi: 10.12691/ijcen-3-1-2.

Correspondence to: Yog  Raj Ahuja, Department of Genetics and Molecular Medicine, Vasavi Medical and Research Centre, Lakdi-ka-pool, Hyderabad, Andhra Pradesh, India. Email: yrahuja30@gmail.com

Abstract

Non-synonymous mutations/ polymorphism in amyloid precursor protein (APP) gene cause overproduction of Aβ proteins or affect its split into Aβ40 and Aβ42 peptides. Aβ42 has been considered to be a toxic peptide playing a major role in the pathogenesis of Alzheimers (AD). Similar APP plaques were observed in the brains of Down syndrome (DS) patients and high level of plasma APP was observed in patients with severe Autism spectrum Disorder (ASD). The aim of this study was to evaluate exon 16 and 17, the hotspot regions of APP gene in patients with neurobehavioral disorders like AD, DS and ASD. A total of 75 cases were recruited in the study which included AD (n=25), DS (n=25), and ASD (n=25). Polymerase chain reaction (PCR) analysis and sequencing was carried out using exon-intron encompassing primers for the selected APP gene regions. In-silico analysis was also carried out to identify the impact of sequence variants on the protein structure. Three exonic variants, two in exon 16: V683V, H684Y and one in exon 17, H733Q were identified in sporadic AD cases. Apart from these, two intronic variants were also observed. In-silico analysis showed that H733Q mutation may affect the structure and function of APP, whereas H684Y mutation is neutral. In an ASD case, our analysis showed an intronic variation ie. An A insertion at c.1964-13_1964-12insA. In-silico analysis predicted that this variation affects the elongation feature of the protein. None of the DS cases had any variation in this hotspot region. Our data indicate that variations in the selected hotspot region of APP may play an important role in the aetiology of neurobehavioral disorders.

Keywords

References

[1]  Alzheimer’s disease facts and figures. 2010. http://www.alz.org/documents custom/report alzfactsfigures 2010. Date of accession: 4 February 2013.
 
[2]  Newell KL, Hyman BT, Growdon JH, Hedley-Whyte ET. “Application of the National Institute on Aging (NIA)-Reagan Institute criteria for the neuropathological diagnosis of Alzheimer disease.” Journal of Neuropathology and Experimental Neurology, 58(11):1147-1155, November 1999.
 
[3]  Ge YW, Lahiri DK “Regulation of promoter activity of the APP gene by cytokines and growth factors: Implications in Alzheimer’s disease,” Annals of the New York Academy of Sciences, 973:463-467, November 2002.
 
[4]  Hassold T., Abruzzo M., Adkins K., Griffin D., Merrill M., Millie E., Saker D., Shen J., Zaragoza M. “Human aneuploidy: Incidence, origin and etiology,” Environmental and Molecular Mutagenesis, 28: 167-175, October 1996.
 
[5]  Epstein C.J., Korenberg J.R., Anneren G., Antonarakis S.E., Ayme S., Courchesne E., Epstein L.B., Fowler A., Groner Y., Huret J.L., “Protocols to establish genotype-phenotype correlations in Down syndrome,” American Journal of Human Genetics, 49:207-235, July 1991.
 
Show More References
[6]  Capone GT. “Down syndrome: advances in molecular biology and the neurosciences,” Journal of Developmental & Behavioral Pediatrics, 22: 40-59, February 2001.
 
[7]  Ousley O1, Cermak T2. “Autism Spectrum Disorder: Defining Dimensions and Subgroups,” Current Developmental Disorders Reports, 1(1): 20-28, March 2014.
 
[8]  Ray B1, Long JM, Sokol DK, Lahiri DK. “Increased secreted amyloid precursor protein-α (sAPPα) in severe autism: proposal of a specific, anabolic pathway and putative biomarker,” PLoS One, 6(6):e20405, June 2011.
 
[9]  Daigle I & Li C. “APL-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor,” Proceedings of the National Academy of Sciences of the United States of America, 90:12045-12049, December 1993.
 
[10]  Luo LQ, Martin-Morris LE & White K: “Identification, secretion, and neural expression of APPL, a Drosophila protein similar to human amyloid protein precursor,” Journal of Neuroscience, 10: 3849-3861, December 1990.
 
[11]  Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL. “Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus,” Science, 235: 880-884, February 1987.
 
[12]  Wasco W, Bupp K, Magendantz M, Gusella JF, Tanzi RE, Solomon F, “Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid beta protein precursor,” Proceedings of the National Academy of Sciences of the United States of America, 89: 10758-10762, November 1992.
 
[13]  Wasco W, Gurubhagavatula S, Paradis MD, Romano DM, Sisodia SS, Hyman BT, Neve RL, Tanzi RE, “Isolation and characterization of APLP2 encoding a homologue of the Alzheimer's associated amyloid beta protein precursor,” Nature Genetics, 5: 95-100, September 1993.
 
[14]  St George-Hyslop PH, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins PC, Myers RH, Feldman RG, Pollen D, Drachman D, et al. “The genetic defect causing familial Alzheimer’s disease maps on chromosome 21,” Science, 4791: 885-890, February 1987.
 
[15]  Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, van Duinen SG, Bots GT, Luyendijk W, Frangione B. “Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type,” Science, 248(4959): 1124-1126, June 1990.
 
[16]  Hardy, J. C. & Crook, R. APP mutations table. http://www.alzforum.org/res/com/mut/app/table1.asp (2010).
 
[17]  McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM, “Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease,” Neurology, 34: 939-944, July 1984.
 
[18]  Latha M, Vaidya S, Movva S, Chava S, Govindan S, Govatati S, Banoori M, Hasan Q, Kodati VL, “Molecular pathogenesis of endometriosis: Toll like receptor- 4 A896G (D299G) polymorphism: a novel explanation,” Genetic Testing and Molecular Biomarkers, 15:181-184, March 2011.
 
[19]  Crawford F, Hardy J, Mullan M, Goate A, Hughes D, Fidani L, Roques P, Rossor M, Chartier-Harlin MC, “Sequencing of exons 16 and 17 of the beta-amyloid precursor protein gene in 14 families with early onset Alzheimer's disease fails to reveal mutations in the beta-amyloid sequence,” Neuroscience Letters 133(1): 1-2, November 1991.
 
[20]  Murrell JR, Hake AM, Quaid KA, Farlow MR, Ghetti B, “Early-Onset Alzheimer Disease Caused by a New Mutation (V717L) in the Amyloid Precursor Protein Gene,” Archives of Neurology, 57: 885-887, June 2000.
 
[21]  Vaidya S, Shaik NA, Latha M, Chava S, Mohiuddin K, Yalla A, Rao KP, Kodati VL, Hasan Q, “No evidence for the role of somatic mutations and promoter hypermethylation of FH gene in the tumorigenesis of nonsyndromic uterine leiomyomas,” Tumour Biology, 33(5): 1411-1418, October 2012.
 
[22]  Ng PC & Henikoff S, “Predicting deleterious amino acid substitutions,” Genome Research, 11: 863-874, May 2001.
 
[23]  Ramensky V, Bork P, Sunyaev S, “Human non-synonymous SNPs: server and survey,” Nucleic Acids Research, 30: 3894-3900, September 2002.
 
[24]  Yue P& Moult J, “Identification and analysis of deleterious human SNPs,” Journal of Molecular Biology, 356: 1263-1274, March 2006.
 
[25]  Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, Mooney SD, Radivojac P, “Automated inference of molecular mechanisms of disease from amino acid substitutions,” Bioinformatics, 25(21): 2744-2750, Novemeber 2009.
 
[26]  McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F, “Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor,” Bioinformatics, 26(16): 2069-70, August 2010.
 
[27]  Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L, Hosford D, Barnes MR, Briley JD, Borrie M, Coletta N, Delisle R, Dhalla D, Ehm MG, Feldman HH, Fornazzari L, Gauthier S, Goodgame N, Guzman D, Hammond S, Hollingworth P, Hsiung GY, Johnson J, Kelly DD, Keren R, Kertesz A, King KS, Lovestone S, Loy-English I, Matthews PM, Owen MJ, Plumpton M, Pryse-Phillips W, Prinjha RK, Richardson JC, Saunders A, Slater AJ, St George-Hyslop PH, Stinnett SW, Swartz JE, Taylor RL, Wherrett J, Williams J, Yarnall DP, Gibson RA, Irizarry MC, Middleton LT, Roses AD, “Candidate single nucleotide polymorphism from a genomewide association study of Alzheimer disease,” Archives of Neurology, 65: 45-53, January 2008.
 
[28]  Abraham R, Moskvina V, Sims R, Hollingworth P, Morgan A, Georgieva L, Dowzell K, Cichon S, Hillmer AM, O'Donovan MC, Williams J, Owen MJ, Kirov G, “A genome-wide association study for late-onset Alzheimer's disease using DNA pooling,” BMC Medical Genomics, 29; 1:44, September 2008.
 
[29]  Beecham GW, Martin ER, Li YJ, Slifer MA, Gilbert JR, Haines JL, Pericak-Vance MA, “Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease,” American Journal of Human Genetics, 84(1):35-43, January 2009.
 
[30]  Ertekin-Taner N, “Genetics of Alzheimer disease in the pre- and post-GWAS era,” Alzheimers Research and Therapy, 5; 2(1):3, March 2010.
 
[31]  Ma LL, Ou JR, Zhang W, Sun FR, Yu JT, Tan L, “ Single nucleotide polymorphism rs7294919 on chromosome 12q24.22 is associated with late-onset Alzheimer’s disease in Han Chinese,” Neuroscience Letters, 560:67-70, February 2014.
 
[32]  Johnston J, O'Neill C, Lannfelt L, Winblad B, Cowburn RF, “The significance of the Swedish APP670/671 mutation for the development of Alzheimer's disease amyloidosis. Neurochemistry International, 25(1): 73-80, July 1994.
 
[33]  Cruts M, Theuns J, Van Broeckhoven C, “Locus Specific mutation databases for neurodegenerative brain diseases,” Human Mutation, 33: 1340-1344, September 2012.
 
[34]  Iwatsubo T, Mann DM, Odaka A, Suzuki N, Ihara Y, “Amyloid beta protein (Aβ) deposition: A beta 42 precedes A beta 40 in Down syndrome,”Annals of Neurology, 37(3): 294-9, March 1995.
 
[35]  Tandon A, Rogaeva E, Mullan M, St George-Hyslop PH, “Molecular genetics of Alzheimer's disease: the role of beta-amyloid and the presenilins,” Current Opinion in Neurobiology, 13(4): 377-84, August 2000.
 
[36]  Holland A.J., Hon J., Huppert F.A., Stevens F, “Incidence and course of dementia in people with Down's syndrome: findings from a population-based study,” Journal of Intellectual Disability Research, 44: 138-146, April 2000.
 
[37]  Schupf N, Sergievsky GH, “Genetic and host factors for dementia in Down's syndrome,” British Journal of Psychiatry, 80: 405-10, May 2002.
 
[38]  Wegiel J, Frackowiak J, Mazur-Kolecka B, Schanen NC, Cook EH Jr, Sigman M, Brown WT, Kuchna I, Wegiel J, Nowicki K, Imaki H, Ma SY, Chauhan A, Chauhan V, Miller DL, Mehta PD, Flory M, Cohen IL, London E, Reisberg B, de Leon MJ, Wisniewski T, “Abnormal intracellular accumulation and extracellular Aβ deposition in idiopathic and Dup15q11.2-q13 autism spectrum disorders,” PLoS One, 7(5): e35414, May 2012.
 
[39]  Wakutani Y, Watanabe K, Adachi Y, Wada-Isoe K, Urakami K, Ninomiya H, Saido TC, Hashimoto T, Iwatsubo T, Nakashima K, “Novel amyloid precursor protein gene missense mutation (D678N) in probable familial Alzheimer's disease,” Journal of Neurology Neurosurgery and Psychiatry, 75(7): 1039-1042, July 2004.
 
[40]  Urakami K, Wakutani Y, Wada-Isoe K, Yamagata K, Adachi Y, Nakashima K, “ Analysis of causative genes and genetic risk factor in Alzheimer's disease,” Nihon Ronen Igakkai Zasshi, 38(6): 769-771, November 2001.
 
[41]  Rovelet-Lecrux A, Haunequin D, Raux G, Le Meur N, Laquerriere A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T Campion D, “APP locus duplication causes autosomal dominant early onset Alzheimer disease with cerebral amyloid angiopathy” Nature Genetics, 38: 24-26, January 2006.
 
[42]  Guerreiro RJ, Baquero M, Blesa R, Boada M, Brás JM, Bullido MJ, Calado A, Crook R, Ferreira C, Frank A, Gómez-Isla T, Hernández I, Lleó A, Machado A, Martínez-Lage P, Masdeu J, Molina-Porcel L, Molinuevo JL, Pastor P, Pérez-Tur J, Relvas R, Oliveira CR, Ribeiro MH, Rogaeva E, Sa A, Samaranch L, Sánchez-Valle R, Santana I, Tàrraga L, Valdivieso F, Singleton A, Hardy J, Clarimón J, “Genetic screening of Alzheimer's disease genes in Iberian and African samples yields novel mutations in presenilins and APP,” Neurobiol Aging. 2010; 31(5): 725-731, May 2010.
 
[43]  Liu ST, Howlett G, Barrow CJ, “Histidine-13 Is a Crucial Residue in the Zinc Ion-Induced Aggregation of the Aβ Peptide of Alzheimer's Disease.,” Biochemistry, 38 (29): 9373-9378, July 1999.
 
[44]  Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, Stefansson H, Sulem P, Gudbjartsson D, Maloney J, Hoyte K, Gustafson A, Liu Y, Lu Y, Bhangale T, Graham RR, Huttenlocher J, Bjornsdottir G, Andreassen OA, Jönsson EG, Palotie A, Behrens TW, Magnusson OT, Kong A, Thorsteinsdottir U, Watts RJ, Stefansson K, “A mutation in APP protects against Alzheimer's disease and age-related cognitive decline,” Nature, 488(7409): 96-9, August 2012.
 
[45]  Tanzi RE, Vaula G, Romano DM, Mortilla M, Huang TL, Tupler RG, Wasco W, Hyman BT, Haines JL, Jenkins BJ, Kalaitsidaki M, Warren AC, McInnis MC, Antonarakis SE, Karlinsky H, Percy ME, Connor L, Growdon J, McIachlan DRC, Gusella JF, and St George-Hyslop P, “Assessment of amyloid beta-protein precursor gene mutations in a large set of familial and sporadic Alzheimer disease cases,” American Journal of Human Genetics, 51(2): 273-282, August 1992.
 
Show Less References

Article

Epigenetic Study of Parkinson’s Disease in Experimental Animal Model

1Biochemistry Section, Department of Chemistry

2Department of medical Biochemistry, Faculty of Medicine, Tanta University

3Department of Zoology, Faculty of Science

4Department of Zoology, Faculty of Science, Minoufiya University, Egypt


International Journal of Clinical and Experimental Neurology. 2015, 3(1), 11-20
DOI: 10.12691/ijcen-3-1-3
Copyright © 2015 Science and Education Publishing

Cite this paper:
Afrah F Salama, Wafaa Ibrahim, Ehab Tousson, Saber Sakr, Ahmed Masoud, Mohamed A Akela, Mahmoud A. Abd El-Rahman. Epigenetic Study of Parkinson’s Disease in Experimental Animal Model. International Journal of Clinical and Experimental Neurology. 2015; 3(1):11-20. doi: 10.12691/ijcen-3-1-3.

Correspondence to: Ehab  Tousson, Department of Zoology, Faculty of Science. Email: toussonehab@yahoo.com

Abstract

Epigenetic modifications are defined as mechanisms that are able to modify the expression levels of selected genes without necessarily altering their DNA sequence, as histone tail modifications. These modifications are likely to contribute to the onset and progression of complex human diseases including neurodegenerative ones. Oxidative stress also is thought to be a common underlying mechanism that leads to cellular dysfunction and demise in PD. This study was aimed to assess the epigenetic fingerprint in PD experimental model through HDAC, PARP and activities oxidative stress markers. Materials and methods: The study was carried out on five rat groups, control group, Parkinsonism group, sodium butyrate group, two parkinson’s disease groups co-treated and post treated with sodium butyrate. Parkinsonism was induced by ip injection of paraquat. Laboratory measurements included serum 8-OHdG, MDA level as biomarkers of oxidative stress. HDAC and PARP activities were measured as other epigenetic mechanisms. Results: PD group, PD co-treated and post treated with sodium butyrate showed significant increase in HDAC and PARP activities. Also, there was significant increase in serum 8-OHdG level and MDA level in both serum and tissue. Conclusion and recommendations: The increments in HDAC and PARP activities are either two of the pathogenic mechanisms of the disease or it affords PD patients neuroprotection and benefits. Also, sodium butyrate is one of best antioxidant and neuroprotective agents. We recommended for further studies in HDAC and sodium butyrate as inhibitor in neurodegerative diseases, other diseases and normal state.

Keywords

References

[1]  Waddington CH. (2012): The epigenotype. Int J Epidemiol. 41 (1); 10-13.
 
[2]  Tammen S., Friso S. andChoi S. (2013): Epigenetics: The link between nature and nurture. Mol Aspects Med. 34 (4); 753-764.
 
[3]  Mayeux R. (2003): Epidemiology of neurodegeneration. Annu. Rev. Neurosci. 26, 81-104.
 
[4]  Mattson M. and Magnus T. (2006): Ageing and neuronal vulnerability. Nat Rev Neurosci. 7 (4); 278-294.
 
[5]  Dauer W. and Przedborski S. (2003): Parkinson's disease: mechanisms and models. Neuron 39:889-909.
 
Show More References
[6]  vande Berg, W., Hepp, D., Dijkstra A., Rozemuller J., Berendse H. and Foncke E. (2012): Patterns of alpha-synuclein pathology in incidental cases and clinical subtypes of Parkinson's disease. Parkinsonism Relat. Disord. 18 (Suppl 1), S28-S30.
 
[7]  Krüger R., Eberhardt O., Riess O. and Schulz J. (2002): Parkinson’s disease: one biochemical pathway to fit all genes? TRENDS in Molecular Medicine. 5-8.
 
[8]  Jellinger K. (2009): Formation and development of Lewy pathology: a critical update. J. Neurol. 256 (3); 270-279.
 
[9]  Kovalchuk O. (2008): Epigenetic research sheds new light on the nature of interactions between organisms and their environment. Environ Mol Mutagen. 49 (1); 1-3.
 
[10]  Farooqui T. and Farooqui A. (2011): Lipid-mediated oxidative stress and inflammation in the pathogenesis of Parkinson's disease. Parkinsons Dis. (247467); 1-9.
 
[11]  Obeso J., Rodriguez-Oroz M., Goetz C., Marin C., Kordower J., Rodriguez M., et al. (2010): Missing pieces in the Parkinson’s disease puzzle. Nature Medicine; 16 (6); 653-661.
 
[12]  Kłysz B., Skowrońska M. and Kmieć T. (2014): Mitochondrial protein associated neurodegeneration-case report. NeurolNeurochir Pol. 48 (1); 81-84.
 
[13]  Petrozzi L., Ricci G., Giglioli N., Siciliano G. and Mancuso M. (2007): Mitochondria and Neurodegeneration. Biosci Rep. 27; 87-104.
 
[14]  Navarro A. and Boveris A. (2009): Brain mitochondrial dysfunction and oxidative damage in Parkinson's disease. J BioenergBiomembr. 41 (6); 517-521.
 
[15]  Kozlowski H., Janck-Klos A., Brasun J. Gaggelli E. Valensin D. and Valensin G. (2009): Copper, iron, and Zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coordination Chemistry Review. 253; 2665-2685.
 
[16]  Jordi Bove´, Prou D., Perier, C. and Przedborski, S. (2005):Toxin-Induced Models of Parkinson’s Disease:, The American Society for Experimental NeuroTherapeutics. 2, 484-494.
 
[17]  Franco R., Li S., Rodriguez-Rocha H., Burns M. and Panayiotidisb M. (2010): Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson’s disease. Chemico-Biological Interactions. 188 (2); 289-300.
 
[18]  Dinis-Oliveira R., Remiao F., Carmo H., Duarte J., Navarro A., Bastos M. and Carvalho F. (2006): Paraquat exposure as an etiological factor of Parkinson’s disease. Neurotoxicology. 27 (6); 1110-1122.
 
[19]  Kanthasamy A., Kitazawa M., Yang Y., Anantharam V., and Kanthasamy A. (2008): Environmental neurotoxin dieldrin induces apoptosis via caspase-3-dependent proteolytic activation of protein kinase C delta (PKCdelta): implications for neurodegeneration in Parkinson’s disease. Molecular Brain. 1 (12); 1-15.
 
[20]  Fei Q., McCormack A., Di Monte D. and Ethell D. (2008): Paraquat neurotoxicity is mediated by a Bak-dependent mechanism. J. Biol. Chem. 283 (6); 3357-3364.
 
[21]  Norris E., Uryu K., Leight S., Giasson B., Trojanowski J. and Lee V. (2007): Pesticide exposure exacerbates alpha-synucleinopathy in an A53T transgenic mouse model. Am. J. Pathol. 170 (2); 658-666.
 
[22]  Ranjbar A. (2014): Evidence of Oxidative Damage in Paraquat Toxicity. ZJRMS. 16 (12); 1-7.
 
[23]  Magnarelli G. and Fonovich T. (2013): Protein phosphorylation pathways disruption by pesticides. Advances in Biological Chemistry. 3; 460-474
 
[24]  Ropero S. and Esteller M. (2007): The role of histone deacetylases (HDACs) in human cancer. MolOncol. 1 (1):19-25.
 
[25]  Marks P., Richon V. and Rifkind R. (2000): Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 92; 1210-1216.
 
[26]  Morrison B., Majdzadeh N. and D'Mello S. (2007): Histone deacetylases: Focus on the nervous system. Cell Mol Life Sci. 64 (17):2258-2269.
 
[27]  Hall J. (2008): Discovery of an Intricate Balance: Gene Transcription, Cell Cycle, and Apoptosis. Circ Res. 102; 395-397.
 
[28]  Ozaki T., Okoshi R., Sang M., Kubo N. and Nakagawara A. (2009): Acetylation status of E2F-1 has an important role in the regulation of E2F-1-mediated transactivation of tumor suppressor p 73. Biochemical and Biophysical Research Communications. 386; 207-211
 
[29]  Nicolas E., Morales V., Magnaghi-Jaulin L., Harel-Bellan A., Richard-Foy H. and Trouche D. (2000): RbAp48 belongs to the histone deacetylase complex that associates with the retinoblastoma protein. J Biol Chem. 275; 9797-9804.
 
[30]  Karagianni P. and Wong J. (2007): HDAC3: taking the SMRT-NCoRrect road to repression. Oncogene. 26; 5439-5449.
 
[31]  Hassa PO, Hottiger MO. (2008): The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci. 13:3046-3082.
 
[32]  Kim MY, Zhang T, Kraus WL. (2005): Poly (ADP-ribosyl)ation by PARP-1: 'PARlaying' NAD+ into a nuclear signal. Genes Dev. 19:1951-1967.
 
[33]  Cummings JH, Macfarlane GT, Englyst HN (2001): Prebiotic digestion and fermentation. American Journal of Clinical Nutrition 73 (suppl): 415S-20S.
 
[34]  Vanhoutvin, SA; Troost, FJ; Hamer, HM; Lindsey, PJ; Koek, GH; Jonkers, DM; et al. (2009): Butyrate-induced transcriptional changes in human colonic mucosa.PloS one 4 (8): 101371-101387.
 
[35]  Klampfer, L; Huang, J; Sasazuki, T; Shirasawa, S; Augenlicht, L (2004): Oncogenic Ras Promotes Butyrate-induced Apoptosis through Inhibition of Gelsolin Expression. The Journal of biological chemistry 279 (35): 36680-8.
 
[36]  Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, et al. (2009): HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 7243: 55-60.
 
[37]  Xu WS, Parmigiani RB, Marks PA. (2007): Histone deacetylase inhibitors: molecular mechanism of action. Oncogene, 26:5541-52.
 
[38]  Daly K, Shirazi-Beechey SP. (2006): Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA Cell Biol, 25:49-62.
 
[39]  Dokmanovic M, Clarke K, Marks P. (2007): Histone deacetylase inhibitors: Overview and perspectives. Mol Cancer Res, 5:981-989.
 
[40]  Thiruchelvam M., Richfield E., Baggs R., Tank A. and Cory-Slechta D. (2000): The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combinedparaquat and maneb: implications for Parkinson's disease. J Neurosci. 20 (24); 9207-9214.
 
[41]  Sauer, J., Richter, K. K. and Pool-Zobel, B. L. (2007): Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells. J. Nutr. Biochem. 18:736-745.
 
[42]  Tillerson J., Caudle W., Reveron M. and Miller G. (2002): Detection of behavioral impairments correlated to neurochemical deficits in mice treated with moderate doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Exp Neurol. 178; 80-90.
 
[43]  Taylor T., Greene J., and Miller G. (2010): Behavioral phenotyping of mouse models of Parkinson's disease. Behav Brain Res. 211 (1); 1-10.
 
[44]  Pickrell A., Pinto M., Hida A. and Moraes C. (2011): Striatal Dysfunctions Associated with Mitochondrial DNA Damage in Dopaminergic Neurons in a Mouse Model of Parkinson’s Disease. The Journal of Neuroscience. 31 (48); 17649-17658.
 
[45]  Rangel-López A., Paniagua-Medina M., Urbán-Reyes M., Cortes-Arredondo M., Álvarez-Aguilar C., López-Meza J., et al. (2013): Genetic damage in patients with chronic kidney disease, peritoneal dialysis and haemodialysis: a comparative study, Mutagenesis. 28 (2); 219-225.
 
[46]  Ohkawa H., Ohishi N. and Yagi K. (1979): Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 95 (2); 351-358.
 
[47]  Li L., Dai H., Ye M., Wang S., Xiao X., Zheng J., Chen H., Luo Y. and Liu J. (2012):Lycorine induces cell-cycle arrest in the G0/G1 phase in K562 cells via HDAC inhibition. Cancer Cell International. 12 (1); 49-54.
 
[48]  Satoh MS, Lindahl T. (1992): Role of poly (ADP-ribose) formation in DNA repair. Nature 356: 356-8.
 
[49]  Bancroft, J.D. and Stevens, G.A. (1990): Theory and Practice of Histological Techniques; 2nd Ed. Churchill Livingstone, London.
 
[50]  Cicchetti F., Lapointe N., Roberge-Tremblay A., Saint-Pierre M., Jimenez L., Ficke B. and Gross R. (2005): Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats. Neurobiology of Disease 20; 360-371.
 
[51]  Chanyachukul T., Yoovathaworn K., Thongsaard W., Chongthammakun S., Navasumrit P. and Satayavivad J. (2004): Attenuation of paraquat-induced motor behavior and neurochemical disturbances by L-valine in vivo. Toxicol Lett. May 2; 150 (3):259-69.
 
[52]  Bates I. (1985): Permeability of the blood-brain barrier. Trends. Pharmacol. Sci. 6; 447-450.
 
[53]  Yadav A., Fuentes R., Zhang H., Vinholo T., Wang C., Freire M. and Nicolelis M. (2014): Chronic Spinal Cord Electrical Stimulation Protects Against 6-hydroxydopamine Lesions. Scientific Reports. 4 (3839); 1-10.
 
[54]  Uc E., Tippin J., Chou K., Erickson B., Doerschug K., Fletcher D. (2011): Non-motor Symptoms in Parkinson’s disease. US Neurology. 7 (2); 113-119.
 
[55]  Maurizio M. Maud G; Sara F., Laura M; Jaroslaw W., Giovanna L; Jean L; Paul G. Paolo B. (2008): Supplemental Sodium Butyrate Stimulates Different Gastric Cells in Weaned Pigs J. Nutr. 138: 1426-1431.
 
[56]  Ye J.D., Wang K., Li F.D., Sun Y.Z. (2011):Single or combined effects of fructo-and mannan oligosaccharide supplements and Bacillus clausiion the growth, feed utilization, body composition, digestive enzyme activity, innate immune response and lipid metabolism of the Japanese flounder Paralichthysolivaceus. AquacNutr 17: 902-911.
 
[57]  Zhanguo G.; Jun Y.; Jin Z.; Robert E., Roy J.; Michael L.; William T., Jianping Y. (2009): Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice Diabetes 58 (7): 1509-1517.
 
[58]  Ślusarczyk L; Strzetelski K., Furga I. (2010): The effect of sodium butyrate on calf growth and serum level of β-hydroxybutyric acid Journal of Animal and Feed Sciences, 19, 348-357.
 
[59]  Berribi-Bertran I.; Robert P.; Camelin J.; Bril A., Souchet M. (2001):The gamma subunit of (Na+,K+)-ATPase: A representative example of human single transmembrane protein with a key regulatory role. Cell. Mol. Biol., 47: 285-296.
 
[60]  Bloem B. (1992): Postural instability in Parkinson's disease. ClinNeurol Neurosurg. 94 (l); 41-45.
 
[61]  Eriksson P., Perfilieva E., Bjo¨rk-Eriksson T., Alborn A. M., Nordborg C., Peterson D. A. et al. (1998): Neurogenesis in the adult hippocampus. Nature 4, 1313-1317.
 
[62]  Hao Y. H., Creson T., Zhang L., Li P., Du F., Yuan P., Gould T. D., Manji H. K. and Chen G. (2004): Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J. Neurosci. 24, 6590-6599.
 
[63]  Yadav A., Fuentes R., Zhang H., Vinholo T., Wang C., Freire M. and Nicolelis M. (2014): Chronic Spinal Cord Electrical Stimulation Protects Against 6-hydroxydopamine Lesions. Scientific Reports. 4 (3839); 1-10.
 
[64]  Meitern R., Sild E., Kilk K., Porosk R. and Hõrak P. (2013): On the methodological limitations of detecting oxidative stress: effects of paraquat on measures of oxidative status in greenfinches. The Journal of Experimental Biology 216; 2713-2721.
 
[65]  Cadet J., Douki T. and Ravanat J. (2010): Oxidatively generated base damage to cellular DNA. Free RadicBiol Med. 49; 9-21.
 
[66]  Inoue S. and Kawanishi S. (1995): Oxidative DNA damage induced by simultaneous generation of nitric oxide and superoxide. FEBS Lett. 371 (1); 86-88.
 
[67]  Cheng K., Cahill D., Kasai H., Nishimura S. and Loeb L. (1992): 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G-T and A-C substitutions. J Biol Chem. 267 (1); 166-172.
 
[68]  Yasuharaa T., Haraa K., Sethia K., Morgana J. and Borlongana C. (2007): Increased 8-OHdG levels in the urine, serum, and substantianigra of hemiparkinsonian rats. Brain Res. 1133 (1); 49-52.
 
[69]  Canakci C., Cicek Y., Yildirim A., Sezer U. and Canakc V. (2009): Increased Levels of 8-Hydroxydeoxyguanosine and Malondialdehyde and its Relationship with Antioxidant Enzymes in Saliva of Periodontitis Patients. Eur J Dent. 3 (2); 100-106.
 
[70]  Zhang, W. H., Y. Jiang, Q. F. Zhu, F. Gao, S. F. Dai, J. Chen, and G. H. Zhou. (2011): Sodium butyrate maintains growth performance through regulating immune response in broiler chickens. Br. Poult. Sci. 52:292-301.
 
[71]  Sauer, J., K. K. Richter, and B. L. Pool-Zobel. (2007): Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells. J. Nutr. Biochem. 18:736-745.
 
[72]  Vanhoutvin, S. W., Troost F. J., Hamer H. M., Lindsey P. J., Koek G. H., Jonkers M. E., et al. (2009): Butyrate-induced transcriptional changes in human colonic mucosa. PLoS ONE 4: e6759.
 
[73]  Yang, X., B. Zhang, Y. Guo, P. Jiao, and F. Long. (2010): Effects of dietary lipids and Clostridium butyricumon fat deposition and meat quality of broiler chickens. Poult. Sci. 89:254-260.
 
[74]  Abrahamse, S.L., Pool-Zobel, B.L. and Rechkemmer, G. (1999): Potential of short chain fatty acids to modulate the induction of DNA damage and changes in the intracellular calcium concentration by oxidative stress in isolated rat distal colon cells. Carcinogenesis 20: 629-634.
 
[75]  Collins, A.R., Dusinska, M., Gedik, C.M. and Stetina, R. (1996): Oxidative damage to DNA: do we have a reliable biomarker? Environ. Health Perspect. 104 (suppl. 3), 465-469.
 
[76]  Sandstrom, B. E. and Marklund, S. L. (1990): Effects of variation in glutathione peroxidase activity on DNA damage and cell survival in human cells exposed to hydrogen peroxide and t-butyl hydroperoxide. Biochem. J. 271: 17-23.
 
[77]  Roy A., Ghosh A., Arundhati J, Xiaojuan L, Brahmachari1 S, Howard E. et al. (2012): Sodium Phenylbutyrate Controls Neuroinflammatory and Antioxidant Activities and Protects Dopaminergic Neurons in Mouse Models of Parkinson’s Disease. PLoSONE 7; 6: e38113.
 
[78]  Yam, G. H., Gaplovska-Kysela, K., Zuber, C., and Roth, J. (2007): Sodium 4-phenylbutyrate acts as a chemical chaperone on misfoldedmyocilin to rescue cells from endoplasmic reticulum stress and apoptosis.Invest. Ophthalmol. Vis. Sci. 48, 1683-1690
 
[79]  Perlmutter, D. H. (2002):Chemical chaperones: A pharmacological strategy for disorders of protein folding and trafficking.Pediatr Res 52, 832-836
 
[80]  Wenbo Zhou, Kathryn Bercury, Jessica Cummiskey, Nancy Luong, Jacob Lebin and Curt R. Freed (2011):Phenylbutyrate Up-regulates the DJ-1 Protein and Protects Neurons in Cell Culture and in Animal Models of Parkinson Disease.J. Biol. Chem., 286: 14941-14951.
 
[81]  Robberecht W. and Philips T. (2013): The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci. 14 (4); 248-264.
 
[82]  Rajendran P., Ho E., Williams D. and Dashwood R. (2011): Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clinical Epigenetics. 3 (4); 1-23.
 
[83]  Morrison B., Majdzadeh N., Zhang X., Lyles A., Bassel-Duby R., Olson E. et al. (2006): Neuroprotection by Histone Deacetylase-Related Protein. Mol Cell Biol. 26 (9); 3550-3564.
 
[84]  Rahman I. (2003): Oxidative stress, chromatin remodeling and gene transcription in inflammatory and chronic lung diseases. J BiochemMol Biol. 36 (1); 95-109.
 
[85]  Berthiaume M., Boufaied N., Moisan A. and Gaudreau L. (2006): High levels of oxidative stress globally inhibit gene transcription and histone acetylation. DNA Cell Biol. 25 (2); 124-134.
 
[86]  Kim T., Seo J., Yang J., Kim M., Kausar R., Joe E., Kim B. and Lee M. (2013): Nurr1 represses tyrosine hydroxylase expression via SIRT1 in human neural stem cells. PLoS One. 8 (8):1-15.
 
[87]  Chen JS, Faller DV and Spanjaard RA (2003): Short-chain fatty acid inhibitors of histone deacetylases: promising anticancer therapeutics? Current Cancer Drug Targets 3: 219-236.
 
[88]  Mork CA, Spanjaard RA and Faller DV (2005): A mechanistic approach to anticancer therapy: targeting the cell cycle with histone deacetylase inhibitors. Curr Rev Pharmacol 11: 1091-1104.
 
[89]  Bandyopadhyay D, Mishra A., and Medrano E. E. (2004): Overexpression of Histone Deacetylase 1 Confers Resistance to Sodium Butyrate-Mediated Apoptosis in Melanoma Cells through a p 53-Mediated. Cancer Research 64, 7706-7710.
 
[90]  Sakaguchi, K., Herrera, J. E., Saito, S., Miki, T., Bustin, M., Vassilev, A., et al. (1998): DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12, 2831-2841
 
[91]  Liu, L., Scolnick, D. M., Trievel, R. C., Zhang, H. B., Marmorstein, R., Halazonetis, T. D., et al. (1999): p 53 sites acetylated in vitro by PCAF and p 300 are acetylated in vivo in response to DNA damage.Mol. Cell. Biol. 19, 1202-1209
 
[92]  Schmidt N. and Ferger B. (2001): Neurochemical findings in the MPTP model of Parkinson’s disease. J. Neural Transm. 108, 1263-1282.
 
[93]  Andreassen O. A., Ferrante R. J., DedeogluA., Albers D. W., KlivenyiP., Carlson E. J., et al. (2001): Mice with a partial deficiency of manganese superoxide dismutase show increased vulnerability to the mitochondrial toxins malonate, 3-nitropropionic acid,and MPTP. Exp. Neurol. 167, 189-195.
 
[94]  Dehmer T., Lindenau J., Haid S., Dichgan s J. and Schulz J. B. (2000): Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J. Neurochem. 74, 2213-2216.
 
[95]  Szabo C. and Dawson V. L. (1998): Role of poly (ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol. Sci. 19, 287-298.
 
[96]  Ara J., Przedborski S., Naini A. B., Jackson-Lewi s V.,T rifiletti R. R., Horwitz J. et al. (1998): Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc. Natl Acad. Sci. USA 95, 7659-76 63.
 
[97]  Mandir A. S., Przedborski S., Jackson-Lewis V.,Wang Z. Q., Simbulan-Rosenthal C. M., Smulson M. E., et al. (1999): Poly (ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc. Natl Acad. Sci. USA 96, 5774-5779.
 
[98]  Simbulan-Rosenthal C. M., Rosenthal D. S., Luo R. B., Samara R., Jung M., Dritschilo A., et al. (2001): Poly (ADP-ribosyl) ation of p53 in vitro and in vivo modulates binding to its DNA consensus sequence. Neoplasia 3, 179-188.
 
Show Less References

Article

Neuroprotective Role of Vitamin B3 in Experimentally Induced Oxidative Stress

1Zoology Department, Faculty of Science

2Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta 31527, Egypt


International Journal of Clinical and Experimental Neurology. 2015, 3(1), 21-25
DOI: 10.12691/ijcen-3-1-4
Copyright © 2015 Science and Education Publishing

Cite this paper:
Afaf El Atrash, Lamees Dawood, Ehab Tousson, Amira Salama. Neuroprotective Role of Vitamin B3 in Experimentally Induced Oxidative Stress. International Journal of Clinical and Experimental Neurology. 2015; 3(1):21-25. doi: 10.12691/ijcen-3-1-4.

Correspondence to: Ehab  Tousson, Zoology Department, Faculty of Science. Email: oussonehab@yahoo.com

Abstract

Paraquat is a widely used herbicide. The main mechanism underlying PQ toxicity is oxidative stress. Niacin (nicotinic acid) a precursor for NAD+ It has also been reported to possess oxygen radical scavenging activity. The enzyme PARP-1 is activated by DNA strand breaks, using NAD+ as a substrate. Thus, the present study aimed to assess the magnitude of oxidative DNA damage and the role of PARP and the advantages of modulating its activity by niacin supplementation in experimentally induced oxidative stress by PQ. 50 male albino rats were equally divided into five groups; the first and second groups were the control and PQ treated groups respectively while the 3rd group was nicotinic acid treated group; the 4th and 5th groups were co- and post treated PQ treated rats with nicotinic acid respectively. Serum 8-hydroxy-2'-deoxyguanosine and brain MDA levels in PQ treated group showed a significant increase when compared with control group, while levels of PARP activity and TAC in PQ treated group showed a significant decrease when compared with control group. A significant increase of PARP activity & TAC and a significant decrease in serum 8-hydroxy-2'-deoxyguanosine&MDA after nicotinic acid injection when compared with control group was observed. Post-treatment with nicotinic acid improved the biochemical and histopathological alterations in brain treated with nicotinic acid, while co-treatment with nicotinic acid protected against ROS production.

Keywords

References

[1]  Choi Y., Cho K., Yoon S. and Lee H. (2008): A case of paraquat intoxication caused by intravenous injection. Am J Emerg Med; 26. 836 e3-4.
 
[2]  Wu B., Song B., Tian S., Huo S., Cui C., Guo Y. and Liu H. (2012): Central nervous system damage due to acute paraquat poisoning: a neuroimaging study with 3.0 T MRI. Neurotoxicology; 33. 1330-7.
 
[3]  McCormack A. L. and Di Monte D. A. (2003): Effects of l-dopa and other amino acids against paraquat-induced nigrostriatal degeneration. J Neurochem; 85. 82-86.
 
[4]  Dinis-Oliveira R. J., Duarte J. A., Sanchez-Navarro A., Remiao F., Bastos M. L. and Carvalho F. (2008): Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol; 38. 13-71.
 
[5]  Meitern R., Sild E., Kilk K., Porosk R. and Horak P. (2013): On the methodological limitations of detecting oxidative stress: effects of paraquat on measures of oxidative status in greenfinches. J Exp Biol; 216. 2713-21.
 
Show More References
[6]  Cadet J., Douki T. and Ravanat J. L. (2010): Oxidatively generated base damage to cellular DNA. Free Radic Biol Med; 49. 9-21.
 
[7]  Kirkland J. B. (2012): Niacin requirements for genomic stability. Mutat Res; 733. 14-20.
 
[8]  Sun X., Zhou X., Du L., Liu W., Liu Y., Hudson L. G. and Liu K. J. (2014): Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. Toxicology and applied pharmacology; 274. 313-318.
 
[9]  Benavente C. A. and Jacobson E. L. (2008): Niacin restriction upregulates NADPH oxidase and reactive oxygen species (ROS) in human keratinocytes. Free Radic Biol Med; 44. 527-37.
 
[10]  Chiu L. Y., Ho F. M., Shiah S. G., Chang Y. and Lin W. W. (2011): Oxidative stress initiates DNA damager MNNG-induced poly(ADP-ribose)polymerase-1-dependent parthanatos cell death. Biochem Pharmacol; 81. 459-70.
 
[11]  Masszi G. (2014): Reduced Estradiol-Induced Vasodilation and Poly-(ADP-Ribose) Polymerase (PARP) Activity in the Aortas of Rats with Experimental Polycystic Ovary Syndrome (PCOS) (vol 8, e55589, 2013). PLoS One; 9.
 
[12]  Oliver F. J., Menissier-de Murcia J. and de Murcia G. (1999): Poly(ADP-ribose) polymerase in the cellular response to DNA damage, apoptosis, and disease. Am J Hum Genet; 64. 1282-8.
 
[13]  Langelier M. F. and Pascal J. M. (2013): PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Curr Opin Struct Biol; 23. 134-43.
 
[14]  Berger N. A. (1985): Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res; 101. 4-15.
 
[15]  Fan Y. and Zong W.-X. (2014): PARP Activation and Necrotic Cell Death. Cell Death in Biology and Diseases. 163-175.
 
[16]  Hageman G. J. and Stierum R. H. (2001): Niacin, poly(ADP-ribose) polymerase-1 and genomic stability. Mutat Res; 475. 45-56.
 
[17]  Thiruchelvam M., Richfield E. K., Baggs R. B., Tank A. W. and Cory-Slechta D. A. (2000): The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson's disease. J Neurosci; 20. 9207-14.
 
[18]  Perumal S. S., Shanthi P. and Sachdanandam P. (2005): Augmented efficacy of tamoxifen in rat breast tumorigenesis when gavaged along with riboflavin, niacin, and CoQ10: effects on lipid peroxidation and antioxidants in mitochondria. Chem Biol Interact; 152. 49-58.
 
[19]  Rangel-Lopez A., Paniagua-Medina M. E., Urban-Reyes M., Cortes-Arredondo M., Alvarez-Aguilar C., Lopez-Meza J., Ochoa-Zarzosa A., Lindholm B., Garcia-Lopez E. and Paniagua J. R. (2013): Genetic damage in patients with chronic kidney disease, peritoneal dialysis and haemodialysis: a comparative study. Mutagenesis; 28. 219-25.
 
[20]  Ouyang W., Zhang D., Li J., Verma U. N., Costa M. and Huang C. (2009): Soluble and insoluble nickel compounds exert a differential inhibitory effect on cell growth through IKKalpha-dependent cyclin D1 down-regulation. J Cell Physiol; 218. 205-14.
 
[21]  Kauppinen T. M. and Swanson R. A. (2005): Poly(ADP-ribose) polymerase-1 promotes microglial activation, proliferation, and matrix metalloproteinase-9-mediated neuron death. J Immunol; 174. 2288-96.
 
[22]  Lowry O. H., Rosebrough N. J., Farr A. L. and Randall R. J. (1951): Protein measurement with Folin phenol reagent. J Biol Chem 193: 265-75.
 
[23]  Koruk M., Taysi S., Savas M. C., Yilmaz O., Akcay F. and Karakok M. (2004): Oxidative stress and enzymatic antioxidant status in patients with nonalcoholic steatohepatitis. Ann Clin Lab Sci; 34. 57-62.
 
[24]  Ali M., Hassan M., Abd El-Ghany F. and Awadein N. (2012): Using Natural Antioxidants with or Without Sulphate to Improve Productive and Reproductive Performance of Two Local Strains at Late Egg Production Period. International Journal of Poultry Science; 11 (4). 269-282.
 
[25]  Shah D., Mahajan N., Sah S., Nath S. K. and Paudyal B. (2014): Oxidative stress and its biomarkers in systemic lupus erythematosus. J Biomed Sci; 21. 23.
 
[26]  Zhang H., Liu Y., Luo X., Tan W. and Huang L. (2011): Saturated hydrogen saline protects rats from acute lung injury induced by paraquat. World J Emerg Med; 2 (2) 149-153.
 
[27]  Chapman M. J., Redfern J. S., McGovern M. E. and Giral P. (2010): Niacin and fibrates in atherogenic dyslipidemia: pharmacotherapy to reduce cardiovascular risk. Pharmacol Ther; 126. 314-45.
 
[28]  Ganji S. H., Kamanna V. S. and Kashyap M. L. (2014): Niacin decreases leukocyte myeloperoxidase: mechanistic role of redox agents and Src/p38MAP kinase. Atherosclerosis; 235. 554-61.
 
[29]  Ganji S. H., Qin S., Zhang L., Kamanna V. S. and Kashyap M. L. (2009): Niacin inhibits vascular oxidative stress, redox-sensitive genes, and monocyte adhesion to human aortic endothelial cells. Atherosclerosis; 202. 68-75.
 
[30]  Boulares A. H., Yakovlev A. G., Ivanova V., Stoica B. A., Wang G., Iyer S. and Smulson M. (1999): Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem; 274. 22932-40.
 
[31]  Szabó L. V. a. C. (2002): The Therapeutic Potential of Poly(ADP-Ribose) Polymerase Inhibitors. Pharmacol Rev September 54. 375-429.
 
[32]  Tang H. L., Tang H. M., Mak K. H., Hu S., Wang S. S., Wong K. M., Wong C. S., Wu H. Y., Law H. T., Liu K., Talbot C. C., Jr., Lau W. K., Montell D. J. and Fung M. C. (2012): Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol Biol Cell; 23. 2240-52.
 
[33]  Comporti M. (1989): Three models of free radical-induced cell injury. Chem Biol Interact; 72. 1-56.
 
[34]  Suntres Z. E. (2002): Role of antioxidants in paraquat toxicity. Toxicology; 180. 65-77.
 
[35]  Fukushima T., Tawara T., Isobe A., Hojo N., Shiwaku K. and Yamane Y. (1995): Radical formation site of cerebral complex I and Parkinson's disease. J Neurosci Res; 42. 385-90.
 
[36]  Fukushima T., Gao T., Tawara T., Hojo N., Isobe A. and Yamane Y. (1997): Inhibitory effect of nicotinamide to paraquat toxicity and the reaction site on complex I. Arch Toxicol; 71. 633-7.
 
Show Less References

Article

Cyclooxygenase Expression in Canines Following Peripheral Nerve Injury

1Department of Orthopedics and Rehabilitation Medicine, Faculty of Medical Sciences, The University of Fukui, Fukui, Japan

2Research and Education Program for Life Science, The University of Fukui, Fukui, Japan

3Department of Orthopedic Surgery, Suzuki Orthopaedic Clinics, Toki, Gifu, Japan

4Department of Orthopedic Surgery, Yamada Orthopaedic Clinics, Hamamatsu, Shizuoka, Japan

5Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK


International Journal of Clinical and Experimental Neurology. 2015, 3(2), 26-31
DOI: 10.12691/ijcen-3-2-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Shigeru Kobayashi, Yoshihiko Suzuki, Syuichi Yamada, Naji Al-Khudairi, Adam Meir. Cyclooxygenase Expression in Canines Following Peripheral Nerve Injury. International Journal of Clinical and Experimental Neurology. 2015; 3(2):26-31. doi: 10.12691/ijcen-3-2-1.

Correspondence to: Shigeru  Kobayashi, Department of Orthopedics and Rehabilitation Medicine, Faculty of Medical Sciences, The University of Fukui, Fukui, Japan. Email: kshigeru@u-fukui.ac.jp

Abstract

In order to investigate the mechanism of neurogenic pain, this study used a median nerve compression model in dogs. The nerve was compressed with a clip for three weeks. Immunohistochemistry was done by the avidin-biotin-peroxidase complex method to observe the changes of T cells (CD45) and macrophages (Mac-1) after compression. Antibodies against cyclooxygenase (COX)-1 and 2 were used to examine the localization and changes of these mediators caused by nerve compression. In control animals, resident T cells were detected, but there were no macrophages. COX-2 was positive in the Schwann cells and vascular endothelial cells, while COX-1 was detected in the vascular endothelial cells. After nerve compression, numerous T cells and macrophages appeared among the demyelinized nerve fibers. The macrophages were positive for COX-2. COX-2 may be deeply involved in neuritis arising from mechanical compression, and this mediator seems to be important in the manifestation of neurogenic pain.

Keywords

References

[1]  O’Neill GP, Ford-Hutchinson AW: Expression of mRNA for cyclooxigenase-1 and cyclooxigenase-2 in human tissues. FEBS Lett, 1993, 2: 156-160.
 
[2]  Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA, 1994, 91: 12013-12017.
 
[3]  Kobayashi S, Meir A, Baba H, Uchida K, and Hayakawa K. Imaging of intraneural edema using gadolinium-enhanced MR imaging: Experimental compression injury. AJNR Am J Neuroradiol, 2005, 26: 973-980.
 
[4]  Rydevik B, Lundborg, G: Permeability of intraneurial microvessels and perineurium following acute, graded experimental nerve compression. Scand J Plast Reconstr Surg, 1977, 11: 179-187.
 
[5]  Rydevik B, Lundborg G, Bagg U: Effects of graded compression on intraneural blood flow. J Hand Surg, 1981, 6: 3-12.
 
Show More References
[6]  Misko TP, Trotter JL, Cross AH: Mediation of inflammation by encephalitogenic cells: interferon-γ induction of nitric oxide synthase and cyclooxygenase 2. J Neuroimmuol, 1995, 61: 195-204.
 
[7]  Schweizer A, Feige U, Fontana A, Müller K, Dinarello CA: Interleukin-1 enhances pain reflexes. Medication through increased prostaglandin E2 levels. Agents Actions, 1988, 25: 246-251.
 
[8]  Follenfalt RL, Nakamura-Craig M, Henderson B, Higgs GA: Inhibition of neuropeptides of interleukin-1β-induced, prostaglandin-independent hyperalgesia. Br J Pharmacol, 1989, 98: 41-43.
 
[9]  Oka T, Aou S, Hori T: Intracerebroventricular injection of interleukin-1β induces hyperalgesia in rats. Brain Res, 1993, 624: 21-68.
 
[10]  Fukuoka H, Kawatani M, Hisamitsu T, Takeshige C: Cutaneous hyperalgesia induced by peripheral injection of interleukin-1β in the rat. Brain Res, 1994, 657: 133-140.
 
[11]  DeLeo JA, Colburn RW: The role of cytokines in nociception and chronic pain. In: Weinstein JN, Gordon SL. Ed., Low Back Pain. A Scientific and Clinical Overview. American Academy of Orthopaedic Surgeons, Illinois, 1995: 163-185.
 
[12]  Jeanjean AP, Moussaoui SM, Maloteaux JM, Laduron PM: Interleukin-1β induces long-term increase of axonally transported opiate receptors and substance P. Neuroscience, 1955, 68: 151-157.
 
[13]  Kobayashi S, Baba H, Uchida K, Shimada S, Negoro K, Takeno K, Yayama T, Yamada S, Yoshizawa H: Localization and changes of intraneural inflammatory cytokines and inducible-nitric oxide induced by mechanical compression. J Orthop Res, 2005, 23: 771-778.
 
[14]  Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH: The pivotal role of tumor necrosis factor α in the development of inflammatory hyperalgesia. Br J Pharmacol, 1992, 107: 660-664.
 
[15]  Watkins LR, Goehler LE, Relton J, Brewer MT, Maier SF: Mechanisms of tumor necrosis factor-α (TNF-α) hyperalgesia. Brain Res, 1995, 692: 244-250.
 
[16]  Duarte IDG, Lorenzetti BB, Ferreria SH: Peripheral analgesia and activation of the nitric oxide-cyclic GMP pathway. Eur J Pharmacol, 1990, 186: 289-293.
 
[17]  Khail Z, Helme RD: The quantitative contribution of nitric oxide and sensory nerves to bradykinin-induced inflammation in rat skin microvasculature. Brain Res, 1992, 582: 102-108.
 
[18]  Lalenti A, Lanaro A, Moncada S, Rosa MD: Modulation of acute inflammation by endoeneous nitric oxide. Eur J Pharmacol, 1992, 211: 177-182
 
[19]  Kawabata A, Manabe S, Manabe T, Takagi H: Effect of topical administration of L-arginine on formalin-induced nociception in the mouse: A dual role of peripherally formed NO in the pain modulation. Br J Pharmacol, 1994, 112: 547-550.
 
[20]  Choi Y, Raja SN, Moore LC, Tobin JR: Neuropathic pain in rats is associated with altered nitric oxide synthase activity in neural tissue. J Neurol Sci, 1996, 138: 14-20.
 
[21]  Meller ST, Pechman PS, Gebhart GF, Maves TJ: Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat. Neuroscience, 1992, 50: 7-10.
 
[22]  Dewitt DL: Prostaglandin endoperoxide synthase: Regulation of enzyme expression. Biochim Biophys Acta, 1991, 1083: 121-134.
 
[23]  Xie W, Chipman JG, Robertson DL, Erikson RL, Simmons DL: Expression of a mitogen responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acid Sci USA, 1991, 88: 2692-2696.
 
[24]  Hla T, Neilson, K: Human cyclooxigenase-2 cDNA. Proc Natl Acad Sci USA, 1992, 89: 7384-7388.
 
[25]  Talmor M, Patel MP, Spann MD, Barden C, Specht M, McLean A, Hoffman LA, Nolanm WB: Cox-2 up-regulation in idiopathic carpal tunnel syndrome. Plast Reconstr Surg, 2003, 112: 1807-1814.
 
[26]  Yayama T, Kobayashi S, Nakanishi Y, Uchida K, Kokubo Y, Miyazaki T, Takeno K, Awara K., Mwaka ES, Iwamoto Y, Baba H: Effects of graded mechanical compression of rabbit sciatic nerve on nerve blood flow and electrophysiological properties. J Clin Neurosci, 2010, 17, 501-505.
 
[27]  Kobayashi S, Hayakawa K., Nakane T, Meir A, Mwaka ES, Yayama T, Shimada S, Inukai T, Nakajima H, Baba H: Visualization of intraneural edema using gadolinium-enhanced magnetic resonance imaging in carpal tunnel syndrome. J Orthop Sci, 2009, 14, 24-34.
 
[28]  Gupta R, Rowshan K, Chao T, Mozaffar, T, Steward O: Chronic nerve compression induces local demyelination and remyelination in a rat model of carpal tunnel syndrome. Exp Neurol, 2004, 187,500-508.
 
[29]  Yayama T, Kobayashi S, Awara, K, Takeno K, Miyazaki T, Kubota, M, Negoro K, Baba H: Intraneural blood flow analysis during an intraoperative Phalen's test in carpal tunnel syndrome. J Orthop Res 28: 1022-1025, 2010.
 
[30]  Lacroix S, Rivest S: Effect of acute systemic inflammatory response and cytokines on the transcription of the genes encoding cyclooxygenase enzymes (COX-1 and COX-2) in the rat brain. J Neurochem, 1998, 70: 452-466.
 
[31]  Nogawa S, Forster C, Zhang F, Nagayama M, Ross ME, Iadecola C: Interaction between inducible nitric oxide synthesis and cyclooxigenase-2 after cerebral ischemia. Proc Natl Acad Sci USA, 1988, 95: 10966-10971.
 
[32]  Tonai T, Taketani Y, Ueda N, Nishisho T, Ohmoto Y, Sakata, Y, Muraquchi M, Wada K, Yamamoto S: Possible involvement of interleukin-1 in cyclooxigenase-2 induction after spinal cord injury in rats. J Neurochem, 1999, 72: 302-309.
 
[33]  Ma W, Eisenach JC: Morphological and pharmacological evidence for the role of peripheral prostaglandins in the pathogenesis of neuropathic pain. Eur J Neurosci, 2002, 15: 1037-1047.
 
[34]  Durrenberger PF, Facer P, Gray RA, Chessell IP, Naylor A, Bountra C, Banati RB, Birch R, Anand P: Cyclooxygenase-2 (Cox-2) in injured human nerve and a rat model of nerve injury. J Peripher Nerv Syst, 2004, 9: 15-25.
 
[35]  Ma W, Eisenach JC: Cyclooxygenase 2 in infiltrating inflammatory cells in injured nerve is universally up-regulated following various types of peripheral nerve injury. Neuroscience, 2003, 121: 691-704.
 
[36]  Lee SH, Soyoola E, Chanmugam P, Hart S, Sun W, Zhong H, Liou S, Simmons D, Hwang D: Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem, 1992, 267: 25934-25938.
 
[37]  Schiltz JC, Sawchenko PE: Distinct brain vascular cell types manifest inducible cyclooxygenase expression as a function of the strength and nature of immune insults. J Neurosci, 2002, 22: 5606-5618.
 
Show Less References