American Journal of Sensor Technology

ISSN (Print): 2373-3454

ISSN (Online): 2373-3462

Editor-in-Chief: Vyacheslav Tuzlukov

Website: http://www.sciepub.com/journal/AJST

   

Article

A Novel Energy-efficient Cooperative Transmission Scheme Based on V-BLAST Processing and ICA clustering for WSNs Lifetime Maximization

1Department of electrical and computer engineering, Birjand University, Birjand, Iran


American Journal of Sensor Technology. 2015, 3(1), 5-12
doi: 10.12691/ajst-3-1-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Mohammad Sadeghian Kerdabadi, Reza Ghazizadeh. A Novel Energy-efficient Cooperative Transmission Scheme Based on V-BLAST Processing and ICA clustering for WSNs Lifetime Maximization. American Journal of Sensor Technology. 2015; 3(1):5-12. doi: 10.12691/ajst-3-1-2.

Correspondence to: Mohammad  Sadeghian Kerdabadi, Department of electrical and computer engineering, Birjand University, Birjand, Iran. Email: mohammad.sadeghian@birjand.ac.ir

Abstract

In wireless sensor network, one of the main objectives is how to improve its lifetime because the sensor nodes are generally energy-limited. Thus, providing ways to optimize energy Consumption, which ultimately increases the network lifetime, is of great importance. In this paper, we propose and evaluate an energy-efficient cooperative MIMO transmission scheme based on V-BLAST technique. In proposed scheme the clustering is done based on Imperialist Competitive Algorithm (ICA) then V-BLAST technique based virtual MIMO transmission are used. This proposed protocol performance is analytically and experimentally is compared with previous presented works. From the analysis and the simulation results, it is seen that the proposed method can reduce the energy consumption of the network and prolong the sensor networks lifetime compared with existing techniques.

Keywords

References

[1]  Aksu, A., Krishnamurthy, P., Tipper, D.,. Ercetin,, O., “On Security and Reliability Using Cooperative Transmissions in Sensor Networks,” Mobile Netw, Appl, 17:526-542,2012.
 
[2]  Heinzelman, W. B., Chandrakasan, A. P., Balakrishnan, H., “An Application-Specific Algorithm Architecture for Wireless Microsensor Networks,” IEEE Transactions on Wireless Communications, vol. 1, no. 4, pp. 660-670, 2002.
 
[3]  Liu, B. L., Wang,Y., “ Advances in Differential Evolution,” CHIN. J. Control Decision 22, 721-729, 2007.
 
[4]  Sadeghian kerdabadi, M., GHazizadeh, R., sadeghian kerdabadi, R., “A novel clustering algorithm for wireless sensor networks based HBMO,” Indian J.Sci.Res. 7 (1): 662-670, 2014.
 
[5]  Hussain, S., Islam, O., WaseyMatin, A., “Genetic algorithm for energy efficient clusters in wireless sensor networks,” In Proceedings of the 4th International Conference on Information Technology). IEEE Computer Society, April 2007.
 
Show More References
[6]  Tillet. J., Rao, R., Sahin, F., “Cluster-head Identification in Ad Hoc Sensor Networks using Particle Swarm Optimization,” IEEE International Conference on Personal Wireless Communications, pp. 201-205, December 2002.
 
[7]  Latiff, N. C., Tsimenidis, Sharif, B.S,”Performance Comparison of Optimization Algorithm for Clustering in Wireless Sensor Networks,” IEEE International Conference on Mobile Adhoc and Sensor Systems,pp. 1-4 2007.
 
[8]  Gupta, I., Riordan, D., Sampalli, S., “Cluster-head election using fuzzy logic for wireless sensor networks,” Proceedings of Communication Networks and Services Research Conference (CNSR2), Halifax, Nova Scotia, Canada, pp. 255-260, 2005.
 
[9]  Siew, Z.W., Kiring, A., Yew, H.T., Neelakantan, P., Teo, K.T.K., “Energy Efficient Clustering Algorithm in Wireless Sensor Networks using Fuzzy Logic Control,” Proc. 2011 IEEE Colloquium on Humanities, Science and Engineering Research (CHUSER 2011), pp. 392-397, 2011.
 
[10]  Afrashte Mehr, M., “Cluster Head Election using Imperialist competitive algorithm (CHEI) for wireless sensor networks, “International Journal of Mobile Network Communications & Telematics (IJMNCT), Vol. 4, No.3, June 2014.
 
[11]  Wong, M., Nandi, A., “Automatic digital modulation recognition using artificial neural network and genetic algorithm”. Signal Processing, 84(2): pp.351-365, 2004.
 
[12]  Qu, Q., Milstein, L.B., Vaman, D.R., “Cooperative and constrained MIMO communications in wireless ad hoc/sensor networks”, IEEE Transactions on Wireless Communications 9 (10) (2010) 3120-3129.
 
[13]  Xiaohua, L., “Energy efficient wireless sensor networks with transmission diversity,” IEEE Electronics Letters, vol.39, pp.1753-1755, Nov. 2003.
 
[14]  Kumar Sachan, V., Akhtar Imam, S., Beg, M.T., “Performance Analysis of STBC Encoded Cooperative MIMO System for Wireless Sensor Networks,” IEEE, 2012.
 
[15]  jie, D. L., Dan-pu, Hua-ri, W., “Energy efficiency of virtual MIMO transmission schemes forcluster-based wireless sensor networks,” The Journal of China Universities of Posts and Telecommunications, pp. 31-38, August 2011.
 
[16]  Atashpaz-Gargari, E., .Lucas, C, “Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition,” IEEE Congress on Evolutionary Computation 7, pp 4661-4666, 2007.
 
[17]  Nazari-Shirkouhi, S. Eivazy, Ghodsi; H. R. R., Rezaie, Atashpaz-Gargari, E., “Solving the Integrated Product Mix-Outsourcing Problem by a Novel Meta-Heuristic Algorithm: Imperialist Competitive Algorithm,” Expert Systems with Applications 37 (12): 7615-7626.2010.
 
[18]  Akyildiz, I. F., Sankarasubramaniam, W., Cayirci, E., “Wireless sensor networks: A survey,” Computer Networks, Vol. 38, No. 4, 2002.
 
[19]  Bahrami, H., Faez, K. Abdechiri, M.., “Imperialist Competitive Algorithm using Chaos Theory for Optimization (CICA),”12th International Conference on Computer Modelling and Simulation, 2010.
 
[20]  Hosseinirad, S. M., Basu, S.K., “Imperialist Approach to Cluster Head Selection in WSN,” Special Issue of International Journal of Computer Applications (0975-8887) on Wireless Communication and Mobile Networks, No.1. Jan.2012.
 
[21]  Biabangard-Oskouyi, A., Atashpaz-Gargari, Soltani, E. N., Lucas, C. “Application of Imperialist Competitive Algorithm for Material Properties Characterization from Sharp Indentation Test,” Int J Eng Simul, vol.10, no. 1, 2009.
 
[22]  Duel-Hallen, A., “Decorrelating decision feedback multiuser detector for synchronous code-division multiple-access channel,” IEEE Trans. Commun., vol. 41, no. 2, pp. 285-290, Feb. 1993.
 
[23]  Varanasi, M. K., “Decision feedback multiuser detection: A systematic approach,” IEEE Trans. Inform. Theory, vol. 45, no. 1, pp. 219-240, Jan. 1999.
 
[24]  Xu, J., Su, W. Zhou, M., “Likelihood function-based modulation classification in bandwidth-constrained sensor networks,” Proceedings of the 2010 IEEE International Conference on Networking, Sensing and Control (ICNSC’10), Apr 10-13, 2010, Chicago, IL, USA. Piscataway, NJ, USA: IEEE, 2010.
 
[25]  Ahmadi, N., Berangi, R., “Modulation classification of QAM and PSK fromtheir constellation using genetic algorithm and hierarchical clustering,” Proceedings of the International Conference on Information andCommunication Technologies: From Theory to Applications (ICTTA’08), Apr 7-11, 2008, Damascus, Syria. Piscataway, NJ, USA: IEEE, 2008.
 
[26]  Sachan, Syed, V., Imam K. A, Beg, M.T., “Energy-efficiency of Virtual Cooperative MIMO Techniques in Wireless Sensor Networks,” International Conference on Computer Communication and Informatics (ICCCI-2012), Jan. 2012.
 
[27]  Xu, K., Yuan, W., Cheng, W., Ding, Y., Yang, Z., “An Energy-efficient V-BLAST Based Cooperative MIMO Transmission Scheme for Wireless Sensor Networks,” IEEE Wireless Communications and Networking Conference,WCNC 2008.,pp. 688-693, April 2008.
 
[28]  Sachan, V. Syed, K., Imam, A., Beg, M.T., “Energy-efficiency of Virtual Cooperative MIMO Techniques in Wireless Sensor Networks,” 2012 International Conference on Computer Communication and Informatics (ICCCI -2012), pp. 10-12, Jan, 2012.
 
[29]  Krunz, M., Siam, M. Z., Nguyen, D. N., “Clustering and power management for virtual MIMO communications in wireless sensor networks,” Ad Hoc Networks journal, Volume 11. Issue 5, pp. 1571-1587, july 2013.
 
Show Less References

Article

N,N’-Diphenyldecanediamide: A Fluoride Ion Sensitive and Selective Amide

1Amity School of Applied Sciences, Amity University Haryana, Panchgaon, Manesar, Gurgaon, Haryana, India


American Journal of Sensor Technology. 2017, 4(1), 1-9
doi: 10.12691/ajst-4-1-1
Copyright © 2017 Science and Education Publishing

Cite this paper:
Meenakshi Thakran, Anek pal Gupta, Neeru Dabas. N,N’-Diphenyldecanediamide: A Fluoride Ion Sensitive and Selective Amide. American Journal of Sensor Technology. 2017; 4(1):1-9. doi: 10.12691/ajst-4-1-1.

Correspondence to: Neeru  Dabas, Amity School of Applied Sciences, Amity University Haryana, Panchgaon, Manesar, Gurgaon, Haryana, India. Email: ndabas@ggn.amity.edu

Abstract

A fluoride ion (F-) sensitive organic ligand N, N’-Diphenyldecanediamide (L1), has been synthesized by the reaction of sebacoyl chloride with aniline in presence of triethylamine at room temperature. Spectroscopic investigation revealed F- interacts strongly with L1 in comparison to other competitive anions (Cl-, Br- and NO3-) and as a consequence induces deprotonation in the NH fragment of L1. Different spectroscopic techniques such as 1H NMR, UV-Vis and fluorescence emission spectroscopy supports the fast and distinct response behavior of N, N’-substituted polymethylene diamide towards F-.

Keywords

References

[1]  Hirsch, B. E., McDonald, K. P., Qiao, B., Flood, A. H., Tait, S. L. , “Selective Anion Induced Crystal Switching and Binding in Surface Monolayers Modulated by Electric Fields from Scanning Probes,” ACS Nano, 8 (10), 10858-10869, September 2014.
 
[2]  Gale, P. A., “Structural and Molecular Recognition Studies with Acyclic Anion Receptors,” Acc. Chem. Res. 39 (7), 465-475, May 2006.
 
[3]  Gladwin, M. T. , Schechter, A. N. , Kim-Shapiro, D. B. , Patel, R. P. , Hogg, N. , Shiva,S., Cannon, R. O., Kelm, M., Wink, D. A., Espey, M. G. , Oldfield, E. H. , Pluta, R. M. , Freeman, B. A. , Lancaster, J. R. , Feelisch, Jr, M. , Lundberg, J. O. , “The emerging biology of the nitrite ion,” Nature Chem. Bio. 1 (6), 308-314, November 2005.
 
[4]  Jentsch, T. J., Stein, V., Weinreich, F., Zdebik, A. A., “Molecular Structure and Physiological Function of Chloride Channels,” Physiol Rev. 82 (2), 503-568, April 2002.
 
[5]  Choi, A. L., Sun, G., Zhang, Y., Grandjean, P., “Developmental fluoride neurotoxicity: A systematic review and meta-analysis,” Environ. Health Perspect. 120 (10), 1362-1368, October 2012.
 
Show More References
[6]  Phipps, K., “Fluoride and Bone Health,” Journal of Public Health Dent. 55 (1), 53-56, 1995.
 
[7]  Everett, E.T., “Fluoride’s Effects on the Formation of Teeth and Bones, and the Influence of Genetics,” J. Dent. Res. 90 (5), 552-560, May 2011.
 
[8]  Ludlow, M., Luxton, G., Mathew, T., “Effects of fluoridation of community water supplies for people with chronic kidney disease,” Nephrol. Dial. Transplant. 22, 2763-2767, July 2007.
 
[9]  Greenwood, D. A., “Fluoride Intoxication,” Physiological Rev. 20 (4), 582-616, October 1940.
 
[10]  Islam, Md. E.; Julkarnain, Md.; Hossain,J.; Ismail,A. B. Md.; Rahman, Md. H. “Investigation on LaF3 impregnated porous silicon heterostructur as potentiometric sensor for fluoride ion in aqueous medium,” Am. J. Sensor Technol. 1 (1), 1-4, October 2013.
 
[11]  Yuan, M.S., Wang, Q., Wang, W., Wang, D.E., Wang, J., Wang, J., “Truxenecored p-expanded triarylborane dyes as single- and two-photon fluorescent probes for fluoride,” Analyst. 139 (6), 1541-1549, March 2014.
 
[12]  Cai, J., Sessler, J. L., “Neutral CH and cationic CH donor groups as anion receptors,” Chem. Soc. Rev. 43, 6198-6213, May 2014.
 
[13]  Ghosh, D., Rhodes, S., Hawkins, K., Winder, D., Atkinson, A., Ming, W., Padgett, C., Orvis, J., Aiken, K., Landge, S., “A simple and effective 1,2,3-triazole based “turn on” fluorescence sensor for the detection of anions ,” New J. Chem. 39 (1), 295-303, October 2015.
 
[14]  Basaran, I., Khansari, M.E., Pramanik, A., Wong, B. M., Hossain, M. A. “An exclusive fluoride receptor: Fluoride-induced proton transfer to a quinoline-based thiourea,” Tetrahedron Lett. 55 (8), 1467-1470, February 2014.
 
[15]  Jun, E. J., Xu, Z., Lee, M., Yoon, J., “A ratiometric fluorescent probe for fluoride ions with a tridentate receptor of boronic acid and imidazolium,” Tetrahedron Lett. 54 (22), 2755-2758, May 2013.
 
[16]  Chahar, M., Pandey, P.S., “Design of steroid-based imidazolium receptors for fluoride ion recognition,” Tetrahedron, 64 (27), 6488-6493, June 2008.
 
[17]  Mohapatra, S., Sahu, S., Nayak, S., Ghosh, S.K., “Design of Fe3O4@SiO2@Carbon Quantum Dot Based Nanostructure for Fluorescence Sensing, Magnetic Separation, and Live Cell Imaging of Fluoride Ion,” Langmuir, 31 (29), 8111-8120, June 2015.
 
[18]  Liu, T., Nonat, A., Beyler, M., Regueiro-Figueroa, M., Nono, K. N., Jeannin, O., Camerel, F., Debaene,F., Cianferani-Sanglier, S., Tripier, R., Platas-Iglesias, C., Charbonniere, L. J., “Supramolecular Luminescent Lanthanide Dimers for Fluoride Sequestering and Sensing,” Angew. Chem. 126 (28), 7387-7391, July 2014.
 
[19]  Kang, S.O., Llinares, J. M., Powell, D., VanderVelde, D., Bowman-James, K., “New Polyamide Cryptand for Anion Binding,” J. Am. Chem. Soc. 125 (34), 10152-10153, July 2003.
 
[20]  Dorazco-Gonzalez, A., Hopfl, H., Medrano, F., Yatsimirsky, A.K., “Recognition of Anions and Neutral Guests by Dicationic Pyridine-2,6-dicarboxamide Receptors,” J. Org.Chem. 75(7), 2259-2273, March 2010.
 
[21]  Korendovych, I. V. , Cho, M., Butler, P. L., Staples, R. J., Rybak-Akimova, E. V., “Anion Binding to Monotopic and Ditopic Macrocyclic Amides,” Org. Lett. 8 (15), 3171-3174, June 2006.
 
[22]  Zhang, S., Palkar, A., Echegoyen, L., “Selective Anion Sensing Based on Tetra-amide Calix[6]arene Derivatives in Solution and Immobilized on Gold Surfaces via Self Assembled Monolayers,” Langmuir 22(25), 10732-10738, December 2006.
 
[23]  Dutta, R., Ghosh, P., “Encapsulation of Fluoride/Chloride in the C3v-Symmetric Cleft of a Pentafluorophenyl-Functionalized Cyanuric Acid Platform Based Tripodal Amide: Solid and Solution-State Anion-Binding Studies,” Eur. J. Inorg. Chem., 2012(21), 3456-3462, July 2012.
 
[24]  Bisson, A.P., Lynch, V. M., Monahan, M. K. C., Anslyn, E. V., “Recognition of Anions through NH π Hydrogen Bonds in a Bicyclic Cyclophane-Selectivity for Nitrate,” Angew. Chem. Int. Ed. 36 (21), 2340-2342, November 1997.
 
[25]  Li, J., Xu, X., Shao, X., Li, Z., “A novel colorimetric fluoride sensor based on a semirigid chromophore controlled by hydrogen bonding,” Luminescence 30(8), 1285-1289, December 2015.
 
[26]  Kim, Y., Song J. H. , Lee, W. R. , Phang, W. J. , Lim, K. S. , Hong CS. , “Reversible Structural Flexibility and Sensing Properties of a Zn(II) Metal-Organic Framework: Phase Transformation between Interpenetrating 3D Net and 2D Sheet.” Cryst. Growth Des, 14(4), 1933-1937, February 2014.
 
[27]  Steiner,T., “The Hydrogen Bond in the Solid State,” Angew. Chem. Int. Ed. 41 (1), 48-76, January 2002.
 
[28]  Boiocchi, M., Boca, L. D., Gomez, D.E., Fabbrizzi, L., Licchelli, M., Monzani, E., “Nature of urea fluoride interaction: incipient and definitive proton transfer” J. Am. Chem. Soc. 126 (50), 16507-16514, November 2004.
 
[29]  Elmes, R.B.P., Turner,P., Jolliffe, K.A.,“Colorimetric and Luminescent Sensors for Chloride: Hydrogen Bonding vs Deprotonation,” Org. Lett. 15 (22), 5638-5641, October 2013.
 
[30]  Yang, Z., Zhang, K., Gong, F., Li,S., Chen, J., Ma, J.S., Sobenina, L.N., Mikhaleva, A. I. , Yang, G., Trofimov, B. A., “A new fluorescent chemosensor for fluoride anion based on a pyrrole–isoxazole derivative,” Beilstein J. Org. Chem. 7, 46-52, January 2011.
 
[31]  Liu, B., Tian, H., “A ratiometric fluorescent chemosensor for fluoride ions based on a proton transfer signaling mechanism,” J. Mater. Chem. 15 (27-28), 2681-2686, May 2005.
 
Show Less References

Article

Electrical and Gas Sensing Behaviour of Polypyrrole/silver Sulphide Nanocomposites

1University Institute of Chemical Technology, North Maharashtra University, Jalgaon, MS


American Journal of Sensor Technology. 2017, 4(1), 10-20
doi: 10.12691/ajst-4-1-2
Copyright © 2017 Science and Education Publishing

Cite this paper:
Bharati Yeole, Tanushree Sen, Dharmesh Hansora, Satyendra Mishra. Electrical and Gas Sensing Behaviour of Polypyrrole/silver Sulphide Nanocomposites. American Journal of Sensor Technology. 2017; 4(1):10-20. doi: 10.12691/ajst-4-1-2.

Correspondence to: Satyendra  Mishra, University Institute of Chemical Technology, North Maharashtra University, Jalgaon, MS. Email: profsm@rediffmail.com

Abstract

We investigated the room temperature NH3 sensing performance of polypyrrole/silver sulphide (PPy/Ag2S) nanocomposites (NCs). Sonochemically synthesized Ag2S nanoparticles (80-100 nm) were incorporated into the PPy matrix via ultrasound-assisted in-situ polymerization. The resulting PPy/Ag2S NCs were evaluated based on structural, morphological, and electrical properties. Microscopy results revealed a uniform dispersion of Ag2S nanoparticles in the PPy matrix. We studied the effect of Ag2S nanoparticle concentration on the electrical properties and gas sensing performance of the PPy/Ag2S NCs. The current-voltage (I-V) characteristics revealed the semiconducting nature of the PPy/Ag2S NCs. An improvement in the electrical conductivity was observed for the PPy/Ag2S NC with 3 wt% Ag2S nanoparticle content. PPy/Ag2S NCs were further tested for detection of NH3 in ambient conditions. The PPy/Ag2S NCs exhibited excellent sensor response towards 100 ppm NH3 concentration at room temperature.

Keywords

References

[1]  Said K., Ayesh A.I., Qamhieh N.N., Awwad F., Hisaindee S., J. Alloy. Comp., 694, 1061, 2017.
 
[2]  Markina M., Stozhko N., Krylov V., Vidrevich M., Brainina Kh., Talanta, 165, 563, 2017.
 
[3]  Chaudhari P., Mishra S., Measurement 90, 468, 2016.
 
[4]  Sen T., Shimpi N.G. and Mishra S. Sens. Actuators B, 190, 120, 2014.
 
[5]  Janata J. and Josowicz M. Nat. Mater. 2, 24, 2003.
 
Show More References
[6]  Chougule M.A., Dalavi D.S., Mali S., Patil P.S., Moholkar A.V., Agawane G.L., Kim J.H., Sen S. and Patil V.B. Measur. 45, 1996, 2012.
 
[7]  Geng L. and Wu S. Mater. Res. Bull. 48, 4343, 2013.
 
[8]  Mishra S., Shimpi N.G. and Sen T. J. Polym. Res. 20, 49, 2013.
 
[9]  Brezoi D.V. J. Sci. Arts 1, 53, 2010.
 
[10]  Yeole B., Sen T., Hansora D.P. and Mishra S. J. App. Polym. Sci. 132(32), 42379, 2015.
 
[11]  Ho T.A., Jun T.S. and Kim Y.S. Sens. Actuators B 185, 523, 2013.
 
[12]  Nguyen L.Q., Phan P.Q., Duong H.N., Nguyen C.D. and Nguyen L.H. Sens. 13, 1754, 2013.
 
[13]  Cui S., Pu H., Mattson E.C., Lu G., Mao S., Weinert M., Hirschmug C.J., Gajdardziska-Josifovska M. and Chen J. Nanoscale 4, 5894, 2012.
 
[14]  Kuang Q. and Yang S. Crys. Eng. Comm. 16, 4940, 2014.
 
[15]  Sharma S. and Madou M. Philos. Trans. Res. Soc. A, 370, 2448, 2012.
 
[16]  Liu X., Cheng S., Liu H., Hu S., Zhang D. and Ning H. Sens. 12, 9665, 2012.
 
[17]  Roy A.S., Koppalkar A.R. and Prasad M.V.N.A. J. App. Polym. Sci. 121(2), 675, 2011.
 
[18]  Roy A.S., Koppalkar A.R. and Prasad M.V.N.A. J. App. Polym. Sci. 123(4), 1928, 2012.
 
[19]  Roy A.S., Hegde S.G. and Parveen A. Polym. Adv. Technol. 25(1), 130, 2014.
 
[20]  Parveen A., Koppalkar A.R. and Roy A.S. IEEE Sens. J. 12(9), 2817, 2012.
 
[21]  Parveen A., Koppalkar A.R. and Roy A.S. Sens. Letters, 11(2), 242, 2013.
 
[22]  Roy A.S., Koppalkar A.R. Sasikala, M. Machappa T. and Prasad M.V.N.A. Sens. Letters 9 (4), 1342, 2011.
 
[23]  Adhikari B. and Majumdar S. Prog. Polym. Sci. 29, 766, 2004.
 
[24]  Joshi A., Gangal S.A. and Gupta S.K. Sens. Actuators B 156, 938, 2011.
 
[25]  Shimpi N.G., Mishra S., Hansora D.P. and Savdekar U. Indian Patent 3179/MUM/2013, 2013.
 
[26]  Hansora D.P., Shimpi N.G. and Mishra S. JOM 67(12), 2855, 2015.
 
[27]  Shimpi N.G., Mali A.D., Hansora D.P. and Mishra S. Nanosci. Nanoeng. 3, 8, (2015)
 
[28]  Wu T.M., Chang H.L. and Lin Y.W. Polym. Int. 58, 1065, 2009.
 
[29]  Lu Y., Shi G., Li C. and Liang Y. J. App. Polym. Sci. 70, 2169, 1998.
 
[30]  Li X.G., Li A., Huang M.R., Liao Y. and Lu Y.G. J. Phys. Chem. C 114, 19244, 2010.
 
[31]  Hamilton A. and Breslinm C.B. Electrochim Acta 145, 19, 2014.
 
[32]  Nalage S.R., Navale S.T. and Patil V.B. Measurement 46, 3268, 2013.
 
[33]  Montoya P., Mejía S., Gonçales V.R., Torresi S.I.C. de and Calderón J.A. Sens. Actuators B: Chem., 213, 444, 2015.
 
[34]  Yang X., Li L. and Yan F. Sens. Actuators B: Chem., 145, 495, 2010.
 
[35]  Chih Y.K. and Yang M.C. J. Taiwan Inst. Chem. Eng. 45, 833, 2014.
 
[36]  Yang X., Li L. and Zhao Y. Synt. Met. 160(17), 1822, 2010.
 
[37]  Liu F., Yuan Y., Li L., Shang S., Yu X., Zhang Q., Jiang S. and Wu Y. Comp. Part B: Eng. 69, 232, 2015.
 
[38]  Ullah H., Ayubb K. Ullah Z., Hanif M., Nawaz R., Shah A.H.A, Bilal S, Synt. Met. 172, 14-20 (2013).
 
[39]  Scott D., Cooney M.J. and Liaw B.Y., J. Mater. Chem., 18, 3216-3222, 2008.
 
[40]  Dunst K.J., Cysewska K., Kalinowski P., Jasiński P., IMAPS Poland, Conference, IOP Conf. Series: Mater. Sci. Eng. 104, 012028, 2015.
 
[41]  Hernandez S.C., Chaudhuri D., Chen W., Myung N.V., Mulchandani A., Electroanal. 19, (19-20), 2125, 2007.
 
[42]  Garg R., Kumar V., Kumar D., and Chakarvarti S.K., J. Sens. Instrument. 3(1) 1, 2015.
 
[43]  Bagchi S., and Ghanshyam C. J. Phys. D: Appl. Phys. 50, 105302, 10, 2017.
 
[44]  Yeole B., Sen T., Hansora D.P. and Mishra S. Mater. Res. 19(5), 999, 2016.
 
Show Less References