ISSN (Print): 2373-3454

ISSN (Online): 2373-3462


Editor-in-chief: Vyacheslav Tuzlukov

You are here

Currrent Issue: Volume 4, Number 1, 2017


Electrical and Gas Sensing Behaviour of Polypyrrole/silver Sulphide Nanocomposites

1University Institute of Chemical Technology, North Maharashtra University, Jalgaon, MS

American Journal of Sensor Technology. 2017, 4(1), 10-20
doi: 10.12691/ajst-4-1-2
Copyright © 2017 Science and Education Publishing

Cite this paper:
Bharati Yeole, Tanushree Sen, Dharmesh Hansora, Satyendra Mishra. Electrical and Gas Sensing Behaviour of Polypyrrole/silver Sulphide Nanocomposites. American Journal of Sensor Technology. 2017; 4(1):10-20. doi: 10.12691/ajst-4-1-2.

Correspondence to: Satyendra  Mishra, University Institute of Chemical Technology, North Maharashtra University, Jalgaon, MS. Email:


We investigated the room temperature NH3 sensing performance of polypyrrole/silver sulphide (PPy/Ag2S) nanocomposites (NCs). Sonochemically synthesized Ag2S nanoparticles (80-100 nm) were incorporated into the PPy matrix via ultrasound-assisted in-situ polymerization. The resulting PPy/Ag2S NCs were evaluated based on structural, morphological, and electrical properties. Microscopy results revealed a uniform dispersion of Ag2S nanoparticles in the PPy matrix. We studied the effect of Ag2S nanoparticle concentration on the electrical properties and gas sensing performance of the PPy/Ag2S NCs. The current-voltage (I-V) characteristics revealed the semiconducting nature of the PPy/Ag2S NCs. An improvement in the electrical conductivity was observed for the PPy/Ag2S NC with 3 wt% Ag2S nanoparticle content. PPy/Ag2S NCs were further tested for detection of NH3 in ambient conditions. The PPy/Ag2S NCs exhibited excellent sensor response towards 100 ppm NH3 concentration at room temperature.



[1]  Said K., Ayesh A.I., Qamhieh N.N., Awwad F., Hisaindee S., J. Alloy. Comp., 694, 1061, 2017.
[2]  Markina M., Stozhko N., Krylov V., Vidrevich M., Brainina Kh., Talanta, 165, 563, 2017.
[3]  Chaudhari P., Mishra S., Measurement 90, 468, 2016.
[4]  Sen T., Shimpi N.G. and Mishra S. Sens. Actuators B, 190, 120, 2014.
[5]  Janata J. and Josowicz M. Nat. Mater. 2, 24, 2003.
Show More References
[6]  Chougule M.A., Dalavi D.S., Mali S., Patil P.S., Moholkar A.V., Agawane G.L., Kim J.H., Sen S. and Patil V.B. Measur. 45, 1996, 2012.
[7]  Geng L. and Wu S. Mater. Res. Bull. 48, 4343, 2013.
[8]  Mishra S., Shimpi N.G. and Sen T. J. Polym. Res. 20, 49, 2013.
[9]  Brezoi D.V. J. Sci. Arts 1, 53, 2010.
[10]  Yeole B., Sen T., Hansora D.P. and Mishra S. J. App. Polym. Sci. 132(32), 42379, 2015.
[11]  Ho T.A., Jun T.S. and Kim Y.S. Sens. Actuators B 185, 523, 2013.
[12]  Nguyen L.Q., Phan P.Q., Duong H.N., Nguyen C.D. and Nguyen L.H. Sens. 13, 1754, 2013.
[13]  Cui S., Pu H., Mattson E.C., Lu G., Mao S., Weinert M., Hirschmug C.J., Gajdardziska-Josifovska M. and Chen J. Nanoscale 4, 5894, 2012.
[14]  Kuang Q. and Yang S. Crys. Eng. Comm. 16, 4940, 2014.
[15]  Sharma S. and Madou M. Philos. Trans. Res. Soc. A, 370, 2448, 2012.
[16]  Liu X., Cheng S., Liu H., Hu S., Zhang D. and Ning H. Sens. 12, 9665, 2012.
[17]  Roy A.S., Koppalkar A.R. and Prasad M.V.N.A. J. App. Polym. Sci. 121(2), 675, 2011.
[18]  Roy A.S., Koppalkar A.R. and Prasad M.V.N.A. J. App. Polym. Sci. 123(4), 1928, 2012.
[19]  Roy A.S., Hegde S.G. and Parveen A. Polym. Adv. Technol. 25(1), 130, 2014.
[20]  Parveen A., Koppalkar A.R. and Roy A.S. IEEE Sens. J. 12(9), 2817, 2012.
[21]  Parveen A., Koppalkar A.R. and Roy A.S. Sens. Letters, 11(2), 242, 2013.
[22]  Roy A.S., Koppalkar A.R. Sasikala, M. Machappa T. and Prasad M.V.N.A. Sens. Letters 9 (4), 1342, 2011.
[23]  Adhikari B. and Majumdar S. Prog. Polym. Sci. 29, 766, 2004.
[24]  Joshi A., Gangal S.A. and Gupta S.K. Sens. Actuators B 156, 938, 2011.
[25]  Shimpi N.G., Mishra S., Hansora D.P. and Savdekar U. Indian Patent 3179/MUM/2013, 2013.
[26]  Hansora D.P., Shimpi N.G. and Mishra S. JOM 67(12), 2855, 2015.
[27]  Shimpi N.G., Mali A.D., Hansora D.P. and Mishra S. Nanosci. Nanoeng. 3, 8, (2015)
[28]  Wu T.M., Chang H.L. and Lin Y.W. Polym. Int. 58, 1065, 2009.
[29]  Lu Y., Shi G., Li C. and Liang Y. J. App. Polym. Sci. 70, 2169, 1998.
[30]  Li X.G., Li A., Huang M.R., Liao Y. and Lu Y.G. J. Phys. Chem. C 114, 19244, 2010.
[31]  Hamilton A. and Breslinm C.B. Electrochim Acta 145, 19, 2014.
[32]  Nalage S.R., Navale S.T. and Patil V.B. Measurement 46, 3268, 2013.
[33]  Montoya P., Mejía S., Gonçales V.R., Torresi S.I.C. de and Calderón J.A. Sens. Actuators B: Chem., 213, 444, 2015.
[34]  Yang X., Li L. and Yan F. Sens. Actuators B: Chem., 145, 495, 2010.
[35]  Chih Y.K. and Yang M.C. J. Taiwan Inst. Chem. Eng. 45, 833, 2014.
[36]  Yang X., Li L. and Zhao Y. Synt. Met. 160(17), 1822, 2010.
[37]  Liu F., Yuan Y., Li L., Shang S., Yu X., Zhang Q., Jiang S. and Wu Y. Comp. Part B: Eng. 69, 232, 2015.
[38]  Ullah H., Ayubb K. Ullah Z., Hanif M., Nawaz R., Shah A.H.A, Bilal S, Synt. Met. 172, 14-20 (2013).
[39]  Scott D., Cooney M.J. and Liaw B.Y., J. Mater. Chem., 18, 3216-3222, 2008.
[40]  Dunst K.J., Cysewska K., Kalinowski P., Jasiński P., IMAPS Poland, Conference, IOP Conf. Series: Mater. Sci. Eng. 104, 012028, 2015.
[41]  Hernandez S.C., Chaudhuri D., Chen W., Myung N.V., Mulchandani A., Electroanal. 19, (19-20), 2125, 2007.
[42]  Garg R., Kumar V., Kumar D., and Chakarvarti S.K., J. Sens. Instrument. 3(1) 1, 2015.
[43]  Bagchi S., and Ghanshyam C. J. Phys. D: Appl. Phys. 50, 105302, 10, 2017.
[44]  Yeole B., Sen T., Hansora D.P. and Mishra S. Mater. Res. 19(5), 999, 2016.
Show Less References


N,N’-Diphenyldecanediamide: A Fluoride Ion Sensitive and Selective Amide

1Amity School of Applied Sciences, Amity University Haryana, Panchgaon, Manesar, Gurgaon, Haryana, India

American Journal of Sensor Technology. 2017, 4(1), 1-9
doi: 10.12691/ajst-4-1-1
Copyright © 2017 Science and Education Publishing

Cite this paper:
Meenakshi Thakran, Anek pal Gupta, Neeru Dabas. N,N’-Diphenyldecanediamide: A Fluoride Ion Sensitive and Selective Amide. American Journal of Sensor Technology. 2017; 4(1):1-9. doi: 10.12691/ajst-4-1-1.

Correspondence to: Neeru  Dabas, Amity School of Applied Sciences, Amity University Haryana, Panchgaon, Manesar, Gurgaon, Haryana, India. Email:


A fluoride ion (F-) sensitive organic ligand N, N’-Diphenyldecanediamide (L1), has been synthesized by the reaction of sebacoyl chloride with aniline in presence of triethylamine at room temperature. Spectroscopic investigation revealed F- interacts strongly with L1 in comparison to other competitive anions (Cl-, Br- and NO3-) and as a consequence induces deprotonation in the NH fragment of L1. Different spectroscopic techniques such as 1H NMR, UV-Vis and fluorescence emission spectroscopy supports the fast and distinct response behavior of N, N’-substituted polymethylene diamide towards F-.



[1]  Hirsch, B. E., McDonald, K. P., Qiao, B., Flood, A. H., Tait, S. L. , “Selective Anion Induced Crystal Switching and Binding in Surface Monolayers Modulated by Electric Fields from Scanning Probes,” ACS Nano, 8 (10), 10858-10869, September 2014.
[2]  Gale, P. A., “Structural and Molecular Recognition Studies with Acyclic Anion Receptors,” Acc. Chem. Res. 39 (7), 465-475, May 2006.
[3]  Gladwin, M. T. , Schechter, A. N. , Kim-Shapiro, D. B. , Patel, R. P. , Hogg, N. , Shiva,S., Cannon, R. O., Kelm, M., Wink, D. A., Espey, M. G. , Oldfield, E. H. , Pluta, R. M. , Freeman, B. A. , Lancaster, J. R. , Feelisch, Jr, M. , Lundberg, J. O. , “The emerging biology of the nitrite ion,” Nature Chem. Bio. 1 (6), 308-314, November 2005.
[4]  Jentsch, T. J., Stein, V., Weinreich, F., Zdebik, A. A., “Molecular Structure and Physiological Function of Chloride Channels,” Physiol Rev. 82 (2), 503-568, April 2002.
[5]  Choi, A. L., Sun, G., Zhang, Y., Grandjean, P., “Developmental fluoride neurotoxicity: A systematic review and meta-analysis,” Environ. Health Perspect. 120 (10), 1362-1368, October 2012.
Show More References
[6]  Phipps, K., “Fluoride and Bone Health,” Journal of Public Health Dent. 55 (1), 53-56, 1995.
[7]  Everett, E.T., “Fluoride’s Effects on the Formation of Teeth and Bones, and the Influence of Genetics,” J. Dent. Res. 90 (5), 552-560, May 2011.
[8]  Ludlow, M., Luxton, G., Mathew, T., “Effects of fluoridation of community water supplies for people with chronic kidney disease,” Nephrol. Dial. Transplant. 22, 2763-2767, July 2007.
[9]  Greenwood, D. A., “Fluoride Intoxication,” Physiological Rev. 20 (4), 582-616, October 1940.
[10]  Islam, Md. E.; Julkarnain, Md.; Hossain,J.; Ismail,A. B. Md.; Rahman, Md. H. “Investigation on LaF3 impregnated porous silicon heterostructur as potentiometric sensor for fluoride ion in aqueous medium,” Am. J. Sensor Technol. 1 (1), 1-4, October 2013.
[11]  Yuan, M.S., Wang, Q., Wang, W., Wang, D.E., Wang, J., Wang, J., “Truxenecored p-expanded triarylborane dyes as single- and two-photon fluorescent probes for fluoride,” Analyst. 139 (6), 1541-1549, March 2014.
[12]  Cai, J., Sessler, J. L., “Neutral CH and cationic CH donor groups as anion receptors,” Chem. Soc. Rev. 43, 6198-6213, May 2014.
[13]  Ghosh, D., Rhodes, S., Hawkins, K., Winder, D., Atkinson, A., Ming, W., Padgett, C., Orvis, J., Aiken, K., Landge, S., “A simple and effective 1,2,3-triazole based “turn on” fluorescence sensor for the detection of anions ,” New J. Chem. 39 (1), 295-303, October 2015.
[14]  Basaran, I., Khansari, M.E., Pramanik, A., Wong, B. M., Hossain, M. A. “An exclusive fluoride receptor: Fluoride-induced proton transfer to a quinoline-based thiourea,” Tetrahedron Lett. 55 (8), 1467-1470, February 2014.
[15]  Jun, E. J., Xu, Z., Lee, M., Yoon, J., “A ratiometric fluorescent probe for fluoride ions with a tridentate receptor of boronic acid and imidazolium,” Tetrahedron Lett. 54 (22), 2755-2758, May 2013.
[16]  Chahar, M., Pandey, P.S., “Design of steroid-based imidazolium receptors for fluoride ion recognition,” Tetrahedron, 64 (27), 6488-6493, June 2008.
[17]  Mohapatra, S., Sahu, S., Nayak, S., Ghosh, S.K., “Design of Fe3O4@SiO2@Carbon Quantum Dot Based Nanostructure for Fluorescence Sensing, Magnetic Separation, and Live Cell Imaging of Fluoride Ion,” Langmuir, 31 (29), 8111-8120, June 2015.
[18]  Liu, T., Nonat, A., Beyler, M., Regueiro-Figueroa, M., Nono, K. N., Jeannin, O., Camerel, F., Debaene,F., Cianferani-Sanglier, S., Tripier, R., Platas-Iglesias, C., Charbonniere, L. J., “Supramolecular Luminescent Lanthanide Dimers for Fluoride Sequestering and Sensing,” Angew. Chem. 126 (28), 7387-7391, July 2014.
[19]  Kang, S.O., Llinares, J. M., Powell, D., VanderVelde, D., Bowman-James, K., “New Polyamide Cryptand for Anion Binding,” J. Am. Chem. Soc. 125 (34), 10152-10153, July 2003.
[20]  Dorazco-Gonzalez, A., Hopfl, H., Medrano, F., Yatsimirsky, A.K., “Recognition of Anions and Neutral Guests by Dicationic Pyridine-2,6-dicarboxamide Receptors,” J. Org.Chem. 75(7), 2259-2273, March 2010.
[21]  Korendovych, I. V. , Cho, M., Butler, P. L., Staples, R. J., Rybak-Akimova, E. V., “Anion Binding to Monotopic and Ditopic Macrocyclic Amides,” Org. Lett. 8 (15), 3171-3174, June 2006.
[22]  Zhang, S., Palkar, A., Echegoyen, L., “Selective Anion Sensing Based on Tetra-amide Calix[6]arene Derivatives in Solution and Immobilized on Gold Surfaces via Self Assembled Monolayers,” Langmuir 22(25), 10732-10738, December 2006.
[23]  Dutta, R., Ghosh, P., “Encapsulation of Fluoride/Chloride in the C3v-Symmetric Cleft of a Pentafluorophenyl-Functionalized Cyanuric Acid Platform Based Tripodal Amide: Solid and Solution-State Anion-Binding Studies,” Eur. J. Inorg. Chem., 2012(21), 3456-3462, July 2012.
[24]  Bisson, A.P., Lynch, V. M., Monahan, M. K. C., Anslyn, E. V., “Recognition of Anions through NH π Hydrogen Bonds in a Bicyclic Cyclophane-Selectivity for Nitrate,” Angew. Chem. Int. Ed. 36 (21), 2340-2342, November 1997.
[25]  Li, J., Xu, X., Shao, X., Li, Z., “A novel colorimetric fluoride sensor based on a semirigid chromophore controlled by hydrogen bonding,” Luminescence 30(8), 1285-1289, December 2015.
[26]  Kim, Y., Song J. H. , Lee, W. R. , Phang, W. J. , Lim, K. S. , Hong CS. , “Reversible Structural Flexibility and Sensing Properties of a Zn(II) Metal-Organic Framework: Phase Transformation between Interpenetrating 3D Net and 2D Sheet.” Cryst. Growth Des, 14(4), 1933-1937, February 2014.
[27]  Steiner,T., “The Hydrogen Bond in the Solid State,” Angew. Chem. Int. Ed. 41 (1), 48-76, January 2002.
[28]  Boiocchi, M., Boca, L. D., Gomez, D.E., Fabbrizzi, L., Licchelli, M., Monzani, E., “Nature of urea fluoride interaction: incipient and definitive proton transfer” J. Am. Chem. Soc. 126 (50), 16507-16514, November 2004.
[29]  Elmes, R.B.P., Turner,P., Jolliffe, K.A.,“Colorimetric and Luminescent Sensors for Chloride: Hydrogen Bonding vs Deprotonation,” Org. Lett. 15 (22), 5638-5641, October 2013.
[30]  Yang, Z., Zhang, K., Gong, F., Li,S., Chen, J., Ma, J.S., Sobenina, L.N., Mikhaleva, A. I. , Yang, G., Trofimov, B. A., “A new fluorescent chemosensor for fluoride anion based on a pyrrole–isoxazole derivative,” Beilstein J. Org. Chem. 7, 46-52, January 2011.
[31]  Liu, B., Tian, H., “A ratiometric fluorescent chemosensor for fluoride ions based on a proton transfer signaling mechanism,” J. Mater. Chem. 15 (27-28), 2681-2686, May 2005.
Show Less References