ISSN (Print): 2372-708X

ISSN (Online): 2372-7071

Website: http://www.sciepub.com/journal/ajss

Editor-in-chief: Josué-Antonio Nescolarde-Selva

Currrent Issue: Volume 4, Number 2, 2016

Article

Mathematical Model of Reproductive Behaviour of Mediterranean Bushes: Cistus albidus L Case

1Department of Applied Mathematics, University of Alicante, Alicante, Spain


American Journal of Systems and Software. 2016, 4(2), 46-50
doi: 10.12691/ajss-4-2-3
Copyright © 2016 Science and Education Publishing

Cite this paper:
José Luis Usó-Doménech, Josué-Antonio Nescolarde-Selva, Miguel Lloret-Climent, Lucía González-Franco. Mathematical Model of Reproductive Behaviour of Mediterranean Bushes: Cistus albidus L Case. American Journal of Systems and Software. 2016; 4(2):46-50. doi: 10.12691/ajss-4-2-3.

Correspondence to: Josué-Antonio  Nescolarde-Selva, Department of Applied Mathematics, University of Alicante, Alicante, Spain. Email: josue.selva@ua.es

Abstract

The bushes constitute a basic species of the ground Mediterranean ecosystems. Their role in the contribution of organic matter on the soil and prevention of erosion is well known. MARIOLA model was developed to study the behaviour of Mediterranean shrubs species from a predictable climatic change. This paper presents a model, inside the context of the MARIOLA, which deals with the reproductive phenomena of the phanerogam plants germination, flowering, fructification and dispersion of seeds. In this paper, it has presented a population submodel for the Cistus albidus L of the above mentioned process and its validation.

Keywords

References

[1]  Arianoutsou-Farag-Gitaki, M. and Margaris, N.S. 1982. Phryganic (east Mediterranean ecosystems) and fire. Ecologia Mediterranea, T VIII. Fasc. ½, Marseille. 473-480.
 
[2]  Bellod-Calabuig, F. and Belda-Antolí, J.A. 2013. Plantas medicinales de la Sierra de Mariola. Universidad de Alicante. Alicante . España. (In Spanish).
 
[3]  Corral R., Perez-Garcia F., Pita J.M., 1989. Seed morphology and histology in four species of Cistus L. (Cistaceae). Phytomorphology, 39 (1): 75-80.
 
[4]  Font Quer, P. 1973. Plantas medicinales. El discórides renovado. Editorial Labor. Barcelona. (In Spanish).
 
[5]  Forrester, J.W. 1961. Industrial Dynamics. MIT Press. Cambridge. Massachusetts.
 
Show More References
[6]  Iriondo J.M., Moreno C., Perez C., 1995. Micropropagation of six rockrose (Cistus) species. HortScience, 30 (5): 1080-1081.
 
[7]  Jühren, G. 1956. The use of Cistus in erosion control. LASCA LEAVES, 6, 26-29.
 
[8]  Knapp, R. 1962. Rock-roses-cistus (components of the shrub vegetation and their usefulness in soil conservation). LASCA LEAVES, 12, 77-79.
 
[9]  Le Houerou, 1974. Fire and vegetation in the Mediterranean Basin. In R Komarek (Ed.) Proceedings annual Tall Timbers fire ecology conference. Tall Timbers Res. Sta Tallahasse, Florida, 237-277.
 
[10]  Mateo, G. and Figuerola, R. 1987. Flora analítica de la provincial de Valencia. IAM. Ediciones Alfons el Magnánim. Institució Valenciana d’Estudis I Investigació. Valencia. (In Spanish).
 
[11]  Mateu, J., Usó, J.L, Montes, F. 1998. The Spatial Pattern of a Forest Ecosystem. Ecological Modelling. 108, 163-174.
 
[12]  Montgomery, K.R. and Strid, T.W. 1976. Regeneration of introduced species of Cistus (Cistaceae) after fire in Southern California. Madroño, 23, 417-427.
 
[13]  Naveh, Z. 1974. The Ecology of fire in Israel. In R Komarek (Ed.) Proceedings annual Tall Timbers fire ecology conference. Tall Timbers Res. Sta Tallahasse, Florida, 131-170.
 
[14]  Strasburger, E., Noll, F, Schenk, H. and Schimper, A.F.W. 1974. Tratado de Botánica. Editorial Marín. Barcelona. (In Spanish).
 
[15]  Stübing, G.and Peris, J.B. 1998. Plantas silvestres de la Comunidad Valenciana. Las Guias Verdes. (In Spanish).
 
[16]  Stübing, G., Peris, J.B. and Costa, M. 1989. Los matorrales seriales termófilos valencianos. Phytocoenologia. 17, 1-69. (In Spanish).
 
[17]  Trocaud, L. 1977. Materiaux combustibles et phytomasses aeriennes du Midi mediterraneen francais. Marti et Bosch 28(4). 18-49. (In French).
 
[18]  Usó-Domènech, J.L., Villacampa, Y., Stübing, G., Karjalainen, T. & Ramo, M.P. 1995. MARIOLA: a model for calculating the response of Mediterranean bush ecosystem to climatic variations. Ecological Modelling. 80, 113-129.
 
[19]  Usó-Domènech, J. L., Mateu, J and J.A. Lopez. 1997. Mathematical and Statistical formulation of an ecological model with applications. Ecological Modelling. 101, 27-40.
 
[20]  Usó-Domènech, J.L., Mateu, J. and Lopez, J.A. 2000. MEDEA: software development for prediction of Mediterranean forest degraded areas. Advances in Engineering Software. 31, p 185-196.
 
[21]  Usó-Doménech, J. L., Nescolarde-Selva, J., Lloret-Climent, M. 2014. Saint Mathew Law and Bonini Paradox in Textual Theory of Complex Models. American Journal of Systems and Software.2 (4), pp. 89-93.
 
[22]  Usó-Doménech, J. L., Nescolarde-Selva, J. 2014. Dissipation Functions of Flow Equations in Models of Complex Systems. American Journal of Systems and Software. 2 (4), pp. 101-107.
 
[23]  Usó-Doménech, J. L., Nescolarde-Selva, J., Lloret-Climent, M. 2015. Syntactic and semantic relationships in models of complex systems: an ecological case. American Journal of Systems and Software. Vol. 3, No. 4, 73-82.
 
[24]  Usó-Doménech, J. L., Nescolarde-Selva, J., Lloret-Climent, M. and González-Franco, L. 2016. American Journal of Systems and Software. Vol. 4, No. 1, 1-13.
 
[25]  Vuillemin J., Bulard C., 1981. Ecophysiologie de la germination de Cistus albidus L. et Cistus monspeliensis L..Naturalia monspeliensia. Serie botanique, 46, 11 p. (In French).
 
Show Less References

Article

Transport of Atmospheric Pollutants in West Mediterranean Areas: Mathematical Model

1Department of Applied Mathematics, University of Alicante, Alicante, Spain

2School of Mathematics and Statistics, Northeast Normal University, Changchun, China


American Journal of Systems and Software. 2016, 4(2), 40-45
doi: 10.12691/ajss-4-2-2
Copyright © 2016 Science and Education Publishing

Cite this paper:
Josué-Antonio Nescolarde-Selva, José-Luis Usó-Doménech, Meng Fan. Transport of Atmospheric Pollutants in West Mediterranean Areas: Mathematical Model. American Journal of Systems and Software. 2016; 4(2):40-45. doi: 10.12691/ajss-4-2-2.

Correspondence to: Josué-Antonio  Nescolarde-Selva, Department of Applied Mathematics, University of Alicante, Alicante, Spain. Email: josue.selva@ua.es

Abstract

The main objective of this paper is to present a mass conservative method for solving the one-dimensional equation of atmospheric pollutants transport, based on a finite volume method. In order to avoid numerical diffusion a trapezoid rule with a linear interpolation in the extremes of cells is used to approximate integrals. Air pollution problems can be treated by several techniques, we have used a spatial and time uniform grid, numerical results has been implemented in the computer program ATPOTRANS (Atmospheric Pollutants Transport).

Keywords

References

[1]  Barry, R.G. and Chorley, R.J. 1987. Atmosphere, Weather and Climate. Methuen. New York.
 
[2]  EMEP. 1990. Calculated budgets of airborne sulphur and nitrogen over Europe. EMEP Report MSC-W 2/90.
 
[3]  Erbrink, J.J. 1991. A practical model for the calculation of σy and σz for use in an on-line Gaussian dispersion model for tall stacks, based on wind fluctuations. Atmospheric Environment. Vol 25A, 2, pp 277-283.
 
[4]  Giorgi, F., 2006, Climate change hot-spots. Geophysical Research Letters 33(8), pp. L08707.
 
[5]  Hagler, G. S. W., Tang, W. 2016. Simulation of rail yard emissions transport to the near-source environment. Atmospheric Pollution Research. 7(3). pp. 469-476.
 
Show More References
[6]  Hough A.M, Derwent R.G. 1990. Changes in the global concentration of tropospheric ozone due to human activities. Nature, 344, pp 645-648.
 
[7]  Ikeda, T. 1983. Maximum principle in finite element models for convection diffusion phenomena. North Holland. New York.
 
[8]  Liu, Z., Wang, L., Zhu, H. 2015. A time–scaling property of air pollution indices: a case study of Shanghai, China. Atmospheric Pollution Research. 6(5). pp. 886-892.
 
[9]  Mignanego L., Biondi F., Schenone G. 1992. Ozone biomonitoring in northern Italy. Agriculture, Ecosystems and Environment, 21 , pp 141-159.
 
[10]  Millan, M.M., Artiano, B., Alonso, L., Navazo, M. and Castro, M. 1991. The effect of meso-scale flows on regional and long-range atmospheric transport in the western Mediterranean area. Atmospheric Environment. Vol 25A, 5/6, pp 949-963.
 
[11]  Treshow M. (ed.). 1984. Air pollution and plant life. John Wiley & Sons, Chichester, New York.
 
[12]  Volz A., Kley D. 1988. Evaluation of the Montsouris series of ozone measurements made in the nineteenth century. Nature, 332, pp 240-242.
 
[13]  Westman W.E. 1985. Air pollution injury to coastal sage scrub in the Santa Monica Mountains, Southern California. Water, Air, and Soil Pollution, 26, pp 19-41.
 
Show Less References

Article

Diversity for Texts Builds in Language L(MT) II: Indexes Based in Abundances

1Department of Applied Mathematics, University of Alicante, Alicante, Spain

2School of Mathematics and Statistics, Northeast Normal University, Changchun, China


American Journal of Systems and Software. 2016, 4(2), 32-39
doi: 10.12691/ajss-4-2-1
Copyright © 2016 Science and Education Publishing

Cite this paper:
José Luis Usó-Doménech, Josué-Antonio Nescolarde-Selva, Miguel Lloret-Climent, Meng Fan. Diversity for Texts Builds in Language L(MT) II: Indexes Based in Abundances. American Journal of Systems and Software. 2016; 4(2):32-39. doi: 10.12691/ajss-4-2-1.

Correspondence to: Josué-Antonio  Nescolarde-Selva, Department of Applied Mathematics, University of Alicante, Alicante, Spain. Email: josue.selva@ua.es

Abstract

One saw previously that indications of diversity IT and the one of Shannon permits to characterize globally by only one number one fundamental aspects of the text structure. However a more precise knowledge of this structure requires specific abundance distributions and the use, to represent this one, of a suitable mathematical model. Among the numerous models that would be either susceptible to be proposed, the only one that present a real convenient interest are simplest. One will limit itself to study applied three of it to the language L(MT): the log-linear, the log-normal and Mac Arthur's models very used for the calculation of the diversity of the species of ecosystems, and used, we believe that for the first time, in the calculation of the diversity of a text written in a certain language, in our case L(MT). One will show advantages and inconveniences of each of these model types, methods permitting to adjust them to text data and in short tests that permit to decide if this adjustment is acceptable.

Keywords

References

[1]  Forrester. J.W. 1961. Industrial Dynamics. MIT Press, Cambridge, MA.
 
[2]  Usó-Domènech, J. L., Mateu, J and J.A. Lopez. 1997. Mathematical and Statistical formulation of an ecological model with applications. Ecological Modelling. 101, 27-40.
 
[3]  Nescolarde-Selva, J.; Usó-Doménech, J. L.; Lloret-Climent, M. 2014. Introduction to coding theory for flow equations of complex systems models. American Journal of Systems and Software. 2(6). pp. 146-150.
 
[4]  Nescolarde-Selva, J., Usó-Doménech, J.L., Lloret- Climent, M. and González-Franco, L. 2015. Chebanov law and Vakar formula in mathematical models of complex systems. Ecological Complexity. 21. pp. 27-33.
 
[5]  Sastre-Vazquez, P., Usó-Domènech, J.L. and Mateu, J. 2000. Adaptation of linguistics laws to ecological models. Kybernetes. 29 (9/10). 1306-1323.
 
Show More References
[6]  Usó-Domènech, J.L., Sastre-Vazquez, P. and Mateu, J. 2001. Syntax and First Entropic Approximation of L(MT): A Language for Ecological Modelling. Kybernetes. 30(9/10). 1304-1318.
 
[7]  Usó-Domènech, J.L. and Sastre-Vazquez, P. 2002. Semantics of L(MT): A Language for Ecological Modelling. Kybernetes. 31 (3/4), 561-576.
 
[8]  Usó-Domènech, J.L., Vives Maciá, F. and Mateu. J.. 2006a. Regular grammars of L(MT): a language for ecological systems modelling (I) –part I. Kybernetes. 35 nº6, 837-850.
 
[9]  Usó-Domènech, J.L., Vives Maciá, F. and Mateu. J. 2006b. Regular grammars of L(MT): a language for ecological systems modelling (II) –part II. Kybernetes. 35 (9/10), 1137-1150.
 
[10]  Usó-Doménech, J. L., Nescolarde-Selva, J., Lloret-Climent, M. 2014. Saint Mathew Law and Bonini Paradox in Textual Theory of Complex Models. American Journal of Systems and Software.2 (4), pp. 89-93.
 
[11]  Usó-Doménech, J. L., Nescolarde-Selva, J. 2014. Dissipation Functions of Flow Equations in Models of Complex Systems. American Journal of Systems and Software. 2 (4), pp. 101-107.
 
[12]  Usó-Doménech, J. L., Nescolarde-Selva, J., Lloret-Climent, M. and González-Franco, L. 2014. Diversity for Texts Builds in Language L(MT): Indexes Based in Theory of Information. American Journal of Systems and Software. 2(5). pp. 113-120.
 
[13]  Zipf, G.K. 1949. Human Behavior and the Principle of Least Effort. Cambridge, Mass.
 
[14]  Utida. T. 1943. Relation entre les populations expérimentales de Callosobrunchus chinensis Linné (Coléoptères) et son parasite (Hyménopttères). III. Influence de la densité de population de l'hôte sur la proliferation du parasite. Seitaigaku Kenkyuu, 9, 40-54.
 
[15]  Motomura, L. 1947. Further notes on the law of geometrical progression of the population density in animal association. Seiri Seitai. 1, 55-60.
 
[16]  Preston, F.W. (1948. The commoness and rarity of species. Ecology, 29, 254-283.
 
[17]  Preston, F.W. 1962). The canonical dsitribution of commonness and rarity. Ecology, 43, 185-215 and 410-432.
 
[18]  Mac Arthur, R.H. 1957. On the relative abundance of bird species. Proc. Nat. Acad. Sci. 43, 293-295.
 
[19]  Mac Arthur, R.H. 1960. On the relative abundance of species. Amer. Nat., 94, 25-36.
 
[20]  Mac Arthur, R.H. (1969. Patterns of communities in the tropics. Biol. J. Linn. Soc., 1, 19-30.
 
[21]  Hairston, N.G. 1959. Species abundance and community organization. Ecology. 40, 404-416.
 
[22]  King, S.E. (1964). Relative abundance of species and Mac Arthur model. Ecology. 45, 716-727.
 
[23]  David, F. N. 1947. A χ2 smooth test for goodness of fit. Biometrika. 34, 299-304.
 
Show Less References