American Journal of Systems and Software

Current Issue» Volume 2, Number 6 (2014)

Article

Introduction to Coding Theory for Flow Equations of Complex Systems Models

1Department of Applied Mathematics, University of Alicante, Alicante, Spain


American Journal of Systems and Software. 2014, 2(6), 146-150
DOI: 10.12691/ajss-2-6-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
J. Nescolarde-Selva, J.L. Usó-Doménech, M. Lloret-Climent. Introduction to Coding Theory for Flow Equations of Complex Systems Models. American Journal of Systems and Software. 2014; 2(6):146-150. doi: 10.12691/ajss-2-6-2.

Correspondence to: J.  Nescolarde-Selva, Department of Applied Mathematics, University of Alicante, Alicante, Spain. Email: josue.selva@ua.es

Abstract

The modeling of complex dynamic systems depends on the solution of a differential equations system. Some problems appear because we do not know the mathematical expressions of the said equations. Enough numerical data of the system variables are known. The authors, think that it is very important to establish a code between the different languages to let them codify and decodify information. Coding permits us to reduce the study of some objects to others. Mathematical expressions are used to model certain variables of the system are complex, so it is convenient to define an alphabet code determining the correspondence between these equations and words in the alphabet. In this paper the authors begin with the introduction to the coding and decoding of complex structural systems modeling.

Keywords

References

[[[[[[[[[[[[[[[[
[1]  Sastre-Vazquez, P., Usó-Domènech, J.L, Villacampa, Y., Mateu, J. and Salvador, P. 1999. Statistical Linguistic Laws in Ecological Models. Cybernetics and Systems: An International Journal. Vol 30. 8. 697-724.
 
[2]  Sastre-Vazquez, P., Usó-Domènech, J.L. and Mateu, J. 2000. Adaptation of linguistics laws to ecological models. Kybernetes. 29 (9/10). 1306-1323.
 
[3]  Usó-Domènech, J.L., Villacampa, Y., Stübing, G., Karjalainen, T. & Ramo, M.P. 1995. MARIOLA: a model for calculating the response of mediterranean bush ecosystem to climatic variations. Ecological Modelling. 80, 113-129.
 
[4]  Usó-Domènech, J. L., Mateu, J and J.A. Lopez. 1997. Mathematical and Statistical formulation of an ecological model with applications. Ecological Modelling. 101, 27-40.
 
[5]  Usó-Domènech, J.L. and Villacampa, Y. 2001. Semantics of Complex Structural Systems: Presentation and Representation. A synchronic vision of language L (MT). Int. Journal of General Systems. 30 (4). 479-501.
 
Show More References
[6]  Usó-Domènech, J.L, Sastre-Vazquez, P. Mateu, J. 2001. Syntax and First Entropic Approximation of L (MT): A Language for Ecological Modelling. Kybernetes. 30 (9/10). 1304-1318.
 
[7]  Usó-Domènech, J.L and Sastre-Vazquez, P. 2002. Semantics of L (MT): A Language for Ecological Modelling. Kybernetes 31 (3/4), 561-576.
 
[8]  Usó-Domènech, J.L., Vives Maciá, F. and Mateu. J.. 2006a. Regular grammars of L (MT): a language for ecological systems modelling (I) –part I. Kybernetes 35 nº6, 837-850.
 
[9]  Usó-Domènech, J.L., Vives Maciá, F. and Mateu. J.. 2006b. Regular grammars of L (MT): a language for ecological systems modelling (II) –part II. Kybernetes 35 (9/10), 1137-1150.
 
[10]  Usó-Doménech, J. L., Nescolarde-Selva, J. 2014. Disipation Functions of Flow Equations in Models of Complex Systems. American Journal of Systems and Software. 2 (4), pp. 101-107
 
[11]  Usó-Doménech, J. LL., Nescolarde-Selva, J., Lloret-Climent, M. 2014a. Behaviours, Processes and Probabilistic Environmental Functions in H-Open Systems. American Journal of Systems and Software. 2 (3), pp. 65-71.
 
[12]  Usó-Doménech, J. L., Nescolarde-Selva, J., Lloret-Climent, M. 2014b. Saint Mathew Law and Bonini Paradox in Textual Theory of Complex Models. American Journal of Systems and Software. 2 (4), pp. 89-93.
 
[13]  Usó-Doménech, J. L., Nescolarde-Selva, J., Lloret-Climent, M. and González-Franco, L. 2014. Diversity for Texts Builds in Language L (MT): Indexes Based in Theory of Information. American Journal of Systems and Software, 2 (5). pp. 113-120
 
[14]  Villacampa, Y., Usó-Domènech, J.L., Mateu, J. Vives, F. and Sastre, P. 1999. Generative and Recognoscitive Grammars in Ecological Models. Ecological Modelling. 117, 315-332.
 
[15]  Villacampa, Y. and Usó-Domènech, J.L. 1999. Mathematical Models of Complex Structural systems. A Linguistic Vision. Int. Journal of General Systems. Vol 28, no 1, 37-52.
 
[16]  Villacampa-Esteve, Y., Usó-Domènech, J.L., Castro-Lopez-M, A. and P. Sastre-Vazquez. 1999. A Text Theory of Ecological Models. Cybernetics and Systems: An International Journal. Vol 30, 7.587-607.
 
[17]  Forrester, J.W., 1961. Industrial Dynamics. MIT Press, Cambridge, MA.
 
[18]  Jörgensen, S.E., 1988. Fundamentals of Ecological Modelling. Developments in Environmental Modelling 9. Elsevier, Amsterdam.
 
[19]  Abramson, N. 1981. Teoria de la Codificación y la Información. Ed Paraninfo. Madrid. (In Spanish)
 
[20]  Davis, M.D. and Weyuker, E.J, 1983. Computability, Complexity and Languages. Academic Press.
 
[21]  Yablosnsky, S.V. 1989. Introduction to Discrete Mathematics. Ed Mir. Moscou.
 
Show Less References

Article

Truth Values in t-norm based Systems Many-valued FUZZY Logic

1Department of Applied Mathematics, University of Alicante, Alicante, Spain


American Journal of Systems and Software. 2014, 2(6), 139-145
DOI: 10.12691/ajss-2-6-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Usó-Doménech J.L., Nescolarde-Selva J., Perez-Gonzaga S.. Truth Values in t-norm based Systems Many-valued FUZZY Logic. American Journal of Systems and Software. 2014; 2(6):139-145. doi: 10.12691/ajss-2-6-1.

Correspondence to: Nescolarde-Selva  J., Department of Applied Mathematics, University of Alicante, Alicante, Spain. Email: josue.selva@ua.es

Abstract

In t-norm based systems many-valued logic, valuations of propositions form a non-countable set: interval [0,1]. In addition, we are given a set E of truth values p, subject to certain conditions, the valuation v is v=V(p), V reciprocal application of E on [0,1]. The general propositional algebra of t-norm based many-valued logic is then constructed from seven axioms. It contains classical logic (not many-valued) as a special case. It is first applied to the case where E=[0,1] and V is the identity. The result is a t-norm based many-valued logic in which contradiction can have a nonzero degree of truth but cannot be true; for this reason, this logic is called quasi-paraconsistent.

Keywords

References

[[[[[[[[[[[[[[[[[
[1]  Arruda A. I., Chuaqui R., da Costa N. C. A. (eds.) 1980 . Mathematical Logic in Latin America. North-Holland Publishing Company, Amsterdam, New York, Oxford.
 
[2]  Asenjo, F.G. 1966. A calculus of antinomies. Notre Dame Journal of Formal Logic 7. Pp 103-105.
 
[3]  Avron, A. 2005. Combining classical logic, paraconsistency and relevance. Journal of Applied Logic. 3(1). pp 133-160.
 
[4]  Belnap, N.D. 1977. How a computer should think. In Contemporary aspects of philosophy, ed. G. Ryle, 30-55. Oriel Press. Boston.
 
[5]  Béziau J.Y. 1997. What is many-valued logic? Proceedings of the 27th International Symposium on Multiple-Valued Logic, IEEE Computer Society, Los Alamitos, pp. 117-121.
 
Show More References
[6]  Bueno, O. 1999. True, Quasi-true and paraconsistency. Contemporary mathematics. 39. pp 275-293.
 
[7]  Bueno, O. 2010. Philosophy of Logic. In Fritz Allhoff. Philosophies of the Sciences: A Guide. John Wiley & Sons. p. 55.
 
[8]  Carnielli, W.A., Coniglio and M. Lof D'ottaviano, I.M. 2002. Paraconsistency: The Logical Way to the Inconsistent. Marcel Dekker, Inc. New York.
 
[9]  Carnielli, W. and Marcos, J. 2001. Ex contradictione non sequitur quodlibet. Proc. 2nd Conf. on Reasoning and Logic (Bucharest, July 2000).
 
[10]  Castiglioni, J. L. and Ertola Biraben, R. C. 2013. Strict paraconsistency of truth-degree preserving intuitionistic logic with dual negation. Logic Journal of the IGPL. Published online August 11, 2013.
 
[11]  Cignoli, R. L. O., D'Ottaviano, I, M. L. and Mundici, D., 2000. Algebraic Foundations of Many-valued Reasoning. Kluwer.
 
[12]  Da Costa, N., Nuccetelli, S., Schutte, O. and Bueno, O. 2010. “Paraconsistent Logic” (with (eds.), A Companion to Latin American Philosophy (Oxford: Wiley-Blackwell), pp. 217-229.
 
[13]  Dunn, J.M. 1976. Intuitive semantics for first-degree entailments and coupled trees. Philosophical Studies 29. pp 149-168.
 
[14]  Fisher, J. 2007. On the Philosophy of Logic. Cengage Learning. pp. 132-134.
 
[15]  Malinowski, G. 2001. Many-Valued Logics, in Goble, Lou. Ed., The Blackwell Guide to Philosophical Logic. Blackwell.
 
[16]  Miller, D, M. and Thornton, M. A. 2008. Multiple valued logic: concepts and representations. Synthesis lectures on digital circuits and systems 12. Morgan & Claypool Publishers.
 
[17]  Nescolarde-Selva, J. and Usó-Domènech, J. L. 2013a. Semiotic vision of ideologies. Foundations of Science.
 
[18]  Nescolarde-Selva, J. and Usó-Domènech, J. L. 2013b. Reality, Systems and Impure Systems. Foundations of Science.
 
[19]  Nescolarde-Selva, J. and Usó-Doménech, J. 2013c. Topological Structures of Complex Belief Systems. Complexity. pp 46-62.
 
[20]  Nescolarde-Selva, J. and Usó-Doménech, J. 2013d. Topological Structures of Complex Belief Systems (II): Textual materialization.
 
[21]  Priest G. and Woods, J. 2007. Paraconsistency and Dialetheism. The Many Valued and Nonmonotonic Turn in Logic. Elsevier.
 
[22]  Usó-Domènech, J.L. and Nescolarde-Selva, J.A. 2012. Mathematic and Semiotic Theory of Ideological Systems. A systemic vision of the Beliefs. LAP LAMBERT Academic Publishing. Saarbrücken. Germany.
 
Show Less References