Welcome to American Journal of Nanomaterials

American Journal of Nanomaterials is a peer-reviewed, open access journal that provides rapid publication of articles in all areas of Nanomaterials. The goal of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of Nanomaterials.

ISSN (Print): 2372-3114

ISSN (Online): 2372-3122

Editor-in-Chief: Apply for this position

Website: http://www.sciepub.com/journal/AJN

   

Article

A Proper Approach on DNA Based Computer

1M.Tech-Computer Science and Engineering, Lakshmi Narain College of Technology-Indore (RGPV, Bhopal), MP, India


American Journal of Nanomaterials. 2015, 3(1), 1-14
doi: 10.12691/ajn-3-1-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Shyam Nandan Kumar. A Proper Approach on DNA Based Computer. American Journal of Nanomaterials. 2015; 3(1):1-14. doi: 10.12691/ajn-3-1-1.

Correspondence to: Shyam  Nandan Kumar, M.Tech-Computer Science and Engineering, Lakshmi Narain College of Technology-Indore (RGPV, Bhopal), MP, India. Email: shyamnandan.mec@gmail.com

Abstract

Computer applications have become an essential part of our daily lives, and their use is flourishing day by day. In Conventional Computer, there are lots of limitations like: Operational Speed, Power Consumption, Parallel Processing, Hardware Size, Data Storage Limitation, etc. To emphasize the problem, the paper provides A Proper Approach on DNA Based Computer. DNA Based Computer is a nano-computer that uses DNA (DeoxyriboNucleic Acids) to store information and perform complex calculations with low power consumption in a matter of seconds. The paper proposed Design Methodology of DNA Computer. Also various features of DNA Computer and operation of its processing units are reviewed. An overview on Adleman Experiment is also included in the paper.

Keywords

References

[1]  Adleman, L. M. (1994). “Molecular computation of solutions to combinatorial problems”. Science 266 (5187): 1021-1024. doi:10.1126/science.7973651. PMID 7973651.
 
[2]  Boneh, D.; Dunworth, C.; Lipton, R. J.; Sgall, J. Í. (1996). “On the computational power of DNA”. Discrete Applied Mathematics 71: 79-94.
 
[3]  Lila Kari, Greg Gloor, Sheng Yu (January 2000). “Using DNA to solve the Bounded Post Correspondence Problem”. Theoretical Computer Science 231 (2): 192-203.
 
[4]  Lewin, D. I. (2002). “DNA computing”. Computing in Science & Engineering 4 (3): 5-8.
 
[5]  Lovgren, Stefan (2003-02-24). “Computer Made from DNA and Enzymes”. National Geographic. Retrieved 2009-11-26.
 
Show More References
[6]  .In Just a Few Drops, A Breakthrough in Computing”, New York Times, May 21, 1997.
 
[7]  Shu, Jian-Jun; Wang, Q.-W.; Yong, K.-Y. (2011). “DNA-based computing of strategic assignment problems”. Physical Review Letters 106 (18): 188702.
 
[8]  Saenger, Wolfram (1984). “Principles of Nucleic Acid Structure”. New York: Springer-Verlag.
 
[9]  Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walters, Peter (2002). “Molecular Biology of the Cell”; Fourth Edition. New York and London: Garland Science.
 
[10]  Butler, John M. (2001). “Forensic DNA Typing”. Elsevier. ISBN 978-0-12-147951-0. OCLC 223032110 45406517, PP-14-15.
 
[11]  Shapiro, Ehud (1999-12-07)., “A Mechanical Turing Machine: Blueprint for a Biomolecular Computer,” Weizmann Institute of Science. Retrieved 2009-08-13.
 
[12]  Benenson, Y.; Paz-Elizur, T.; Adar, R.; Keinan, E.; Livneh, Z.; Shapiro, E. (2001). “Programmable and autonomous computing machine made of biomolecules”. Nature 414 (6862): 430-434.
 
[13]  Benenson, Y.; Gil, B.; Ben-Dor, U.; Adar, R.; Shapiro, E. (2004). “An autonomous molecular computer for logical control of gene expression”. Nature 429 (6990): 423-429.
 
[14]  Bond, G. L.; Hu, W.; Levine, A. J. (2005). “MDM2 is a Central Node in the p53 Pathway: 12 Years and Counting”. Current Cancer Drug Targets 5 (1): 3-8.
 
[15]  Kahan, M.; Gil, B.; Adar, R.; Shapiro, E. (2008). “Towards molecular computers that operate in a biological environment”. Physica D: Nonlinear Phenomena 237 (9): 1165-1172.
 
[16]  Weiss, S. (1999). “Fluorescence Spectroscopy of Single Biomolecules”. Science 283 (5408): 1676-1683.
 
[17]  Santoro, S. W.; Joyce, G. F. (1997). “A general purpose RNA-cleaving DNA enzyme”. Proceedings of the National Academy of Sciences 94 (9): 4262-4266.
 
[18]  Stojanovic, M. N.; Stefanovic, D. (2003). “A deoxyribozyme-based molecular automaton”. Nature Biotechnology 21 (9): 1069-1074.
 
[19]  MacDonald, J.; Li, Y.; Sutovic, M.; Lederman, H.; Pendri, K.; Lu, W.; Andrews, B. L.; Stefanovic, D.; Stojanovic, M. N. (2006). “Medium Scale Integration of Molecular Logic Gates in an Automaton”. Nano Letters 6 (11): 2598-2603.
 
[20]  Stojanovic, M. N.; Mitchell, T. E.; Stefanovic, D. (2002). “Deoxyribozyme-Based Logic Gates”. Journal of the American Chemical Society 124 (14): 3555-3561.
 
[21]  Cruz, R. P. G.; Withers, J. B.; Li, Y. (2004). “Dinucleotide Junction Cleavage Versatility of 8-17 Deoxyribozyme”. Chemistry & Biology 11: 57-67.
 
[22]  Darko Stefanovic's Group, “Molecular Logic Gates and MAYA II”, a second-generation tic-tac-toe playing automaton.
 
[23]  Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E. (8 December 2006). “Enzyme-free nucleic acid logic circuits”. Science 314 (5805): 1585-1588.
 
[24]  A. Hierlemann, O. Brand, C. Hagleitner, H. Baltes, “Microfabrication techniques for chemical/biosensors, Proceedings of the IEEE, 91 (6), 2003, 839-863
 
[25]  A. Hierlemann, H. Baltes, “CMOS-based chemical microsensors, The Analyst”, 128 (1), 2003, pp. 15-28
 
[26]  Yong, E. (2013). “Synthetic double-helix faithfully stores Shakespeare's sonnets”. Nature.
 
[27]  Goldman, N.; Bertone, P.; Chen, S.; Dessimoz, C.; Leproust, E. M.; Sipos, B.; Birney, E. (2013). “Towards practical, high-capacity, low-maintenance information storage in synthesized DNA”. Nature 494 (7435): 77-80.
 
[28]  Church, G. M.; Gao, Y.; Kosuri, S. (2012). “Next-Generation Digital Information Storage in DNA”. Science 337 (6102): 1628.
 
[29]  David B. Fogel: Evolutionary Computation: The Fossil Record. Wiley-IEEE Press (May 1,1998).
 
[30]  E. Winfree, “DNA computing by self-assembly,” The Bridge, vol. 33, no. 4, pp. 31-38, 2003.
 
[31]  R.S. Braich, N. Chelyapov, C. Johnson, P.W.K. Rothemund and L. Adleman, “Solution of a 20-variable 3-SAT problem on a DNA computer,” Science, vol. 296, pp. 492-502, April 2002.
 
Show Less References

Article

Tuning the Size of Gold Nanoparticles with Repetitive Oxidation-reduction Cycles

1Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA


American Journal of Nanomaterials. 2015, 3(1), 15-21
doi: 10.12691/ajn-3-1-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Steve Y. Rhieu, Vytas Reipa. Tuning the Size of Gold Nanoparticles with Repetitive Oxidation-reduction Cycles. American Journal of Nanomaterials. 2015; 3(1):15-21. doi: 10.12691/ajn-3-1-2.

Correspondence to: Vytas  Reipa, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. Email: steve_rhieu@alumni.brown.edu;vytas@nist.gov

Abstract

A simple method to control the size of gold nanoparticles (AuNP) using repetitive oxidation-reduction cycles is described. First, AuNP are shown to be readily immobilized onto an indium-doped tin oxide coated glass surface using cyclic voltammetry nanoparticle containing citrate buffer. Subsequently, the attached AuNPsize can be reduced to a desired level by potential cyclingin the range from 0 V to +1.1 V (vs. Ag/AgCl).Gradual AuNPdiameter decrease was attributed to the formation of gold oxide upon anodic potential sweep and the partial solubilization of the Au(III) species during subsequent reduction of gold oxide in the absence of gold chelator (e.g.,Cl-, Br-, or CN-) normally necessary for anodic gold dissolution.

Keywords

References

[1]  Shipway, A. N.; Katz, E. and Willner, I., “Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications”, ChemPhysChem., 1.18-52.Aug. 2000.
 
[2]  Oyama, M., “Recent Nanoarchitectures in Metal Nanoparticle-modified Electrodes for Electroanalysis”, Analyt. Sci., 26.1-12.Jan.2010.
 
[3]  Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J. F. and Willner, I., “Plugging into Enzymes: Nanowiring of Redox Enzymes by a Gold Nanoparticle”, Science, 299.1877-1881.Mar.2003.
 
[4]  Liu, S.; Ju, H., “Electrocatalysis via Direct Electrochemistry of Myoglobin Immobilized on Colloidal Gold Nanoparticles”, Electroanal., 15. 1488-1493. Oct.2003.
 
[5]  Goyal, R. N.; Gupta, V. K.; Oyama, M. and Bachheti, N. “Gold Nanoparticles Modified Indium Tin Oxide Electrode for the Simultaneous Determination of Dopamine and Serotonin: Application in Pharmaceutical Formulations and Biological Fluids”, Talanta, 72. 976-983.May.2007.
 
Show More References
[6]  Daniel, M.-C.; Astruc, D., “Gold Nanoparticles: Assembly, Supermolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology”, Chem. Rev. 104. 293-346.Jan.2004.
 
[7]  Finot, M. O.,Braybrook, G. D., and McDermott, M. T., “Characterization of Electrochemically Deposited Gold Nanocrystals on Glassy Carbon Electrodes”, J. Electroanal. Chem., 466, 234-241. Jul.1999.
 
[8]  Dai, X., Compton, R. G., “Direct Electrodeposition of Gold Nanoparticles onto Indium Tin Oxide Film Coated Glass: Application to the Detection of Arsenic (III)”,Analyt. Sci., 22.567-570. Apr.2006.
 
[9]  Wang, L., Mao, W., Ni, D., Di, J., Wu, Y., and Tu, Y., “Direct Electrodeposition of Gold Nanoparticles onto Indium/Tin Oxide Film Coated Glass and Its Application for Electrochemical Biosensor”, Electrochem. Commun., 10. 673-676. Apr.2008.
 
[10]  Ivanova, O. S., Zamborini, F. P., “Electrochemical Size Discrimination of Gold Nanoparticles Attached to Glass/Indium-Tin-Oxide Electrodes by Oxidation in Bromide-Containing Electrolyte”, Anal. Chem., 82. 5844-5850. Jul.2010.
 
[11]  Masitas, R. A., Zamborini, F. P., “Oxidation of Highly Unstable <4 nm Diameter Gold Nanoparticles 850 mV Negative of the Bulk Oxidation Potential”, J. Am. Chem. Soc., 134. 5014-5017. Mar.2012.
 
[12]  Li, Y., Cox, J. T., and Zhang, B.,” Electrochemical Responses and Electrocatalysis at Single Au Nanoparticles”, J. Am. Chem. Soc., 132.3047-3054.Mar.2010.
 
[13]  Bonanni, A., Pumera, M, and Miyahara, Y.,”Influence of Gold Nanoparticle Size (2-50 nm) Upon Its Electrochemical Behavior: an Electrochemical Impedance Spectroscopic and Voltammetric Study”, Phys. Chem. Chem. Phys. 13. 4980-4986. Jan.2011.
 
[14]  Zhou, Y.-G., Rees, N. V., Pillay, J., Tshikhudo, R., Vilakazi, S., and Compton, R. G., “Gold Nanoparticles Show Electroactivity: Counting and Sorting Nanoparticles Upon Impact with Electrodes”, Chem. Commun. 48. 224-226. Jan.2012.
 
[15]  Zhang, J., Kambayashi, M., and Oyama, M. A., “Novel Electrode Surface Fabricated by Directly Attaching Gold Nanospheres and Nanorods onto Indium Tin Oxide Substrate with a Seed Mediated Growth Process”, Electrochem. Commun. 6. 683-688.Jul.2004.
 
[16]  Xiao, X., Bard, A. J., ”Observing Single Nanoparticle Collisions at an Ultramicroelectrode by Electrocatalytic Amplification”, J. Am. Chem. Soc., 129.9610-9612. Aug.2007.
 
[17]  Xiao, X., Fan, F.-R. F., Zhou, J., and Bard, A. J., ”Current Transients in Single Nanoparticle Collision Events”, J. Am. Chem. Soc., 130.16669-16677. Dec.2008.
 
[18]  Nakagawa, T., Bjorge, N. S., and Murray, R. W.,” ElectrogeneratedIrOx Nanoparticles as Dissolved Redox Catalysis for Water Oxidation”, J. Am. Chem. Soc., 131.15578-15579. Nov.2009.
 
[19]  Kwon, S. J., Fan, F.-R. F., and Bard, A. J., “Observing Iridium Oxide (IrOx) Single Nanoparticle Collisions at Ultramicroelectrodes”, J. Am. Chem. Soc., 132. 13165-13167. Sep.2010.
 
[20]  Zhou, Y.-G., Rees, N. V., and Compton, R. G., ”The Electrochemical Detection and Characterization of Silver Nanoparticles in Aqueous Solution”, Angew. Chem. Int. Ed., 50. 4219-4221. Apr.2011.
 
[21]  Lakbub, J., Pouliwe, A.,Kamasah, A., Yang, C., and Sun, P., ”Electrochemical Behaviors of Single Gold Nanoparticles”, Electroanal., 23.2270-2274. Oct.2011.
 
[22]  Ward Jones, S. E., Campbell, F. W., Baron, R., Xiao, L., and Compton, R. G., ”Particle Size and Surface Coverage Effects in the Stripping Voltammetry of Silver Nanoparticles: Theory and Experiment”, J. Phys. Chem. C,,112. 17820-17827. Nov.2008.
 
[23]  Ivanova, O. S.,Zamborini, F. P., ”Size-Dependent Electrochemical Oxidation of Silver Nanoparticles”, J. Am. Chem. Soc., 132.70-72.Jan.2010.
 
[24]  Busbee, B. D.,Obare, S. O., and Murphy, C. J., ”An Improved Synthesis of High-Aspect-Ratio Gold Nanorods”, Adv. Mater., 15. 414-416. Mar.2003.
 
[25]  Kambayashi, M., Zhang, J., and Oyama, M., ”Crystal Growth of Gold Nanoparticles on Indium Tin Oxides in the Absence and Presence of 3-Mercaptopropyl-trimethoxysilane”, Cryst. Growth Des.,5. 81-84. Mar.2005.
 
[26]  Cadle, S. H.,Bruckenstein, S.,”Ring-Disk Electrode Study of the Anodic Behavior of Gold in 0.2M Sulfuric Acid”,Anal. Chem., 46. 16-20.Jan.1974.
 
[27]  Ogura, K., Haruyama, S., and Nagasaki K., ”The Electrochemical Oxidation and Reduction of Gold”, J. Electrochem. Soc., 118. 531-535. Apr.1971.
 
[28]  Shackleford, S. G. D., Baxall, C., Port, S. N., and Taylor, R. J., ”AnIn Situ Electrochemical Quartz Microbalance Study of Polycrystalline Gold Electrodes in Nitric Acid Solution”, J. Electroanal. Chem., 538-539. 109-119. Dec.2002.
 
[29]  Wang, Y.,Laborda, E., Salter, C.,Crossley, A., and Compton, R. G.,”Facile In Situ Characterization of Gold Nanoparticles on Electrode Surfaces by Electrochemical Techniques: Average Size, Number Density and Morphology Determination”,Analyst.,137. 4693-4697.Aug.2012.
 
[30]  Tremiliosi-Filho, G.,Dall’Antonia, L. H., and Jerkiewicz, G., ”Growth of Surface Oxides on Gold Electrodes under Well-Defined Potential, Time and Temperature Conditions”, J. Electroanal. Chem., 578. 1-8. Apr.2005.
 
[31]  Conway, B. E., ”Electrochemical Oxide Film Formation at Noble Metals as a Surface-Chemical Process”, Prog. Surf. Sci., 4. 331-452. Aug.1995.
 
Show Less References

Article

Morphological and Chemical Composition Characterization of Commercial Sepia Melanin

1UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies,

2University of South Africa, Pretoria-South Africa

3Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Cape Town, South Africa

4Laboratoire de Photonique et de nanofablication, Groupe de Physique du Solide et des Science matériaux (GPSSM), Faculté de Science et Techniques, Université Cheikh Anta Diop de Dakar(UCAD), Dakar, Sénégal

5CSIR- National Centre for Nano-Structured Materials, Pretoria, South Africa

6University of South Africa, Pretoria-South Africa;Department of Physics, Florida Research Centre, University of South Africa, Florida-South Africa


American Journal of Nanomaterials. 2015, 3(1), 22-27
doi: 10.12691/ajn-3-1-3
Copyright © 2015 Science and Education Publishing

Cite this paper:
Agnes Mbonyiryivuze, Z. Y. Nuru, Balla Diop Ngom, Bonex Mwakikunga, Simon Mokhotjwa Dhlamini, Eugene Park, Malik Maaza. Morphological and Chemical Composition Characterization of Commercial Sepia Melanin. American Journal of Nanomaterials. 2015; 3(1):22-27. doi: 10.12691/ajn-3-1-3.

Correspondence to: Agnes  Mbonyiryivuze, UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies,. Email: mbonyiryivuzeagnes@yahoo.com

Abstract

Melanins are difficult to characterize because of their intractable chemical properties and the heterogeneity in their structural features. Melanin pigments, in fact, are composed of many different types of monomeric units that are connected through strong carbon-carbon bonds. Its high insolubility and undefined chemical entities are two obstacles in its complete characterization. The morphological characterization and particle size distribution for sepia melanin by Scanning Electron Microscopy (SEM) on surface structure and Transmission Electron Microscopy (TEM) to confirm the morphology obtained from SEM was done. Both results show that Sepia melanin is formed by many aggregates agglomerated together. These aggregates are formed also by small spherical granules with different size distributions that have been determined using image-J software. The small granule diameter obtained from different TEM and SEM micrographs were 100-200nm. EDS reveals that C and O were the most abundant in sepia melanin with concentration average concentrations of about 57% and 24% respectively. The major compositions of sepia melanin are C, O, Na, Cl, while the minor are Mg, Ca, K, S and N. From TEM micrograph at high resolution, it was possible to measure the distance between polymers layers of sepia melanin using image-J software and it was 0.323 nm = 3.23 Å.

Keywords

References

[1]  S. A. Centeno and J. Shamir, “Surface enhanced Raman scattering (SERS) and FTIRcharacterization of the sepia melanin pigment used in works of art,” Journal of Molecular Structure, vol. 873, p. 149-159, 2008.
 
[2]  C. D. Derby, “Cephalopod ink:Production, Chemistry, Functions and applications,” Mar. Drugs, vol. 12, pp. 2700-2730, 2014.
 
[3]  Z. Huang, H. Lui, X. K. Chen, A. Alajlan, D. I. McLean and H. Zeng, “Raman spectroscopy of in vivo cutaneous melanin,” Journal of Biomedical Optics , vol. 9(6), p. 1198-1205, 2004.
 
[4]  A. R. Katritzzky, N. G. Akhmedov, S. N. Denisenko and O. V. Denisko, “1H NMR spectroscopic characterization of solutions of sepia melanin, sepia melanin free acid and human hair melanin,” Pigment Cells Res, vol. 15(2), pp. 93-97, 2002.
 
[5]  M. Magarelli, P. Passamonti and C. Renieri, “Purification, characterization and analysis of sepia melanin from commercial Sepia ink (Sepia officinalis),” Rev CES Med Vet Zootec, vol. 5(2), pp. 18-28, 2010.
 
Show More References
[6]  D. J. Kim, K.-Y. Ju and J.-K. Lee, “The synthetic melanin nanoparticles having an excellent binding capacity,” Bull. Korean Chem. Soc, Vols. 33, No. 11, pp. 3788-3792, 2012.
 
[7]  S. Subianto, Electrochemical Synthesis of –Like Polyindolequinone, PhD. thesis,, Inorganic material research Program, the Queensland University of Technology, 2006.
 
[8]  K. Tarangini and S. Mishra, “Production, characterization and analysis of melanin from isolated marine pseudomonas sp. using vegetable waste.” Research Journal of Engineering Sciences, vol. 2(5), pp. 40-46, 2013.
 
[9]  G. DJ, Dermotology, An illustrated Colour Tex, 3 rd ed., Edinburgh:Churchill Livingstone, 2002.
 
[10]  G. Perna, G. M. Lasalvia, Crescenzio, G. Quartucci and V. Capozzi, “Vibrational characterization of synthetic eumelanin by means of raman and surface enhanced raman scattering,” The Open Surface Science Journal, vol. 5, pp. 1-8, 2013.
 
[11]  N. A. Alarfaj, M. A. E. Abdalla and A. M. Al-Hamza, “A Sensitive electrogenerated chemiluminescence assay for determination of melanin in natural and biological samples,” International Journal of Electrochemical Science, vol. 7, pp. 7888-7901, 2012.
 
[12]  S. S. Sajjan, A. O, G. B. Kulkarni, A. S. Nayak, S. B. Mashetty and T. B. Karegoudar, “Properties and functions of melanin pigment from Klebsiella sp. GSK,” Korean Journal of Microbiology and Biotechnology, vol. 41(1), p. 60-69, 2013.
 
[13]  M. Magarelli, Purification, characterization and photodegradation studies of modified sepia melanin Sepia (Sepia officinalis).Determination of Eumelanin content in fibers from Alpaca (Vicugna pacos), Doctoral Thesis., Macerata: University of Camerino, 2011.
 
[14]  D. Peruru, R. S, N. Ahmed VH, P. S. Sandeep, S. Raju, S. Nazan and S. Begum, “Isolation of eumelanin from Sepia officinalis and investigation of its antimicrobial activity by ointment formulation,” International Journal of Pharmacy, vol. 2(2), pp. 67-72, 2012.
 
[15]  F. Bernsmann, O. Ersen, J.-C. Voegel, E. Jan, N. A. Kotov and V. Ball, “Melanin-containing films: Growth from dopamine solutions versus layer-by-layer deposition,” ChemPhysChem, vol. 11, p. 3299-3305, 2010.
 
[16]  D. N. Peles, Application of photoemission electron microscopy to melanin and melanosom, Duke University, 2011.
 
[17]  S. Meng and E. Kaxiras, “Theoretical models of eumelanin protomolecules and their optical properties,” Biophysical Journal, vol. 94, p. 2095-2105, 2008.
 
[18]  C. G. Kumar, N. Sahu, G. N. Reddy, R. Prasad, N. Nagesh and K. A., “Production of melanin pigment from Pseudomonas stutzeri isolated from red seaweed Hypnea musciformis,” Letters in Applied Microbiology, 2013.
 
[19]  G. Arun, M. Angeetha, M. Eyini and P. Gunasekaran, “Effect of copper sulphate and resorcinol on the extracellular production of melanin and laccase by Schizophyllum commune Fr. and Pleurotus cystidiosus var. Formosensis,” Indian Journal of Advances in Plant Research, vol. 1(5), pp. 55-61, 2014.
 
[20]  J. Reisz, The spectroscopic properties of Melanin, Doctoral Thesis, Brisbane: University of Queensland, 2006.
 
[21]  R. F. Egerton, “An Introduction to TEM, SEM, and AEM,” in Physical Principles, Alberta, Edmonton: University of Alberta, 2005.
 
[22]  S. K. Fagerland, Investigation of focused ion Beam/scanning electron microscope parameters for slice and view and Energy dispersive X-ray spectroscopy of embedded brain tissue, Master’s thesis, Norwegian University of Science and Technology, 2014.
 
[23]  J. B. Kortright and A. C. Thompson, “X-ray emmission energies,” in X-Ray Data Booklet, Berkeley, Center for X-ray Optics and Advanced Light Source, 2001.
 
[24]  D. J. Kim, K.-Y. Ju and J.-K. Lee, “The synthetic melanin nanoparticles having an excellent binding capacity,” Bull. Korean Chem. Soc, vol. 33(11), pp. 3788-3792, 2012.
 
[25]  J.-W. Lee, H.-B. Cho, T. Nakayama, T. Sekino, S.-I. Tanaka, K. Minato, T. Ueno, T. Suzuki, H. Suematsu, Y. Tokoi and K. Niihara, “Dye sensitized solar cells using purified squid ink nanoparticles coated on Ti O2 nanotubes/nanoparticles,” Journal of Ceramic Society of Japan, vol. 121(1), pp. 123-127, 2013.
 
[26]  F. Natalio, R. Andre, S. A. Pihan, M. Humanes, R. Weverd and W. Treme, “V2O5 nanowires with an intrinsic iodination activity leading to the formation of self-assembled melanin-like biopolymers,” Journal of Materials Chemistry, vol. 21, p. 11923-11929, 2011.
 
[27]  J. P. Bothma, Exploring the structure-propertyrelationships in eumelanin, Masters of Philosophy Thesis, School of Physical Science, Queensland University, 2008.
 
[28]  A. A. R. Watt, J. P. Bothma and P. Meredith, “The supramolecular structure of melanin,” Soft Matter, vol. 5, p. 3754-3760, 2009.
 
[29]  D. Moses, M. Mattoni, N. Slack, J. Waite and F. Zok, “Role of melanin in mechanical properties of Glycera jaws,” Acta Biomaterialia, vol. 2, p. 521-530, 2006.
 
[30]  C.-T. Chen, V. Ball, J. J. d. A. Gracio, M. K. Singh, V. Toniazzo, D. Ruch and M. J. Buehler, “Self-Assembly of tetramers of 5,6-dihydroxyindole explains the primary physical properties of eumelanin: experiment, simulation, and design,” American Chemical Society, vol. 7(2), p. 1524-1532, 2013.
 
[31]  K. Glass, S. Ito, P. R. Wilby, T. Sota, A. Nakamura, R. Bowerse, J. Vinther, S. Dutta, R. Summons, D. E. G. Briggs, K. Wakamatsu and J. D. Simon, “Direct chemical evidence for eumelanin pigment from the Jurassic period,” PNAS Early Edition, pp. 1-6, 2012.
 
Show Less References