Welcome to American Journal of Nanomaterials

American Journal of Nanomaterials is a peer-reviewed, open access journal that provides rapid publication of articles in all areas of Nanomaterials. The goal of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of Nanomaterials.

ISSN (Print): 2372-3114

ISSN (Online): 2372-3122

Editor-in-Chief: Apply for this position

Website: http://www.sciepub.com/journal/AJN



Tuning the Size of Gold Nanoparticles with Repetitive Oxidation-reduction Cycles

1Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

American Journal of Nanomaterials. 2015, 3(1), 15-21
doi: 10.12691/ajn-3-1-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Steve Y. Rhieu, Vytas Reipa. Tuning the Size of Gold Nanoparticles with Repetitive Oxidation-reduction Cycles. American Journal of Nanomaterials. 2015; 3(1):15-21. doi: 10.12691/ajn-3-1-2.

Correspondence to: Vytas  Reipa, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. Email: steve_rhieu@alumni.brown.edu;vytas@nist.gov


A simple method to control the size of gold nanoparticles (AuNP) using repetitive oxidation-reduction cycles is described. First, AuNP are shown to be readily immobilized onto an indium-doped tin oxide coated glass surface using cyclic voltammetry nanoparticle containing citrate buffer. Subsequently, the attached AuNPsize can be reduced to a desired level by potential cyclingin the range from 0 V to +1.1 V (vs. Ag/AgCl).Gradual AuNPdiameter decrease was attributed to the formation of gold oxide upon anodic potential sweep and the partial solubilization of the Au(III) species during subsequent reduction of gold oxide in the absence of gold chelator (e.g.,Cl-, Br-, or CN-) normally necessary for anodic gold dissolution.



[1]  Shipway, A. N.; Katz, E. and Willner, I., “Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications”, ChemPhysChem., 1.18-52.Aug. 2000.
[2]  Oyama, M., “Recent Nanoarchitectures in Metal Nanoparticle-modified Electrodes for Electroanalysis”, Analyt. Sci., 26.1-12.Jan.2010.
[3]  Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J. F. and Willner, I., “Plugging into Enzymes: Nanowiring of Redox Enzymes by a Gold Nanoparticle”, Science, 299.1877-1881.Mar.2003.
[4]  Liu, S.; Ju, H., “Electrocatalysis via Direct Electrochemistry of Myoglobin Immobilized on Colloidal Gold Nanoparticles”, Electroanal., 15. 1488-1493. Oct.2003.
[5]  Goyal, R. N.; Gupta, V. K.; Oyama, M. and Bachheti, N. “Gold Nanoparticles Modified Indium Tin Oxide Electrode for the Simultaneous Determination of Dopamine and Serotonin: Application in Pharmaceutical Formulations and Biological Fluids”, Talanta, 72. 976-983.May.2007.
Show More References
[6]  Daniel, M.-C.; Astruc, D., “Gold Nanoparticles: Assembly, Supermolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology”, Chem. Rev. 104. 293-346.Jan.2004.
[7]  Finot, M. O.,Braybrook, G. D., and McDermott, M. T., “Characterization of Electrochemically Deposited Gold Nanocrystals on Glassy Carbon Electrodes”, J. Electroanal. Chem., 466, 234-241. Jul.1999.
[8]  Dai, X., Compton, R. G., “Direct Electrodeposition of Gold Nanoparticles onto Indium Tin Oxide Film Coated Glass: Application to the Detection of Arsenic (III)”,Analyt. Sci., 22.567-570. Apr.2006.
[9]  Wang, L., Mao, W., Ni, D., Di, J., Wu, Y., and Tu, Y., “Direct Electrodeposition of Gold Nanoparticles onto Indium/Tin Oxide Film Coated Glass and Its Application for Electrochemical Biosensor”, Electrochem. Commun., 10. 673-676. Apr.2008.
[10]  Ivanova, O. S., Zamborini, F. P., “Electrochemical Size Discrimination of Gold Nanoparticles Attached to Glass/Indium-Tin-Oxide Electrodes by Oxidation in Bromide-Containing Electrolyte”, Anal. Chem., 82. 5844-5850. Jul.2010.
[11]  Masitas, R. A., Zamborini, F. P., “Oxidation of Highly Unstable <4 nm Diameter Gold Nanoparticles 850 mV Negative of the Bulk Oxidation Potential”, J. Am. Chem. Soc., 134. 5014-5017. Mar.2012.
[12]  Li, Y., Cox, J. T., and Zhang, B.,” Electrochemical Responses and Electrocatalysis at Single Au Nanoparticles”, J. Am. Chem. Soc., 132.3047-3054.Mar.2010.
[13]  Bonanni, A., Pumera, M, and Miyahara, Y.,”Influence of Gold Nanoparticle Size (2-50 nm) Upon Its Electrochemical Behavior: an Electrochemical Impedance Spectroscopic and Voltammetric Study”, Phys. Chem. Chem. Phys. 13. 4980-4986. Jan.2011.
[14]  Zhou, Y.-G., Rees, N. V., Pillay, J., Tshikhudo, R., Vilakazi, S., and Compton, R. G., “Gold Nanoparticles Show Electroactivity: Counting and Sorting Nanoparticles Upon Impact with Electrodes”, Chem. Commun. 48. 224-226. Jan.2012.
[15]  Zhang, J., Kambayashi, M., and Oyama, M. A., “Novel Electrode Surface Fabricated by Directly Attaching Gold Nanospheres and Nanorods onto Indium Tin Oxide Substrate with a Seed Mediated Growth Process”, Electrochem. Commun. 6. 683-688.Jul.2004.
[16]  Xiao, X., Bard, A. J., ”Observing Single Nanoparticle Collisions at an Ultramicroelectrode by Electrocatalytic Amplification”, J. Am. Chem. Soc., 129.9610-9612. Aug.2007.
[17]  Xiao, X., Fan, F.-R. F., Zhou, J., and Bard, A. J., ”Current Transients in Single Nanoparticle Collision Events”, J. Am. Chem. Soc., 130.16669-16677. Dec.2008.
[18]  Nakagawa, T., Bjorge, N. S., and Murray, R. W.,” ElectrogeneratedIrOx Nanoparticles as Dissolved Redox Catalysis for Water Oxidation”, J. Am. Chem. Soc., 131.15578-15579. Nov.2009.
[19]  Kwon, S. J., Fan, F.-R. F., and Bard, A. J., “Observing Iridium Oxide (IrOx) Single Nanoparticle Collisions at Ultramicroelectrodes”, J. Am. Chem. Soc., 132. 13165-13167. Sep.2010.
[20]  Zhou, Y.-G., Rees, N. V., and Compton, R. G., ”The Electrochemical Detection and Characterization of Silver Nanoparticles in Aqueous Solution”, Angew. Chem. Int. Ed., 50. 4219-4221. Apr.2011.
[21]  Lakbub, J., Pouliwe, A.,Kamasah, A., Yang, C., and Sun, P., ”Electrochemical Behaviors of Single Gold Nanoparticles”, Electroanal., 23.2270-2274. Oct.2011.
[22]  Ward Jones, S. E., Campbell, F. W., Baron, R., Xiao, L., and Compton, R. G., ”Particle Size and Surface Coverage Effects in the Stripping Voltammetry of Silver Nanoparticles: Theory and Experiment”, J. Phys. Chem. C,,112. 17820-17827. Nov.2008.
[23]  Ivanova, O. S.,Zamborini, F. P., ”Size-Dependent Electrochemical Oxidation of Silver Nanoparticles”, J. Am. Chem. Soc., 132.70-72.Jan.2010.
[24]  Busbee, B. D.,Obare, S. O., and Murphy, C. J., ”An Improved Synthesis of High-Aspect-Ratio Gold Nanorods”, Adv. Mater., 15. 414-416. Mar.2003.
[25]  Kambayashi, M., Zhang, J., and Oyama, M., ”Crystal Growth of Gold Nanoparticles on Indium Tin Oxides in the Absence and Presence of 3-Mercaptopropyl-trimethoxysilane”, Cryst. Growth Des.,5. 81-84. Mar.2005.
[26]  Cadle, S. H.,Bruckenstein, S.,”Ring-Disk Electrode Study of the Anodic Behavior of Gold in 0.2M Sulfuric Acid”,Anal. Chem., 46. 16-20.Jan.1974.
[27]  Ogura, K., Haruyama, S., and Nagasaki K., ”The Electrochemical Oxidation and Reduction of Gold”, J. Electrochem. Soc., 118. 531-535. Apr.1971.
[28]  Shackleford, S. G. D., Baxall, C., Port, S. N., and Taylor, R. J., ”AnIn Situ Electrochemical Quartz Microbalance Study of Polycrystalline Gold Electrodes in Nitric Acid Solution”, J. Electroanal. Chem., 538-539. 109-119. Dec.2002.
[29]  Wang, Y.,Laborda, E., Salter, C.,Crossley, A., and Compton, R. G.,”Facile In Situ Characterization of Gold Nanoparticles on Electrode Surfaces by Electrochemical Techniques: Average Size, Number Density and Morphology Determination”,Analyst.,137. 4693-4697.Aug.2012.
[30]  Tremiliosi-Filho, G.,Dall’Antonia, L. H., and Jerkiewicz, G., ”Growth of Surface Oxides on Gold Electrodes under Well-Defined Potential, Time and Temperature Conditions”, J. Electroanal. Chem., 578. 1-8. Apr.2005.
[31]  Conway, B. E., ”Electrochemical Oxide Film Formation at Noble Metals as a Surface-Chemical Process”, Prog. Surf. Sci., 4. 331-452. Aug.1995.
Show Less References


Morphological and Chemical Composition Characterization of Commercial Sepia Melanin

1UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies,

2University of South Africa, Pretoria-South Africa

3Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Cape Town, South Africa

4Laboratoire de Photonique et de nanofablication, Groupe de Physique du Solide et des Science matériaux (GPSSM), Faculté de Science et Techniques, Université Cheikh Anta Diop de Dakar(UCAD), Dakar, Sénégal

5CSIR- National Centre for Nano-Structured Materials, Pretoria, South Africa

6University of South Africa, Pretoria-South Africa;Department of Physics, Florida Research Centre, University of South Africa, Florida-South Africa

American Journal of Nanomaterials. 2015, 3(1), 22-27
doi: 10.12691/ajn-3-1-3
Copyright © 2015 Science and Education Publishing

Cite this paper:
Agnes Mbonyiryivuze, Z. Y. Nuru, Balla Diop Ngom, Bonex Mwakikunga, Simon Mokhotjwa Dhlamini, Eugene Park, Malik Maaza. Morphological and Chemical Composition Characterization of Commercial Sepia Melanin. American Journal of Nanomaterials. 2015; 3(1):22-27. doi: 10.12691/ajn-3-1-3.

Correspondence to: Agnes  Mbonyiryivuze, UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies,. Email: mbonyiryivuzeagnes@yahoo.com


Melanins are difficult to characterize because of their intractable chemical properties and the heterogeneity in their structural features. Melanin pigments, in fact, are composed of many different types of monomeric units that are connected through strong carbon-carbon bonds. Its high insolubility and undefined chemical entities are two obstacles in its complete characterization. The morphological characterization and particle size distribution for sepia melanin by Scanning Electron Microscopy (SEM) on surface structure and Transmission Electron Microscopy (TEM) to confirm the morphology obtained from SEM was done. Both results show that Sepia melanin is formed by many aggregates agglomerated together. These aggregates are formed also by small spherical granules with different size distributions that have been determined using image-J software. The small granule diameter obtained from different TEM and SEM micrographs were 100-200nm. EDS reveals that C and O were the most abundant in sepia melanin with concentration average concentrations of about 57% and 24% respectively. The major compositions of sepia melanin are C, O, Na, Cl, while the minor are Mg, Ca, K, S and N. From TEM micrograph at high resolution, it was possible to measure the distance between polymers layers of sepia melanin using image-J software and it was 0.323 nm = 3.23 Å.



[1]  S. A. Centeno and J. Shamir, “Surface enhanced Raman scattering (SERS) and FTIRcharacterization of the sepia melanin pigment used in works of art,” Journal of Molecular Structure, vol. 873, p. 149-159, 2008.
[2]  C. D. Derby, “Cephalopod ink:Production, Chemistry, Functions and applications,” Mar. Drugs, vol. 12, pp. 2700-2730, 2014.
[3]  Z. Huang, H. Lui, X. K. Chen, A. Alajlan, D. I. McLean and H. Zeng, “Raman spectroscopy of in vivo cutaneous melanin,” Journal of Biomedical Optics , vol. 9(6), p. 1198-1205, 2004.
[4]  A. R. Katritzzky, N. G. Akhmedov, S. N. Denisenko and O. V. Denisko, “1H NMR spectroscopic characterization of solutions of sepia melanin, sepia melanin free acid and human hair melanin,” Pigment Cells Res, vol. 15(2), pp. 93-97, 2002.
[5]  M. Magarelli, P. Passamonti and C. Renieri, “Purification, characterization and analysis of sepia melanin from commercial Sepia ink (Sepia officinalis),” Rev CES Med Vet Zootec, vol. 5(2), pp. 18-28, 2010.
Show More References
[6]  D. J. Kim, K.-Y. Ju and J.-K. Lee, “The synthetic melanin nanoparticles having an excellent binding capacity,” Bull. Korean Chem. Soc, Vols. 33, No. 11, pp. 3788-3792, 2012.
[7]  S. Subianto, Electrochemical Synthesis of –Like Polyindolequinone, PhD. thesis,, Inorganic material research Program, the Queensland University of Technology, 2006.
[8]  K. Tarangini and S. Mishra, “Production, characterization and analysis of melanin from isolated marine pseudomonas sp. using vegetable waste.” Research Journal of Engineering Sciences, vol. 2(5), pp. 40-46, 2013.
[9]  G. DJ, Dermotology, An illustrated Colour Tex, 3 rd ed., Edinburgh:Churchill Livingstone, 2002.
[10]  G. Perna, M. Lasalvia, C. Gallo, G. Quartucci and V. Capozzi, “Vibrational characterization of synthetic eumelanin by means of raman and surface enhanced raman scattering,” The Open Surface Science Journal, vol. 5, pp. 1-8, 2013.
[11]  N. A. Alarfaj, M. A. E. Abdalla and A. M. Al-Hamza, “A Sensitive electrogenerated chemiluminescence assay for determination of melanin in natural and biological samples,” International Journal of Electrochemical Science, vol. 7, pp. 7888-7901, 2012.
[12]  S. S. Sajjan, A. O, G. B. Kulkarni, A. S. Nayak, S. B. Mashetty and T. B. Karegoudar, “Properties and functions of melanin pigment from Klebsiella sp. GSK,” Korean Journal of Microbiology and Biotechnology, vol. 41(1), p. 60-69, 2013.
[13]  M. Magarelli, Purification, characterization and photodegradation studies of modified sepia melanin Sepia (Sepia officinalis).Determination of Eumelanin content in fibers from Alpaca (Vicugna pacos), Doctoral Thesis., Macerata: University of Camerino, 2011.
[14]  D. Peruru, R. S, N. Ahmed VH, P. S. Sandeep, S. Raju, S. Nazan and S. Begum, “Isolation of eumelanin from Sepia officinalis and investigation of its antimicrobial activity by ointment formulation,” International Journal of Pharmacy, vol. 2(2), pp. 67-72, 2012.
[15]  F. Bernsmann, O. Ersen, J.-C. Voegel, E. Jan, N. A. Kotov and V. Ball, “Melanin-containing films: Growth from dopamine solutions versus layer-by-layer deposition,” ChemPhysChem, vol. 11, p. 3299-3305, 2010.
[16]  D. N. Peles, Application of photoemission electron microscopy to melanin and melanosom, Duke University, 2011.
[17]  S. Meng and E. Kaxiras, “Theoretical models of eumelanin protomolecules and their optical properties,” Biophysical Journal, vol. 94, p. 2095-2105, 2008.
[18]  C. G. Kumar, N. Sahu, G. N. Reddy, R. Prasad, N. Nagesh and K. A., “Production of melanin pigment from Pseudomonas stutzeri isolated from red seaweed Hypnea musciformis,” Letters in Applied Microbiology, 2013.
[19]  G. Arun, M. Angeetha, M. Eyini and P. Gunasekaran, “Effect of copper sulphate and resorcinol on the extracellular production of melanin and laccase by Schizophyllum commune Fr. and Pleurotus cystidiosus var. Formosensis,” Indian Journal of Advances in Plant Research, vol. 1(5), pp. 55-61, 2014.
[20]  J. Reisz, The spectroscopic properties of Melanin, Doctoral Thesis, Brisbane: University of Queensland, 2006.
[21]  R. F. Egerton, “An Introduction to TEM, SEM, and AEM,” in Physical Principles, Alberta, Edmonton: University of Alberta, 2005.
[22]  S. K. Fagerland, Investigation of focused ion Beam/scanning electron microscope parameters for slice and view and Energy dispersive X-ray spectroscopy of embedded brain tissue, Master’s thesis, Norwegian University of Science and Technology, 2014.
[23]  J. B. Kortright and A. C. Thompson, “X-ray emmission energies,” in X-Ray Data Booklet, Berkeley, Center for X-ray Optics and Advanced Light Source, 2001.
[24]  D. J. Kim, K.-Y. Ju and J.-K. Lee, “The synthetic melanin nanoparticles having an excellent binding capacity,” Bull. Korean Chem. Soc, vol. 33(11), pp. 3788-3792, 2012.
[25]  J.-W. Lee, H.-B. Cho, T. Nakayama, T. Sekino, S.-I. Tanaka, K. Minato, T. Ueno, T. Suzuki, H. Suematsu, Y. Tokoi and K. Niihara, “Dye sensitized solar cells using purified squid ink nanoparticles coated on Ti O2 nanotubes/nanoparticles,” Journal of Ceramic Society of Japan, vol. 121(1), pp. 123-127, 2013.
[26]  F. Natalio, R. Andre, S. A. Pihan, M. Humanes, R. Weverd and W. Treme, “V2O5 nanowires with an intrinsic iodination activity leading to the formation of self-assembled melanin-like biopolymers,” Journal of Materials Chemistry, vol. 21, p. 11923-11929, 2011.
[27]  J. P. Bothma, Exploring the structure-propertyrelationships in eumelanin, Masters of Philosophy Thesis, School of Physical Science, Queensland University, 2008.
[28]  A. A. R. Watt, J. P. Bothma and P. Meredith, “The supramolecular structure of melanin,” Soft Matter, vol. 5, p. 3754-3760, 2009.
[29]  D. Moses, M. Mattoni, N. Slack, J. Waite and F. Zok, “Role of melanin in mechanical properties of Glycera jaws,” Acta Biomaterialia, vol. 2, p. 521-530, 2006.
[30]  C.-T. Chen, V. Ball, J. J. d. A. Gracio, M. K. Singh, V. Toniazzo, D. Ruch and M. J. Buehler, “Self-Assembly of tetramers of 5,6-dihydroxyindole explains the primary physical properties of eumelanin: experiment, simulation, and design,” American Chemical Society, vol. 7(2), p. 1524-1532, 2013.
[31]  K. Glass, S. Ito, P. R. Wilby, T. Sota, A. Nakamura, R. Bowerse, J. Vinther, S. Dutta, R. Summons, D. E. G. Briggs, K. Wakamatsu and J. D. Simon, “Direct chemical evidence for eumelanin pigment from the Jurassic period,” PNAS Early Edition, pp. 1-6, 2012.
Show Less References


Synthesis and Mechanical Characterisation of Aluminium-Copper-Alumina Nano Composites Powder Embedded in Glass/Epoxy Laminates

1Department of Aeronautical Engineering, IARE, Hyderabad, Telangana

2Metallurgy & Material Sciences Department, IIT Madras, Chennai, TamilNadu

3Geetam University, Hyderabad, Telangana

American Journal of Nanomaterials. 2015, 3(1), 28-39
doi: 10.12691/ajn-3-1-4
Copyright © 2015 Science and Education Publishing

Cite this paper:
P K Dash, Prof. B. S. Murty, R B Karthik Aamanchi. Synthesis and Mechanical Characterisation of Aluminium-Copper-Alumina Nano Composites Powder Embedded in Glass/Epoxy Laminates. American Journal of Nanomaterials. 2015; 3(1):28-39. doi: 10.12691/ajn-3-1-4.

Correspondence to: P  K Dash, Department of Aeronautical Engineering, IARE, Hyderabad, Telangana. Email: drpdash@gmail.com


This paper presents the synthesis and mechanical properties study of Aluminum-Copper nanocomposite powders with variation in volume percentages of alumina. The powders were synthesized using mechanical alloying (high energy ball milling technique). Samples of size 2010 mm were produced from nanocomposite powders by spark plasma sintering technique and conventional sintering method. The microstructural verifications were carried out using X-ray diffraction. Transition electron microscopy were used to determine the phases formed and size of the particles. Thermal analysis and hardness of these samples were measured by conducting DSC and Vickers’s Hardness Test. Also, the powders of ACANC were embedded into Glass/Epoxy laminates for further identification of NC powders effects on mechanical properties like tensile and compressive strength. The samples prepared using conventional sintering technique had gone through two different types of annealing before sintering and shown enhanced hardness, yield strength and increment in density. The nanocomposite embedded laminates have shown improved tensile, compression and hardness values in compare to virgin specimens.



[1]  Durai, T. G., Das, K. and Das, S., “Synthesis and characterization of Al matrix composites reinforced by in situ alumina particulates”, Mater. Sci. Eng. A, Vol. 445-446, 2007, pp. 100-105.
[2]  Anđić, Z., Korać, M., Tasić, M., Kamberović, Z. and Raić, K., “Synthesis and sintering of cu-al2O3 nanocomposite powders produced by a thermochemical route”, Metalurgija Journal of Metallurgy, 2008, pp.71-81.
[3]  Hesabi, Z. R., Simchi, A., and Reihani, S. M. S., “Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites”, Mater Sci Eng A, Vol. 428, 2006, pp. 159-168.
[4]  Tavoosi, M., Karimzadeh, F., and Enayati, M. H., “Fabrication of Al–Zn/α-Al2O3 nanocomposite by mechanical alloying”, Materials Letters Vol. 62, No. 2, 2008, pp. 282-285.
[5]  Mazen, A. A., and Ahmed, A. Y. “Effect of alumina additions on the mechanical behavior of PM MMC with low strength matrix”, Current Advances in Mechanical Design and Production, Vol. VII, 2000, pp. 397-406.
Show More References
[6]  Arami, H., and Simchi, A., “Reactive milling synthesis of nanocrystalline Al–Cu/Al2O3 nanocomposite”, Mater. Sci. Eng. A, Vol. 464, No. 1-2, 2007, 225-232.
[7]  Yadav, T. P., Yadav, R. M., and Singh, D. P., “Mechanical Milling: a Top Down Approach for the Synthesis of Nanomaterials and Nanocomposites”, Nanoscience and Nanotechnology, Vol. 2, No. 3, 2012, pp. 22-48.
[8]  Nayak, S.S., Kim, D.H., Pabi, S. K. and Murty, B. S., “Aluminium-based NCs by non-equilibrium processing routes”, Trans. Indian Inst. Met. Vol.59, No. 2, April 2006, pp. 193-198.
[9]  Oh, S. T., Sekino, T., and Niihara, K., “Fabrication and mechanical properties of 5 Vol% copper dispersed Alumina NC”, Journal of the European Ceramic society, Vol-18, 1998, pp. 31-37.
[10]  Feldheim, D. L. and Foss C. A. (eds) 2002 Metal nanoparticles: Synthesis, characterization and applications (Marcel Dekker Inc.).
[11]  Nachum, S., Fleck, N.A., Ashby, M.F., Colella, A., and Matteazzi, P., “The microstructural basis for the mechanical properties and electrical resistivity of nanocrystalline Cu–Al2O3”, Materials Science and Engineering Series A, Vol. 527, 2010, pp. 5065-5071.
[12]  Padmanabhan, K., “Time-temperature failure analysis of epoxies and unidirectional glass/epoxy composites in compression”, Composites, Vol. Part A 27A, 1996, pp. 585-596.
[13]  Orolínová, M., Ďurišin, J., Ďurišinová, K., Danková, Z. and Ďurišin, M., “Effect of Microstructure on Properties of Cu-Al2O3 Nanocomposite”, Chemical and Materials Engineering, Vol.1, No. 2, 2013, pp. 60-67.
[14]  Shehata, F., Abdelhameed, M., Fathy, A. and Moustafa, S. F., “Fabrication of Copper- Alumina Nanocomposites by Mechanochemical Routes”, Jr. of Nano Research, Vol. 6, 2009, pp 51-60.
[15]  Saheb, N., Iqbal, Z., Khalil, A., Hakeem, A. S., Aqeeli, N. A., Laoui, T., Qutub, A. A. and Kirchner, R., “Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review”, Journal of Nanomaterials, Volume 2012, Article ID 983470, pp. 1-13.
[16]  Wu, J.M., Li, Z.Z., “Nanostructure composite obtained by mechanically driven reduction reactions of CuO and Aluminium powder mixture”, Journal of alloys and compounds, Vol. 299, 2000, pp. 9-16.
[17]  Mahapatra, A., “Fabrication and characterization of novel iron oxide/ alumina nanomaterials for environmental applications”, Ph.D Thesis, NIT, Rourkela, Odisha, 2013.
[18]  Koli, D. K., Agnihotri, G., and Purohit, R., “Properties and Characterization of Al-Al2O3 Composites Processed by Casting and Powder Metallurgy Routes (Review)”, International Journal of Latest Trends in Engineering and Technology (IJLTET), Vol. 2 Issue 4 July 2013, pp. 486-496.
[19]  Ramezani, M., and Neitzert, T., “Mechanical milling of aluminum powder using planetary ball milling process”, Jr of Achievements in Materials and Manufacturing Engineering, Vol.55, No. 2, 2012, pp. 790-798.
[20]  Upadhyaya, A., and Upadhyaya, G. S., “Sintering of copper-alumina composites through blending and mechanical alloying powder metallurgy routes”, Mater. Des., Vol.16, No. 1, 1995, pp. 41-45.
[21]  Valibeygloo, N., Khosroshahi, R. A., and Mousavian, R. T., “ Microstructural and mechanical properties of Al-4.5wt% Cu reinforced with alumina nanoparticles by stir casting method”, Int. Jr. of Mineral, Metallurgy and Materials, Vol. 20, No. 10, Oct. 2013, pp. 978-988.
[22]  Tavoosi, M., Karimzadeh, F., and Enayati, M. H., “Fabrication of Al–Zn/α-Al2O3 nanocomposite by mechanical alloying”, Materials Letters Vol. 62, No. 2, 2008, pp. 282-285.
[23]  O'Donnell, G. and Looney, L., “Production of aluminium matrix composite components using conventional PM technology”, Mater. Sci. Eng. A, Vol. 303, No. 1-2, 2001, pp. 292-301.
[24]  Zebarjad, S. M., and Sajjadi, S. A., “Microstructure evaluation of Al–Al2O3 composite produced by mechanical alloying method”, Materials & Design. Vol. 27, 2006, pp.684-688.
[25]  Ruiz-Navas, E. M., Fogagnolo, J. B., Velasco, F., Ruiz-Prieto, J. M., and Froyen, L., “One step production of aluminium matrix composite Powders by mechanical alloying”, Composites Part A: Applied Science and Manufacturing, Vol. 37, No. 11, 2006, pp. 2114-2120.
[26]  Mula, S., Padhi, P., Panigrahi, S.C., Pabi, S.K., and Ghosh, S., “On structure and mechanical properties of ultrasonically cast Al–2% Al2O3 Nanocomposite”, Materials Research Bulletin, Vol. 44, No. 1, 2009, pp 154-1160.
[27]  Rahimiana, M., Nader, P., and Naser, E., “Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy”, Materials Science and Engineering, Vol. A527, 2010, pp. 1031-1038.
[28]  Rajkovic, V., Bozic, D., and Jovanovic, M. T., “Effects of copper and Al2O3 particles on characteristics of Cu–Al2O3 composites”, Materials and Design, Vol. 31, 2010, pp. 1962-1970.
[29]  Razavi, H. Z., Hafizpour, H. R. and Simchi, R., “An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling”, Materials Science and Engineering, Vol. A454-455, 2007, pp. 89-98.
[30]  Razavi, S.S., Yazdani, R. and Manafi, S. A., “Effect of volume fraction and particle size of Alumina reinforcements on compaction and densification behavior of Al-Alumina NCs”, Materials and Engineering, (Article in Press).
[31]  Simchi, H. and Simchi, A., “Tensile and fatigue fracture of nanometric alumina reinforced copper with bimodal grain size distribution”, Materials Science and Engineering, Vol. Part A: 507, 2009, pp. 200-206.
[32]  Aboraia, M. S., Wasly, H. S., Doheim, M. A., Abdalla, G. A., and Mahmoud, A. E., “Characterization of Al/(10%Al2O3-10%ZrO2) Nanocomposite Powders Fabricated by High-Energy Ball Milling”, Int. Jr. of Eng. Res. and Appl. (IJERA), Vol. 3, Issue 3, May-Jun 2013, pp.474-482.
[33]  Arami, H., and Simchi, A., “Reactive milling synthesis of nanocrystalline Al–Cu/Al2O3 nanocomposite”, Mater. Sci. Eng. A, Vol. 464, No. 1-2, 2007, 225-232.
[34]  Olszówka-Myalska, A., Szala, J. and Cwajna, J. “Characterization of reinforcement distribution in Al/(Al2O3)p composites obtained from composite powder”, Materials Characterization, Vol. 46, No. 2-3, 2001, pp. 189-195.
[35]  Smagorinski, M. E., Tsantrizos, P. G., Grenier, S., Cavasin, A., Brzezinski, T. and Kim, G., “The properties and microstructure of Al-based composites reinforced with ceramic particles” Mat. Sci. and Eng. A, Vol. 244, No. 1, 1998, pp. 86-90.
[36]  Fogagnolo, J. B., Velasco, F., Robert, M. H., and Torralba, J. M., “Effect of mechanical alloying on the morphology, microstructure and properties of aluminum matrix composite powders”, Mater Sci Eng A, Vol. 342, No. 1-2, 2003; 131-143.
[37]  Zebarjad, S. M., and Sajjadi, S. A., “Dependency of physical and mechanical properties of mechanical alloyed Al–Al2O3 composite on milling time”, Materials & Design, Vol. 28, No. 7, 2007, pp. 2113-2120.
[38]  Shehata, F., Abdelhameed, M., Fathy, A. and Elmahdy, M., “Preparation and Characteristics of Cu-Al2O3 Nanocomposite”, Open Journal of Metal, 2011, 1, 25-33.
[39]  Hosseini, N., Karimzadeh, F., Abbasi, M. H and Enayati, M. H, “Tribological properties of Al6061–Al2O3 NC prepared by milling and hot pressing”, Materials and Design, Vol. 31, 2010, pp. 4777-4785.
[40]  Zao, F. M. and Takeda, N., “Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites”, Composites, Vol. Part A:31, 2000, pp. 1215-1224.
[41]  Casati, R. and Vedani, M., Metal Matrix Composites Reinforced by Nano-Particles—A Review”, Metals, Vol. 4, 2014, pp. 65-83.
[42]  Mostaed, E.; Saghafian, H.; Mostaed, A.; Shokuhfar, A.; Rezaie, H.R. Investigation on preparation af Al-4.5%Cu/SiCp nanocomposites powder via mechanical milling. Powder Tech. 2012, 221, 278-283.
[43]  Zh. Alferov and L. Esaki ed., “Nanostructures: physics and technology”, 19th International Symposium Ekaterinburg, Russia, June 20-25, 2011.
[44]  Koch, C.C., “The synthesis and structure of nanocrystalline materials produced by mechanical attrition”, Jr. Nanostruct. Mater., Vol. 2, 1993, pp. 109-29.
[45]  Woo K. D. and Lee H. B., “Fabrication of Al alloy matrix composite reinforced with subsive-sized Al2O3 particles by the in situ displacement reaction using high-energy ball-milled powder”, Materials Science and Engineering A. Vol. 449–451, 2007, pp 829-832.
[46]  Tavoosi, M., Karimzadeh, F., and Enayati, M. H., “Fabrication of Al–Zn/α-Al2O3 nanocomposite by mechanical alloying”, Mater. Lett., Vol. 62, 2008, pp. 282-285.
[47]  Wieczorek-Ciurowa, K., Oleszak, D., and Gamrat, K., “Mechanosynthesis and process characterization of some nanostructured intermetallics–ceramics composites”, Jr. Alloys Compd., Vol. 434-435, 2007, pp. 501-504.
[48]  Hwang, S. J., and Lee, J. H., “Mechanochemical synthesis of Cu–Al2O3 nanocomposites”, Mater. Sci. Eng. A, Vol. 405, 2005, pp. 140-146.
[49]  Kleiner, S., Bertocco, F., Khalid, F.A., and Beffort, O., “Decomposition of process control agent during mechanical milling and its influence on displacement reactions in the Al–TiO2 system”, Materials Chemistry and Physics, Vol. 89, No. 2-3, 2005, pp. 362-366.
[50]  Kaczmar, J. W., and Naplocha, K., “Wear behaviour of composite materials based on 2024 Al-alloy reinforced with δ alumina fibres”, Jr. of Achievements in Materials and Manufacting Eng., Vol. 43, No. 1, 2010, pp. 88-93.
Show Less References