ISSN (Print): 2372-3114

ISSN (Online): 2372-3122

Editor-in-Chief: Apply for this position

Website: http://www.sciepub.com/journal/AJN

   

Article

Strategy for Boosting Rock Phosphate Efficiency and Conversion into Nano Zeolite

1Agriculture Research Center, Soil, Water& Environment Institute, Giza, Egypt

2Cairo University, Faculty of Agriculture, Plant Physiology department, Giza, Egypt


American Journal of Nanomaterials. 2016, 4(2), 27-38
doi: 10.12691/ajn-4-2-1
Copyright © 2016 Science and Education Publishing

Cite this paper:
Hassan AZA, Abdel Wahab M Mahmoud. Strategy for Boosting Rock Phosphate Efficiency and Conversion into Nano Zeolite. American Journal of Nanomaterials. 2016; 4(2):27-38. doi: 10.12691/ajn-4-2-1.

Correspondence to: Abdel  Wahab M Mahmoud, Cairo University, Faculty of Agriculture, Plant Physiology department, Giza, Egypt. Email: mohamed.mahmoud@agr.cu.edu.eg

Abstract

Present investigation aimed to convert rock phosphate ore into nano zeolite using calcination (from 200 to 700°C) for 48 hrs. and zeolitization(replacement by a zeolite mineral) processes in order to boost rock phosphate ore efficiency as a source of P2O5 even under high soil pHs. Crystallization, phases, physico-chemical characteristics and surface morphology were studied by visual techniques. Using scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) which cleared that, the converted rock phosphate gave different shapes and sizes of crystals and distribution of its components (elements and oxides mass percentage). While TEM appears the crystals size of converted rock phosphate was found in nano size (19.7 -39.1 nm). Moreover Sterio microscopy illustrated that, after calcination and zeolitization processes, the nano zeolite converted from rock phosphate ore took different shapes with three dimension crystals growth as end of crystallization process. Whilst XRD manifested that, the dominant mineral was zeolite associated with different minerals represented by mica muscovite, montmorillonite, calcite, pyrite, alkali feldspar, plagoclase feldspar and quartz. At the same time, XRF was used to verify nano rock phosphate converted in to zeolite (heulandites type). Also the XRF analysis recorded Si/Al ratio (3.42%) of nano zeolite its properties tended to both hydrophilic and organophillic. Furthermore, DTA (differential thermal analysis) and TGA (thermo-gravimetric analysis) were used for measure percentages of water molecules attached with nano rock phosphate and its thermal stability. Therewithal, Surface area (BET) was (14.93m2/g), pore sizes distribution from 3.98 to 56.87 nm, pore volume19.96 nm and pore width 4.846 cm3 / g. It was observed that there is little change in particles density in both real and bulk densities. Finally, the highest CEC (cation exchange capacity) and lowest AEC (anion exchange capacity) values of the conversion rock phosphate were acquired. In a nutshell, our results designated for more liberate of P2O5 in available and safety form to uptake easily by cultivated crops, and construct an appropriate media for loading by beneficial microorganisms.

Keywords

References

[1]  Abdel-Zaher, M. Abouzeid. Physical and thermal treatment of phosphate ores-An overview, Int.J. Miner. Process, 2007. 85 (208) 59-84.
 
[2]  Jasinski, S.M. phosphate rock. Miner. Year book, 2005. 56, 1-10.
 
[3]  Jasinski,S.M. phosphate rock. USGS. 2007. 120-121.
 
[4]  Holford ICR. Soil phosphorus: its measurement, and its uptake by plants. Aust J Soil Res(1997) 35:227-239.
 
[5]  Richardson AE Soil microorganisms and phosphorus availability. Soil Biota (1994) 50-62.
 
Show More References
[6]  Lynch J. Root architecture and plant productivity. Plant Physiology (1995) 109:7-13.
 
[7]  Abouzeid, A.-Z.M., El-Jallad, I.S., Orphy, M.K. Calcareous phosphates and their calcined products. Miner. Sci. Eng. 1980. vol.12 (2), 73-83.
 
[8]  Cathcart, B., Proc. Escafe Seminar, Bangkok, Thailand, Minerals Resources Development Series Rep. No. 32, United nations, New York, 1968.
 
[9]  Service, A.L., Popoff, C.C. U.S. Bur. Mines Rep. 1967. RI-6935.
 
[10]  Elgillani, D.A., Abouzeid, A.-Z.M., Negm, A.A. Final Report to the Supreme Council of Universities (FRCU) of Egypt.1984.
 
[11]  Blazy, P., and Bouhaouss, A. Miner.Metall.Process. 2005. vol. 22 (2), 107-115.
 
[12]  Emich, G.D.phosphate Rock. Ind. Miner. 1984. Rocks 2, 1017-1047.
 
[13]  Jacinthe, P. A. and Lal, R. “Carbon storage and mine soil properties in relation to topsoil application techniques,” Soil Science Society of America Journal, 2007. vol.71, no. 6, pp. 1788-1795.
 
[14]  He,Z. L. Baligar,V. C. Martens,D. C. Ritchey,K. D. and Elrashidi, M. “Effect of by product,nitrogen fertilizer, and zeolite on phosphate rock dissolution and extractable phosphorus in acid soil,” Plant and Soil, 1999. vol. 208, no. 2, pp. 199-207.
 
[15]  Black, C.R. Methods at soil analysis. Amer.Soc. of Agronomy Inc.Madison,Wisconsin, 1965.U.S.A.No.9 pp374-390.
 
[16]  Palesa. P. Diale, Edison Muzenda, Member, IAENG, and Josephat Zimba. A Study of South African Natural Zeolites Properties and Applications Proceedings of the World Congress on Engineering and Computer Science, 2011. Vol. II WCECS October 19-21, San Francisco, USA.
 
[17]  Brahim, F.B. “Dissolution des Phosphates Naturelsdansl’ Acide Phosphorique Dilué,” Ph.D. Thesis, Faculty of Science of Tunis, University El Manar, Tunisia. 1999.
 
[18]  Coombs,D. “Recommended Nomenclature for Zeolite Minerals,” Report o f The Subcommitte on Zeolites Of The International Mineralogical Association, Commision of New Minerals And Mineral Names, The Canadian Mineralogist, 1997.vol. 35, pp. 1571-1606.
 
[19]  Hassan A.Z.A and Abdel Wahab M Mahmoud. Hydrothermal Synthesis of Nano Crystals (A.M.) Zeolite using Variable Temperature Programs. Journal of Nanomaterials & Molecular Nanotechnology, 2015. 4:4.
 
[20]  Freeman, H.P., Caro, J.H., Heinly, N. Effect of Calcination on the Character of Phosphate Rock., J. Agric. Food Chem. 1964.Vol. 12, p 479-486.
 
[21]  Abdolvahab, amirsalari and Saber frajami. Effects of pH and calcinations temperature on structural and optical properties of alumina nanoparticles. Super lattices and microstructures. (2015), Vol.82, p.507-524.
 
[22]  Erin N. Yargicoglu, Bala Yamini Sadasivam, Krishna R. Reddy, Kurt Spokas: Physical and chemical characterization of waste wood derived biochars. J. Waste management. (2015) 36: 256-268.
 
[23]  Xiaoming Du, Erdong Wu.Porosity of microporous zeolites A, X and ZSM-5 studied by small angle X-ray scattering and nitrogen adsorption. Journal of Physics and Chemistry of Solids (2007). 68:1692-1699
 
[24]  Raquel Mart´ınez-Franco, Cecilia Paris, Marta E. Mart´ınez-Armero, Cristina Mart´ınez, Manuel Moliner and Avelino Corma. High-silica nanocrystalline Beta zeolites: efficient synthesis and catalytic application. (2016) Chem. Sci., 2016, 7, 102-108.
 
Show Less References

Article

From Nanoscale to Macroscale: Applications of Nanotechnology to Production of Bulk Ultra-Strong Materials

1Department of Mathematics, Widener University, Chester, United States


American Journal of Nanomaterials. 2016, 4(2), 39-43
doi: 10.12691/ajn-4-2-2
Copyright © 2016 Science and Education Publishing

Cite this paper:
Robert Clark. From Nanoscale to Macroscale: Applications of Nanotechnology to Production of Bulk Ultra-Strong Materials. American Journal of Nanomaterials. 2016; 4(2):39-43. doi: 10.12691/ajn-4-2-2.

Correspondence to: Robert  Clark, Department of Mathematics, Widener University, Chester, United States. Email: Rgc0300@mail.widener.edu

Abstract

Carbon nanotubes have been famous since their discovery twenty years ago for their remarkable physical properties, from strength a hundred times higher than steel, to electrical current capacity a 1,000 times higher than copper. But so far they have only been produced at most up to centimeter lengths. Here are presented some proposals to combine the nanotubes in such a way to get arbitrarily long lengths while maintaining their extraordinary physical properties.

Keywords

References

[1]  Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie Materials Science and Engineering, A334 (2002) p. 173-178.
 
[2]  Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Bei Peng, Mark Locascio, Peter Zapol, Shuyou Li, Steven L. Mielke, George C. Schatz & Horacio D. Espinosa. Nature Nanotechnology 3, 626-631 (2008).
 
[3]  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, James Hone Science, vol. 321, 18 July 2008, p. 385-388.
 
[4]  Direct Synthesis of Long Single-Walled Carbon Nanotube Strands. H.W. Zhu,. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P.M. Ajayan Science, Vol 296, Issue 5569, 884-886 , 3 May 2002.
 
[5]  Pulling nanotubes makes thread. October 30/November 6, 2002 http://www.trnmag.com/Stories/2002/103002/Pulling_nanotubes_makes_thread_103002.html.
 
Show More References
[6]  Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Z. W. Pan, S. S. Xie, L. Lu, B. H. Chang, L. F. Sun, W. Y. Zhou, G. Wang, and D. L. Zhang Appl. Phys. Lett. 74, 3152 (1999) 24 May 1999.
 
[7]  Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. F. Li, H. M. Cheng, S. Bai, G. Su, M. S. Dresselhaus Applied Physics Letters, 77, p. 3161 (2000).
 
[8]  Strong Carbon-Nanotube Fibers Spun from Long Carbon-Nanotube Arrays. Xiefei Zhang, Qingwen Li, Yi Tu, Yuan Li, James Y. Coulter, Lianxi Zheng, Yonghao Zhao, Qianxi Jia, Dean E. Peterson, and Yuntian Zhu Small, 2007, 3, No. 2, 244-248.
 
[9]  The Study of Knot Performance http://www.allaboutknots.com/html/8_strength.htm.
 
[10]  Knot Break Strength vs Rope Break Strength. http://www.caves.org/section/vertical/nh/50/knotrope.html.
 
[11]  Carbon nanotubes. http://www.3rdtech.com/carbon_nanotubes.htm.
 
[12]  Bending and buckling of carbon nanotubes under large strain. M. R. Falvo, G.J. Clary, R.M. Taylor II, V. Chi, F.P. Brooks Jr., S. Washburn and R. Superfine Nature, 389, p. 582-584. (1997).
 
[13]  Nanomanipulation experiments exploring frictional and mechanical properties of carbon nanotubes. M. R. Falvo, G. Clary, A. Helser, S. Paulson, R. M. Taylor II, V. Chi, F. P. Brooks Jr, S. Washburn, R. Superfine Microscopy and Microanalysis, 4, p. 504-512. (1998).
 
[14]  Nanotube Nanotweezers. Science, Vol. 286, No. 5447, p. 2148-2150, 10 December 1999.
 
[15]  Fabrication and actuation of customized nanotweezers with a 25 nm gap. Nanotechnology, 12, p. 331-335, 2001.
 
[16]  Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope. Nanotechnology, 10, p. 244-252, 1999.
 
[17]  New Nanomaterial, 'NanoBuds,' Combines Fullerenes and Nanotubes. March 30th, 2007 By Laura Mgrdichian in Nanotechnology / Materials. http://www.physorg.com/news94478341.html.
 
[18]  Water-filled single-wall carbon nanotubes as molecular nanovalves. Yutaka Maniwa, Kazuyuki Matsuda, Haruka Kyakuno, Syunsuke Ogasawara, Toshihide Hibi, Hiroaki Kadowaki, Shinzo Suzuki, Yohji Achiba & Hiromichi Kataura. Nature Materials 6, 135-141 (2007).
 
[19]  Ring Closure of Carbon Nanotubes.Masahito Sano, Ayumi Kamino, Junko Okamura, Seiji Shinkai Science, Vol. 293, No. 5533, p. 1299-1301, 17 August 2001.
 
[20]  A facile sulfur vapor assisted reaction method to grow boron nitride nanorings at relative low temperature. XIAOPENG HAO; YONGZHONG WU; JIE ZHAN; JIAXIANG YANG; XIANGANG XU; MINHUA JIANG The Journal of Physical Chemistry. B, 2005, vol. 109, no. 41, pp. 19188-19190.
 
[21]  anorings: Seamless Circular Nanostructures Could be Sensors, Resonators and Transducers for Nanoelectronic and Biotechnology Applications. February 26, 2004. http://gtresearchnews.gatech.edu/newsrelease/nanorings.htm.
 
[22]  Synthesis of a Self-Assembled Hybrid of Ultrananocrystalline Diamond and Carbon Nanotubes. X. Xiao, J. W. Elam , S. Trasobares, O. Auciello, J. A. Carlisle Advanced Materials, Volume 17, Issue 12, 2005, Pages 1496-1500.
 
[23]  Growth of nanodiamond/carbon-nanotube composites with hot filament chemical vapor deposition. Nagraj Shankar, Nick G. Glumac, Min-Feng Yu, S.P. Vanka Diamond & Related Materials 17 (2008) 79-83.
 
[24]  Reinforcement of single-walled carbon nanotube bundles by intertube bridging. A.Kis, G. Csányi, J.-P. Salvetat, Thien-Nga Lee, E. Couteau, A. J. Kulik, W. Benoit, J. Brugger & L. Forró Nature Materials, 3, p. 153-157 (2004).
 
[25]  Strong Bundles. P.M. Ajayan, F. Banhart Nature Materials, vol. 3, p. 135-136, March 2004.
 
[26]  Modeling of carbon nanotube clamping in tensile tests. Chunyu Li, Rodney S. Ruoff, Tsu-Wei Chou. Composites Science and Technology 65 (2005) 2407-2415.
 
[27]  Measured properties of carbon nanotubes match theoretical predictions. August 14, 2008. http://www.nanowerk.com/spotlight/spotid=6743.php.
 
[28]  Electron beam welds nanotubes. By Ted Smalley Bowen, Technology Research News August 1/8, 2001. http://www.trnmag.com/Stories/080101/Electron_beam_welds_nanotubes_080101.html.
 
[29]  Tensile Test of Carbon Nanotube using Manipulator in Scanning Electron Microscope. Seung Hoon Nahm April 3-4, 2006 The 3rd Korea-U.S. NanoForum.
 
[30]  Connection of macro-sized double-walled carbon nanotube strands by current-assisted laser irradiation. Tao Gong, Yong Zhang, Wenjin Liu, Jinquan Wei, Kunlin Wang, Dehai Wu, and Minlin Zhong Journal of Laser Applications - May 2008 - Volume 20, Issue 2, pp. 122-126.
 
[31]  Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. Guowen Meng, Yung Joon Jung, Anyuan Cao, Robert Vajtai,, and Pulickel M. Ajayan PNAS May 17, 2005 vol. 102, no. 20, p. 7074-7078.
 
[32]  Tether Strength Competition. https://web.archive.org/web/20120111050720/http://www.spaceward.org/elevator2010-ts.
 
Show Less References

Article

Preparation of Vaterite Calcium Carbonate in the Form of Spherical Nano-size Particles with the Aid of Polycarboxylate Superplasticizer as a Capping Agent

1Department of Chemistry, Faculty of Science, Al-Azhar University, Nassr City, P.O. 11884, Cairo, Egypt

2Department of Chemistry, Faculty of Science, Halwan University, Halwan, Cairo, Egypt


American Journal of Nanomaterials. 2016, 4(2), 44-51
doi: 10.12691/ajn-4-2-3
Copyright © 2016 Science and Education Publishing

Cite this paper:
Mohamed El-Shahate Ismaiel Saraya, Hanaa Hassan Abdel Latif Rokbaa. Preparation of Vaterite Calcium Carbonate in the Form of Spherical Nano-size Particles with the Aid of Polycarboxylate Superplasticizer as a Capping Agent. American Journal of Nanomaterials. 2016; 4(2):44-51. doi: 10.12691/ajn-4-2-3.

Correspondence to: Mohamed  El-Shahate Ismaiel Saraya, Department of Chemistry, Faculty of Science, Al-Azhar University, Nassr City, P.O. 11884, Cairo, Egypt. Email: mohamedsaraya37@gmail.com

Abstract

Vaterite is an important biomedical material due to its properties such as high specific surface area, high solubility, high dispersion, and small specific gravity. In this study, spherical vaterite composed of nanoparticles are synthesized by precipitation route assisted by Polycarboxylate superplasticizer (PSS). The calcium carbonate was prepared by reacting a mixed solution of Na2CO3 with a CaCl2 solution at an ambient temperature, 25 °C, in the presence of polycarboxylate superplasticizer as a stabilizer. The effects of PSS on the morphology and polymorph of precipitated CaCO3 are investigated with the help of Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and X-ray diffraction (XRD) and Transmission electron microscopy (TEM). It is supposed that the core-shell structured microspheres with the nanoparticles are attributed to the adsorption of PSS on the faces of calcium carbonate crystals. The results revealed that polycarboxylate superplasticizer can use in preparation of vaterite calcium carbonate from aqueous solutions. The prepared vaterite calcium carbonate has nanoparticles with the average particle size ranging from 15 to 26 nm as estimated using TEM.

Keywords

References

[1]  J.H. Bang, Y.N. Jang, K.S. Song, C.W. Jeon, W. Kim, M.G. Lee, S.J. Park, Effects of sodium lauryl sulfate on crystal structure of calcite formed from mixed solutions, Journal of Colloid Interface Science 356 (2011) 311.
 
[2]  I. Udrea, C. Capat, E.A. Olaru, R. Isopescu, M. Mihai, C.D. Mateescu, C. Bradu, Vaterite synthesis via gas–liquid route under controlled pH, conditions, Industrial and Engineering Chemistry Research 51 (2012) 8185-8193.
 
[3]  S. Yamanaka, N. Ito, K. Akiyama, A. Shimosaka, Y. Shirakawa, J. Hidaka, Heterogeneous nucleation and growth mechanism on hydrophilic and hydrophobic surface, Advanced Powder Technology 23 (2012) 268-272.
 
[4]  G.J. Price, M.F. Mahon, J. Shannon, C. Cooper, Composition of calcium carbonate polymorphs precipitated using ultrasound, Crystal Growth and Design 11 (2011) 39-44.
 
[5]  H. Wang, W. Huang, Y. Han, Diffusion-reaction compromises the polymorphs of precipitated calcium carbonate, Particuology 11 (2013) 301-308.
 
Show More References
[6]  Y. Fukui, K. Fujimoto, Bio-inspired nanoreactor based on miniemulsion system to create organic-inorganic hybrid nanoparticle and nanofilm, Journal of Material Chemistry 22(2012) 3493-3499.
 
[7]  Y. Zhao, W. Du, L. Sun, L. Yu, J. Jiao, R. Wang, Facile synthesis of calcium carbonate with an absolutely pure crystal form using 1-butyl-3-methylimidazolium dodecyl sulfate as the modifier, Colloid and Polymer Science 291(2013) 2191-2202.
 
[8]  Y. Lai, L. Chen, W. Bao, Y. Ren,, Y. Gao,, Y. Yin,, Y. Zhao, Glycine-Mediated, Selective Preparation of Monodisperse Spherical Vaterite Calcium Carbonate in Various Reaction Systems, Crystal Growth & Design, 15(3)(2015) 1194-1200.
 
[9]  D. B. Trushina, T. V. Bukreeva, M. N. Antipina, Size-Controlled Synthesis of Vaterite Calcium Carbonate by the Mixing Method: Aiming for Nanosized Particles, Crystal Growth & Design, 16(3) (2016) 1311-1319.‏
 
[10]  A. Islam, S. H. Teo, M. A. Rahman, Y. H Taufiq-Yap, Seeded Growth Route to Noble Calcium Carbonate Nanocrystal, PloS one, 10(12)(2015)0144805.‏
 
[11]  R. Na, H. B. Atchudan, I. W. Cheong, J. Joo, Facile Synthesis of Monodispersed Cubic and Spherical Calcite Nanoparticles in the Presence of Cetyltrimethylammonium Bromide, Journal of nanoscience and nanotechnology, 15(4)(2015) 2702-2714.‏
 
[12]  K., Hiyama, T., Nagai, A., K. Yamashita, Controlled calcite nucleation on polarized calcite single crystal substrates in the presence of polyacrylic acid, Journal of Crystal Growth, 415(2015).7-14.
 
[13]  B.P. Bastakoti, S. Guragain, Y. Yokoyama, S. I. Yusa, K. Nakashima, Synthesis of hollow CaCO3 nanospheres templated by micelles of poly(styrene-b-acrylic acid-b-ethylene glycol) in aqueous solutions, Langmuir 27 (2011) 379-384.
 
[14]  T. J. Lee, S. J. Hong,, J. Y. Park,, H. J. Kim, Effects of Anionic Polyacrylamide on Carbonation for the Crystallization of Precipitated Calcium Carbonate, Crystal Growth & Design, 15(4), (2015).1652-1657.‏
 
[15]  S. El-Sherbiny, S. M. El-Sheikh, A. Barhoum, Preparation and modification of nano calcium carbonate filler from waste marble dust and commercial limestone for papermaking wet end application, Powder Technology, 279 (2015) 290-300.‏
 
[16]  J. Jiang, D. Xu, Y. Zhang, S. Zhu, X. Gan, J. Liu, From nano-cubic particle to micro-spindle aggregation: The control of long chain fatty acid on the morphology of calcium carbonate, Powder Technology, 270 (2015). 387-392.‏
 
[17]  H.V. Tran, L.D. Tran, H.D. Vu, H. Thai, Facile surface modification of nanoprecipitated calcium carbonate by adsorption of sodium stearate in aqueous solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects 366 (2010) 95-103.
 
[18]  K. Fuchigami, Y. Taguchi, M. Tanaka, Synthesis of calcium carbonate vaterite crystals and their effect on stabilization of suspension polymerization of MMA, Advanced Powder Technology 20(2009) 74-79.
 
[19]  E. Y. Zeynep, D. Antoine, C. Brice, B. Frank, J. Christine, Double hydrophilic polyphosphoester containing copolymers as efficient templating agents for calcium carbonate microparticles, Journal of Materials Chemistry B, 3(36)(2015) 7227-7236.
 
[20]  X.D. Yang, G.Y. Xu, Y.J. Chen, F. Wang, H.Z. Mao, W.P. Sui, Y. Bai, H.J. Gong, CaCO3 crystallization control by poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymer and O-(hydroxy isopropyl) chitosan, Journal of Crystal Growth 311 (2009) 4558-4569.
 
[21]  M. Euvrard, A. Martinod, A. Neville, Effects of carboxylic polyelectrolytes on the growth of calcium carbonate, Journal of Crystal Growth 317 (2011) 70-78.
 
[22]  R.A., Akbour, K. Jradi, A. Jada, Crystalline Structure, Shape and Size Modifications of CaCO3 Particles by Polyelectrolytes, Journal of Colloid Science and Biotechnology, 3(1) (2014) 38-45.‏
 
[23]  M. Yang, X. Jin, Q. Huang, Facile synthesis of vaterite core-shell microspheres, Colloids and Surfaces A: Physicochemical and Engineering Aspects 374 (2011) 102-107.
 
[24]  Z. Chen, S. Xiao, F. Chen, D. Chen, J. Fang, M. Zhao, Calcium carbonate phase transformations during the carbonation reaction of calcium heavy alkylbenzene sulfonate over based nano detergents preparation, Journal of colloid and interface science 359 (2011). 56-67.
 
[25]  J. Ihli, Y.Y. Kim, E.H. Noel, F.C. Meldrum, The effect of additives on amorphous calcium carbonate (acc): janus behavior in solution and the solid state, Advanced Functional Materials, 23(2013) 1575-1585.
 
[26]  T. Wang, B.X. Leng, R.C. Che, Z.Z. Shao, Biomimetic synthesis of multilayered aragonite aggregates using alginate as crystal growth modifier, Langmuir 26(2010) 13385-13392.
 
[27]  A. Rao, P. Vásquez-Quitral, M. S. Fernández, J. K. Berg, M. Sánchez, M. Drechsler, H. Cölfen, pH-dependent schemes of calcium carbonate formation in the presence of alginates, Crystal Growth & Design, 16(3)(2016). 1349-1359.‏
 
[28]  M.Ø.Olderøy, M. Xie, B. L. Strand, K. I. Draget, P. Sikorski, J. P. Andreassen, Polymorph switching in the calcium carbonate system by well-defined alginate oligomers, Crystal Growth and Design 11(2011) 520-529.
 
[29]  S. Kirboga, M. Öner, Application of experimental design for the precipitation of calcium carbonate in the presence of biopolymer, Powder Technology, 249 (2013) 95-104.
 
[30]  Z. Zhang, Y. Xie, X. Xu, H. Pan, R. Tang, Transformation of amorphous calcium carbonate into aragonite, Journal of Crystal Growth 343(2012) 62-67.
 
[31]  S. Bai, G. Naren, M. Nakano, Y. Okaue, T. Yokoyama, Effect of polysilicic acid on the precipitation of calcium carbonate, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 445 (2014)54-58.
 
[32]  W. Ye, L. Zhang, G. Feng, J.Ye, C. Li, Preparation of Calcium Carbonate and Methyl Methacrylate Nanoparticles by Seeded-Dispersion Polymerization for High Performance Polyvinyl Chloride Nanocomposites, Industrial & Engineering Chemistry Research, 54(30) (2015) 7459-7464.‏
 
[33]  G. X.Wu, J. Ding, J.M. Xue, Synthesis of calcium carbonate capsules in water-in-oil-in-water double emulsions, Journal of Materials Research, 23(2008)140-149.
 
[34]  A. Georgieva, B. Georgieva, Z. Bogdanov, and D. K. Stefanov, Microemulsion water-in-oil (W/O)—microreactor for synthesis of ultrafine carbonate nanostructures, University of Ruse Union of Scientists-Ruse 50 (2011)34-38.
 
[35]  Y. Kojima, K. Yamaguchi, N. Nishimiya, Effect of amplitude and frequency of ultrasonic irradiation on morphological characteristics control of calcium carbonate, Ultrasonics sonochemistry 17(2010) 617-620.
 
[36]  Y. Kojima, M. Kanai, N. Nishimiya, Synthesis of novel amorphous calcium carbonate by sono atomization for reactive mixing, Ultrasonics sonochemistry 19 (2012) 325-329.
 
[37]  Z. Jia, Q. Chang, J. Qin, A. Mamat, Preparation of Calcium Carbonate Nanoparticles with a Continuous Gas-liquid Membrane Contactor: Particles Morphology and Membrane Fouling, Chinese Journal of Chemical Engineering 21(2013) 121-126.
 
[38]  J. Chen, L. Xiang, Controllable synthesis of calcium carbonate polymorphs at different temperatures, Powder Technology 189 (2009) 64-69.
 
[39]  Y. Wang, Y.X. Moo, C. Chen, P. Gunawan, R. Xu, Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyapatite nanospheres, Journal of Colloid and Interface Science 352 (2010) 393-400.
 
[40]  X.L. Chen, Y.H. Fang, Z.D. Lan, Z.J. Jiang, Y. Ke, M. Q. Guan, Synthesis and Performance Research of Ester Polycarboxylate Superplasticizer, Applied Mechanics and Materials 204 (2012) 4147-4150.
 
[41]  Y.H. Fang, Z.J. Jiang, Y.L. Ke, X.L. Chen, F.L. Zheng, Z.D. Lan, M.M. Gui, Synthesis and Characterization of Comb-Like Polycarboxylate Superplasticizer, Applied Mechanics and Materials 204 (2012) 3881-3885.
 
[42]  S. H. Zou, W. B. Duan, X. Wang, Z. L. Gao, , B. Liu, Synthesis and Effect of Polycarboxylate Superplasticizer with Two Different Molecular Polyethers as Side Chain, Applied Mechanics and Materials, 217 (2012) 578-581.
 
[43]  K. Zhou, J. Liu, Z. Li, Synthesis of A Novel Polycarboxylate Superplasticizer with High Performance, Asian Journal of Chemistry 23(2011) 2276-2280.
 
[44]  J. Zhu, G. Zhang, Z. Miao, T. Shang, Synthesis and performance of a comblike amphoteric polycarboxylate dispersant for coal–water slurry, Colloids and Surfaces A: Physicochemical and Engineering Aspects 412 (2012)101-107.
 
[45]  Z. Shen, J. Li, K. Xu, L. Ding, H. Ren, The effect of synthesized hydrolyzed polymaleic anhydride (HPMA) on the crystal of calcium carbonate, Desalination 284 (2012) 238-244.
 
[46]  H. Bala, W. Fu, Y. Guo, J. Zhao, Y. Jiang, X. Ding, Z. Wang, In situ preparation and surface modification of barium sulfate nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects 274 (2006) 71-76.
 
[47]  C.G. Kontoyannis, N. V. Vagenas, Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy, Analyst 125 (2000)) 251-255.
 
[48]  A. Sarkar, S. Mahapatra, Synthesis of all crystalline phases of anhydrous calcium carbonate, Crystal Growth Design 10 (2010) 2129-2135.
 
[49]  M.M.M.G.P.G. Mantilakaa, b, R.M.G. Rajapaksea, D.G.G.P. Karunaratnec, H.M.T.G.A. Pitawala, Preparation of amorphous calcium carbonate nanoparticles from impure dolomitic marble with the aid of poly (acrylic acid) as a stabilizer, Advanced Powder Technology 25(2014), 591-598.
 
[50]  C.Y. Tai, C. Chen, Particle morphology, habit, and size control of using reverse microemulsion technique, Chemical Engineering Science 63 (2008) 3632-3642.
 
[51]  E. Loste, R.M.Wilson, R. Seshadri, F.C. Meldrum, The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies, Journal of Crystal Growth 254 (2003) 206-218.
 
[52]  Y. Shen, A. Xie, Z. Chen, W. Xu, H. Yao, S. Li, L. Huang, Z. Wu, X. Kong, Controlled synthesis of calcium carbonate nanocrystals with multi-morphologies in different bicontinuous microemulsions, Materials Science and Engineering A 443 (2007) 95-100.
 
[53]  D.L. Tran, V.H. Tran, T.Q. Duong, J.S. Kim, Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites, Materials Science and Engineering A 501 (2009) 87-93.
 
[54]  C.Y. Tai, W.C. Chien, C.Y. Chen, Crystal growth kinetics of calcite in a dense fluidized-bed crystallizer, AIChE Journal 45 (1999) 1605-1614.
 
[55]  G.T. Zhou, Q.Z. Yao, J. Ni, G. Jin, Formation of aragonite mesocrystals and implication for biomineralization, American Mineralogist 94 (2009) 293-302.
 
[56]  Y.S. Han, G. Hadiko, M. Fuji, M. Takahashi, Factors affecting the phase and morphology of CaCO3 prepared by a bubbling method, Journal of the European Ceramic Society 26 (2006) 843-847.
 
[57]  J.D. Rodriguez-Blanco, S. Shaw, L.G. Benning, The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, Nanoscale 3 (2011) 265-271.
 
[58]  Y.S. Han, G. Hadiko, M. Fuji, M. Takahashi, Effect of flow rate and CO2 content on the phase and morphology of CaCO3 prepared by bubbling method, Journal of Crystal Growth 276 (2005) 541-548.
 
[59]  S. Huang, K. Naka, Y. Chujo, A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly(acrylic acid)s, Langmuir 23 (2007) 12086–12095.
 
[60]  I. Polowczyk, A. Bastrzyk, T. Kozlecki, Z. Sadowski, Calcium carbonate mineralization. Part 1: the effect of poly (ethylene glycol) concentration on the formation of precipitate, Physicochemical Problems of Mineral Processing 49 (2013) 631-639.
 
[61]  W. Li, L. Liu, W. Chen, L. Yu, W. Li, H. Yu, Calcium carbonate precipitation and crystal morphology induced by microbial carbonic anhydrase and other biological factors, Process Biochemistry 45(-010)1017–1021.
 
[62]  H. ei, Q. Shen, Y. Zhao, D.J. Wang, D.F. Xu, Influence of polyvinylpyrrolidone on the precipitation of calcium carbonate and on the transformation of vaterite to calcite, Journal Crystal Growth 250 (2003) 516-524.
 
[63]  Q. Shen, Y.K. Chen, H. Wei, Y. Zhao, D.J. Wang, D.F. Xu, Suspension effect of poly(styrene-ran-methacrylic acid) latex particles on crystal growth of calcium carbonate, Crystal Growth Design 5 (2005) 1387-1391.
 
[64]  H. Wei, Q. Shen, H.H. Wang, Y.Y. Gao, Y. Zhao, D.F. Xu, D.J. Wang, Influence of segmented copolymers on the crystallization and aggregation of calcium carbonate, Journal Crystal Growth 303 (2007) 537-545.
 
[65]  H. Colfen, Double-hydrophilic block copolymers: synthesis and application as novel surfactants and crystal growth modifiers, Macromolecular Rapid Communications 22 (2001) 219-252.
 
[66]  S.H. Yu, H. Colfen, J. Hartmann, M. Antonietti, Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers, Advanced Functional Material 12 (2002) 541-545.
 
[67]  A. Jada, R. Ait Akbour, C. Jacquement, J.M. Suau, O. Guerret, Effect of sodium polyacrylate molecular weight on the crystallogenesis of calcium carbonate, Journal Crystal Growth 306 (2007) 373-382.
 
[68]  S. Ouhenia, D. Chateigner, M.A. Belkhir, E. Guilmeau, C. Krauss, Synthesis of calcium carbonate polymorphs in the presence of polyacrylic acid, Journal of Crystal Growth 310 (2008) 2832-2841.
 
[69]  L.H. He, R. Xue, R. Song, Formation of calcium carbonate films on chitosan substrates in the presence of polyacrylic acid, Journal of Solid State Chemistry 182 (2009)1082-1087.
 
Show Less References