ISSN (Print): 2372-3114

ISSN (Online): 2372-3122

Editor-in-Chief: Apply for this position

Website: http://www.sciepub.com/journal/AJN

   

Article

Modeling of the Scattering Process and the Optical Photo-generation Rate of a Dye Sensitized Solar Cell: Influence of the TiO2 Radius

1Groupe de physique du Solide et Sciences des Matériaux, Faculté des Sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD), B.P. 25114 Dakar-Fann Dakar (Sénégal)


American Journal of Nanomaterials. 2016, 4(3), 58-62
doi: 10.12691/ajn-4-3-2
Copyright © 2016 Science and Education Publishing

Cite this paper:
E. H. O. Gueye, P. D. Tall, O. Sakho, C. B. Ndao, M. B. Gaye, N. M. Ndiaye, B. D. Ngom, A.C. Beye. Modeling of the Scattering Process and the Optical Photo-generation Rate of a Dye Sensitized Solar Cell: Influence of the TiO2 Radius. American Journal of Nanomaterials. 2016; 4(3):58-62. doi: 10.12691/ajn-4-3-2.

Correspondence to: B.  D. Ngom, Groupe de physique du Solide et Sciences des Matériaux, Faculté des Sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD), B.P. 25114 Dakar-Fann Dakar (Sénégal). Email: bdngom@gmail.com

Abstract

We report on a methodology for optical and electrical modeling of dye-sensitized solar cells (DSSCs). In order to take into account the scattering process, the optical model is based on the determination of the effective permittivity of the mixture and the scattering coefficient using Mie and Bruggeman theories, considering spherical particles. Then, from the radiative transfer equation, the optical generation rate of cell is deduced. From the presented model, the dependence effects of the nanoparticles size upon the extinction coefficient and the optical generation rate are evidenced. Thus, we noticed that the extinction coefficient decreases with the increase of the TiO2 nanoparticles and vanishes when the wavelengths increases in the visible spectrum. A significant uniformity of the absorption for radius smaller than 10 nm is observed, however at a radius about 80 nm, we observe a non-uniformity. The simulated results based on this model are in good agreement with the experimental results.

Keywords

References

[1]  O’Regan, B., Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353-737, 1991.
 
[2]  Wang, Q., Ito, S., Gratzel, M., Fabregat-Santiago, F., Mora-Sero, I., Bisquert, J., Bessho, T., and Imai, H., “Characteristics of High Efficiency Dye-Sensitized Solar Cells,” J. Phys. Chem. B 110, 25210-25221, 2006.
 
[3]  Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F.E., Tavernelli, I., Rothlisberger, U., Nazeeruddin M.K., and Grätzel, M., “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nature Chemistry 6, 242-247, 2014.
 
[4]  Green, M. A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E. D., “Solar cell efficiency tables (Version 45),” Progress in photovoltaics: research and applications, 23(1), 1-9, 2015.
 
[5]  Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L., J. Appl. Phys., Part 2, 45, L638-L640, 2006.
 
Show More References
[6]  Gao, F.; Wang, Y., Shi, D., Zhang, J., Wang, M. K., Jing, X. Y., Humphry-Baker, R., Wang, P., Zakeeruddin, S. M., Grätzel, M., J. Am. Chem. Soc. 130, 10720-10728 ,2008.
 
[7]  Ferber, J., and Luther, J., “Computer simulations of light scattering and absorption in dye-sensitized solar cells.” Solar Energy Materials and Solar Cells 54 (1998)
 
[8]  Rothenberger, G., Comte, P., Gratzel, M., “A contribution to the optical design of dye_sensitized nanocrystalline solar cells,” Solar Energy Materials & Solar Cells, 58, 321-336, 1999.
 
[9]  Soedergren, S., Hagfeldt, A., Olsson, J., and Lindquist, S. E., “Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells,” The Journal of Physical Chemistry, 98(21), 5552-5556, 1994.
 
[10]  Matthews, D., Infelta, P., and Grätzel, M, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes.” Solar Energy Materials and Solar Cells, 44(2), 119-155, 1996.
 
[11]  Ferber, J., Stangl, R., and Luther, J., “An electrical model of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, 53(1), 29-54, 1998.
 
[12]  Usami, A., “Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrichemical cell,” Chemical Physics Letters, 277(1), 105-108, 1997.
 
[13]  Usami, A., “Theoretical study of charge transportation in dye-sensitized nanocrystalline TiO2 electrodes,” Chemical physics letters, 292(1), 223-228, 1998.
 
[14]  Ferber, J., Stangl, R., and Luther, J., “An electrical model of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, 53(1), 29-54, 1998.
 
[15]  Stangl, R., Ferber, J., & Luther, J., “On the modeling of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, 54(1), 255-264, 1998.
 
[16]  Usami, A., & Ozaki, H., “Computer simulations of charge transport in dye-sensitized nanocrystalline photovoltaic cells,” The Journal of Physical Chemistry B, 105(20), 4577-4583, 2001.
 
[17]  Bisquert, J., Cahen, D., Hodes, G., Rühle, S., & Zaban, A., “Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells,” The Journal of Physical Chemistry B, 108(24), 8106-8118, 2004.
 
[18]  Filipič, M., Berginc, M., Smole, F., & Topič, M., “Analysis of electron recombination in dye-sensitized solar cell,” Current Applied Physics, 12(1), 238-246, 2012.
 
[19]  Wenger, S., Schmid, M., Rothenberger, G., Gentsch, A., Gratzel, M., and Schumacher, J. O., “Coupled Optical and Electronic Modeling of Dye-Sensitized Solar Cells for Steady-State Parameter Extraction,” J. Phys. Chem. C 115, 10218–10229, 2011.
 
[20]  Topič, M., Čampa, A., Filipič, M., Berginc, M., Krašovec, U. O., & Smole, F., “Optical and electrical modelling and characterization of dye-sensitized solar cells,” Current Applied Physics, 10(3), S425-S430, 2010.
 
[21]  Gueye, E.H.O., Tall, P. D., Ndao, C. B., Dioum, A., Dione, A. N., & Beye, A. C. (2016). An Optical and Electrical Modeling of Dye Sensitized Solar Cell: Influence of the Thickness of the Photoactive Layer. American Journal of Modeling and Optimization, 4(1), 13-18.
 
[22]  C. Rozé, T. Girasole, G. Gréhan, G.Gouesbet, B.Maheu. Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters. Optics communications 194. (2001). 251-263.
 
[23]  G. Kortum, Reflectance Spectroscopy, Springer, Berlin, 1969.
 
[24]  B. Maheu, J. N. Letoulouzan and G. Gouesbet. Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters. Applied Optics Vol. 23, No. 19 (1984).
 
[25]  A. Dioum, S. Ndiaye, E. H. O. Gueye, M. B. Gaye, D. N. Faye, O. Sakho, M. Faye and A. C. Beye. 3-D Modeling of bilayer heterojunction organic solar cell based on Copper Phthalocyanine and Fullerene (CuPc/C60): evidence of total excitons dissociation at the donor-acceptor interface. Global Journal of Pure and Applied Sciences, Vol 19 (2013).
 
Show Less References

Article

Turnability of the Plasmonic Response of the Gold Nanoparticles in Infrared Region

1Laboratoire de Photonique et de Nano-Fabrication, Faculté des sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD) B.P. 25114 Dakar-Fann Dakar, Senegal


American Journal of Nanomaterials. 2016, 4(3), 63-69
doi: 10.12691/ajn-4-3-3
Copyright © 2016 Science and Education Publishing

Cite this paper:
A Sambou, B D Ngom, L Gomis, A C Beye. Turnability of the Plasmonic Response of the Gold Nanoparticles in Infrared Region. American Journal of Nanomaterials. 2016; 4(3):63-69. doi: 10.12691/ajn-4-3-3.

Correspondence to: B  D Ngom, Laboratoire de Photonique et de Nano-Fabrication, Faculté des sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD) B.P. 25114 Dakar-Fann Dakar, Senegal. Email: bdngom@gmail.com

Abstract

We report on the modulation of the optical properties namely the Surface Plasmon Resonance (SPR) of gold nanoparticles core-shell as function of the surrounding medium (water, ethanol). We have study two different combinations (1) silica thin film coating gold nanospheres and (2) gold thin film coating silica nanoparticles. The optical model used is based on Mie theory by considering spherical gold nanoparticles core-shell and the simulation is done using Matlab program. The results show an important influence of the surrounding medium and the size of the core as well as the shell thickness, on the optical properties with a redshift of the Surface Plasmon Resonance (SPR). By using Mie theory and Drude model for the simulation of the Surface Plasmon Resonance model of spherical nanoparticles showed that for the control of the Surface Plasmon Resonance of the gold thin film coating silica nanoparticles it is important to considered three parameters (i) the size of core (ii) the surrounding medium and (iii) shell thickness, which enable the turning of the SPR through the near infrared; where as gold nanosphere coated by silica results has a maximum wavelength at 530 nm, this Plasmon peak corresponding a R1/d ratio of 1.6. Thus, this work enabled optimizing core-shell structure with well-controlled sizes for biomedical application.

Keywords

References

[1]  S. Eibner, R. A. O. Jaime, B. Lamien, R. Basto, H. R. B. Orlande, O. Fudym, Effet photo-thermique de l’inclusion de nanoparticules dans des matériaux fantômes de milieux biologiques.
 
[2]  A. Moores and F. Goettmann, New J. Chem., 30 (2006). 1121-1132.
 
[3]  P. Tuersun, Optik 127 (2016). 3466-3470.
 
[4]  C. Noguez J. Phys. Chem. C 111 (2007). 3806-3819.
 
[5]  P. Chekuri, E. S. Glazer, S. A. Curley, Advanced Drug Delivery Review, 62 (2010). 339-345.
 
Show More References
[6]  S. Soulé, J. Allouche, J-C. Dupin, H. Martinez, Micropoeous and Mesoporous Materials 171 (2013). 72-77.
 
[7]  L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas and J. L. West, Proceedings of the National Academy of Sciences USA, 100 (2003). 13549-13554.
 
[8]  C. Wu, C. Yu and M. Chu, International Journal of Nanomedicine 6 (2011). 807-813.
 
[9]  M. T. Delapierre, J. Mohamed, S. Mornet, E. Duguet, S. Ravaine, Gold Bulletin (2008). 195-207.
 
[10]  C. Graf and A. V Blaaderen, Langmuir 18 (2002). 524-534.
 
[11]  V. V. Apyari, S. G. Dmitrienko, Y. A. Zolotov, Sensors and Actuators B 188 (2013). 1109-1115.
 
[12]  M. J. Ko, Adv. Mater. Opt. Electron, 8 (1998). 173-180.
 
[13]  N. G. Khlebtsov, L. A. Dykman, journal of Quantitative Spectroscopy & Radiative Transfer 111 (2010). 1-35.
 
[14]  J. Oh, H. Yoon and J. Park, Biomed Eng Lett 3 (2013). 67-73.
 
[15]  P. Mulvaney, L. M. Liz-Marzan, M. Giersig and T. Ung, J. Mater. Chem., 10 (2000). 1259-1270.
 
[16]  S. Link and M. El-Sayed, J. Phys. Chem. B 103 (1999). 4212-4217.
 
[17]  A. S. Iglesias, I. P. Santos, J. P. Juste, B. R. Gonzalez, F.J. G. de Abajo and L. M.L. Marzan, ADVANCED MATERIALS 18 (2006). 2529-2534.
 
[18]  H. Horvath, Journal of Quantitative Spectroscopy & Radiative Transfer 110 (2009). 787-799.
 
[19]  M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar and R. L Whetten, B 101 (1997). 3706-3712.
 
[20]  P. B. Johnson and R. W. Christy, PHYSICAL REVIEW B 6 (1972). 4370-4379.
 
[21]  M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., And C. A. Ward, Applied optics 22 (1983). 1099-1120.
 
[22]  E. Palik, Handbook of Optical Constants of Solids Vol I, Academic Press, Orlando, pp. 759.
 
[23]  G. Weng, J. Li, J. Zhu and J. Zhao, Colloids and Surfaces A: Physicochem. Eng. Aspects 369 (2010). 253-259.
 
[24]  T. A. Erickson and J. W. Tunnell, Gold Nanoshell in Biomedical Applications.
 
[25]  B. R. Cooper, H. Ehrenreich and H. R. Philipp, Phys. Re 138 (1965). 494-507.
 
[26]  S. Berthier and J. Lafait, J. Physique 47 (1986). 249-257.
 
[27]  P. G. Etchegoin, E. C. Le Ru and M. Meyer, J. Chem. Phys. 125 (2006). 164705.
 
[28]  D. Rioux, S. Vallières, S. Besner, P. Munoz, E. Mazur and M. Meunier, Adv. Optical Mater (2013). 1-7.
 
[29]  M. Vallet-Regi and F. Balas, Open Biomedical Engineering Journal 2 (2008). 1-9.
 
[30]  A. Akbarzadeh, D. Zare, A. Farhangi, M. R. Mehrabi, D. Norouzian, American Journal of Applied Sciences 6 (2009). 691-695.
 
[31]  R. G. Chaudhuri and S. Paria, CHEMICAL REVIEWS 112 (2012). 2373-2433.
 
[32]  H. Zhang, DR Dunphy, X. Jiang, H. Meng, B. Sun, D. Tarn, M. Xue, X. Wang, S. Ling, Z. Ji, R. Li, FL. Garcia, J. Yang, ML. kirk, T. Xia, JL. Zink, A. Nel, CJ. Brinker, J AM Chem Soc. 134 (2012). 15790-15804.
 
[33]  Y. MORIGUCHI, X. MENG, K. FUJITA, S. MURAI and K. TANAKA, J. Jpn. Soc. Powder Metallurgy 60 (2012). 49-54.
 
[34]  B. Sadtler and A. Wei, CHEM. COMMUN (2002). 1604-1605.
 
[35]  S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J. Halas, Chem. Phys. Lett 288 (1998). 243.
 
[36]  C. Loo, A. Lin, L. Hirsch, M-H. Lee, J. Barton, N. Halas, J. West and R. Drezek, Technology in Cancer Research & Treatment 3 (2004). 33-40.
 
Show Less References

Article

Kinetics of Photocatalytic Degradation of Methylene Blue in Aqueous Dispersions of TiO2 Nanoparticles under UV-LED Irradiation

1Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Negara Brunei Darussalam

2Department of Physics, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Negara Brunei Darussalam

3Center for Plasma Research, Department of Physics, Faculty of Science and Mathematics, Universitas Diponegoro, Kampus Undip Tembalang, Semarang 50239, Indonesia


American Journal of Nanomaterials. 2017, 5(1), 1-6
doi: 10.12691/ajn-5-1-1
Copyright © 2017 Science and Education Publishing

Cite this paper:
S. L. N. Zulmajdi, S. N. F. H. Ajak, J. Hobley, N. Duraman, M. H. Harunsani, H. M. Yasin, M. Nur, A. Usman. Kinetics of Photocatalytic Degradation of Methylene Blue in Aqueous Dispersions of TiO2 Nanoparticles under UV-LED Irradiation. American Journal of Nanomaterials. 2017; 5(1):1-6. doi: 10.12691/ajn-5-1-1.

Correspondence to: A.  Usman, Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Negara Brunei Darussalam. Email: anwar.usman@ubd.edu.bn

Abstract

We investigated the degradation of methylene blue (MB) as an organic dye pollutant upon photocatalytic oxidation of TiO2 nanoparticles under UV-LED (395 nm) light irradiation. Effect of different parameters, including initial concentration of dye and catalyst dosage on the degradation rate of the dye were evaluated. We found that the photonic efficiency of the photocatalytic degradation rate of the dye was determined by the ratio between the initial concentration of the dye and the number of TiO2 nanoparticles in the colloidal solution. The optimum photocatalytic degradation rate was achieved when the TiO2 nanoparticles in the solution are well covered by dye molecules, providing an interpretation that MB–TiO2 molecular interactions play the key role in the photoinduced oxidation and reduction, leading to the photocatalytic degradation. We also demonstrated that the energy activation of the photocatalytic degradation is related to diffusion-controlled reaction, indicating that the photocatalytic degradation of the dyes is diffusion-controlled reaction of free hydroxyl radicals.

Keywords

References

[1]  Peleka, E.N. and Matis, K.A., “Water separation processes and sustainability,” Ind. Eng. Chem. Res. 50, 421-430, 2011.
 
[2]  Tayeb, A.M. and Hussein, D.S., “Synthesis of TiO2 nanoparticles and their photocatalytic activity for methylene blue,” Am. J. Nanomater. 3, 57-63, 2015.
 
[3]  Lim, L.B.L., Priyantha, N., Chan, C.M., Matassan, D., Chieng, H.I. and Kooh, M.R.R.,” Investigation of the sorption characteristics of water lettuce (WL) as a potential low-cost biosorbent for the removal of methyl violet 2B,” Desalin. Water Treat. 57, 8319-8329, 2016.
 
[4]  Mohd. Rafatullah, M., Sulaiman, O., Hashim, R. and Ahmad, A., “Adsorption of methylene blue on low-cost adsorbents: A review,” J. Hazard. Mater. 177, 70-80, 2010.
 
[5]  Ngah, W.S., Teong, L.C. and Hanafiah, M.A.K.M., “Adsorption of dyes and heavy metal ions by chitosan composites: A review,” Carbohydrate Polym. 83, 1446-1456, 2011.
 
Show More References
[6]  Crini, G., “Non-conventional low-cost adsorbents for dye removal: A review,” Bioresource Tech. 97, 1061-1085, 2006.
 
[7]  Schiavello, M. (Ed.). Heterogeneous Photocatalysis, Wiley, New York, 1997.
 
[8]  Bahnemann, D. in: Boule, P. (Ed.). Handbook of Environmental Photochemistry, Springer, Verlag, 1999, 285-323.
 
[9]  Robert, D. (Ed.), Industrial and Environmental Applications of Photocatalysis (special issue), Int. J. Photoenergy, 5, 2003.
 
[10]  Pichat, P. in: Ert, G., Knözinger, H. and Weitkamp, J. (Eds.), Handbook of Heterogeneous Photocatalysis, VCH, Weiheim, 1997, 2111-2121.
 
[11]  Ollis, D.F. and Al-Ekabi H. (Eds.), Photocatalytic Purification and Treatment of Water and Air, Elsevier, Amsterdam, 1993.
 
[12]  Robert, D., Lede, J. and Weber, J.V. (Eds.), Special Issue in Entropie, 2000, no. 228.
 
[13]  Chakrabarti, S. and Dutta, B.K., “Photocatalytic degradation of model textile dyes in wastewater using ZnO as a semiconductor catalyst,” J. Hazard. Mater. 112, 269-278, 2004.
 
[14]  Behnajady, M.A. and Eskandarloo, H. “Silver and Copper Co–Impregnated onto TiO2–P25 nanoparticles and its photocatalytic activity,” Chem. Eng. J. 2013, 228, 1207-1213.
 
[15]  Jeni, J. and Kanmani, S., “Solar nanophotocatalytic decolorisation of reactive dyes using titanium dioxide,” Iran. J. Environ. Health. Sci. Eng. 8, no. 1, 2011.
 
[16]  Fujishima, A. and Zhang, X., “Titanium dioxide photocatalysis: present situation and future approaches,” Chin. Res. Chim. 9, 750-760, 2006.
 
[17]  Dariani, R.S., Esmaeili, A., Mortezaali, A. and Dehghanpour, S., “Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles,” Optik 127, 7143-7154, 2016.
 
[18]  Reyes–Coronado, D., Rodriguez–Gattorno, G., Espinosa–Pesqueira M.E., Cab, C., de Coss, R. and Oskam G. Phase–Pure TiO2 Nanoparticles: anatase, brookite, and rutile. Nanotechnology 19, 145605–145614, 2008.
 
[19]  Mishra, G., Farida, K.M. and Singh, S.K. Solar light driven Rhodamine B degradation over highly active -SiC-TiO2 nanocomposite. RSC Adv. 4, 12918-12928, 2014.
 
[20]  Zhang, T.Y., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J.C. and Serpone, N., “Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation,” J. Photochem. Photobiol. A 140, 163-172, 2001.
 
[21]  Jang, H.D., Kim, S.K. and Kim, S.J. “Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties,” J. Nanopart. Res. 3. 141-147, 2001.
 
[22]  Dai, K., Lu, L. and Dawson, G., “Development of UV-LED/TiO2 device and their application for photocatalytic degradation of methylene blue,” J. Mater. Eng.Perform. 22 1035-1040, 2013.
 
[23]  Ling, C. and Mohamed, A., “Photo degradation of methylene blue dye in aqueous stream,” J. Technol. 40, 91-103, 2004.
 
[24]  An, T.C. Zhu, X.H. Xiong, Y., Feasibility study of photo electrochemical degradation of methylene blue, Chemosphere 46, 897-903, 2002.
 
[25]  Wu, R.J., Chen, C.C., Chen, M.H. and Lu, C.S., “Titanium dioxide-mediated heterogeneous photocatalytic degradation of terbufos: parameter study and reaction pathways,” J. Hazard. Mater. 162, 945-953, 2009.
 
[26]  Simoncic, P. and Armbruster, T., “Cationic methylene blue incorporated into zeolite mordenite-Na: A single crystal X-ray study,” Micropor. Mesopor. Mat. 81, 87-95, 2005.
 
[27]  Murphy, S., Huang, L., and Kamat, P., “Charge-transfer complexation and excited-state interactions in porphyrin-silver nanoparticle hybrid structures,” J. Phys. Chem. C 115, 22761-22769, 2011.
 
[28]  Benetoli, L. O. de B., Cadorin, B. M., Postiglione, C. da S., de Souza, I.G., and Debacher, N.A., “Effect of temperature on methylene blue decolorization in aqueous medium in electrical discharge plasma reactor,” J. Braz. Chem. Soc., 22, 1669-1678, 2011.
 
[29]  Lee, B.-N, Liaw, W.-D., and Lou, J.-C., “Photocatalytic decolorization of methylene blue in aqueous TiO2 suspension,” Environ. Eng. Sci. 16, 165-175, 1999.
 
[30]  Wu, C. H. and Chern, J. M., “Kinetics of photocatalutic decomposition of methylene blue,” Ind. Eng. Chem. Res. 45, 6450-6457, 2006.
 
[31]  Ling, C. M., Mohamed, A. R. and Bhatia, S., “Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methelene blue dye present in water, Chemosphere 57, 547-554, 2004.
 
Show Less References