American Journal of Nanomaterials»Articles

Article

Synthesis a New Magnetic Nanoparticles and Study the Interaction with Xanthine Oxidase

1Department of Chemistry- faculty of Science-Kufa University, Iraq

2Department of Chemical and Material Engineering-Engineering Faculty-Kentucky University


American Journal of Nanomaterials. 2014, 2(2), 13-20
DOI: 10.12691/ajn-2-2-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Hussain Kadhem Al-Hakeim, Mustafa M. Kareem, Eric A. Grulke. Synthesis a New Magnetic Nanoparticles and Study the Interaction with Xanthine Oxidase. American Journal of Nanomaterials. 2014; 2(2):13-20. doi: 10.12691/ajn-2-2-1.

Correspondence to: Hussain  Kadhem Al-Hakeim, Department of Chemistry- faculty of Science-Kufa University, Iraq. Email: headm2010@yahoo.com

Abstract

Two new magnetic nanoparticles (MNPs) were prepared using magnetic iron oxides with cholesterol and sulphadiazine. These compounds were prepared by coprecipitation methods of the iron oxide (II and III) and then the prepared MNP were incubated with the cholesterol and sulphadiazine. The synthesized compounds were identified using many techniques including TEM, SEM, DLS, and TGA. The results showed the formation of new magnetic nanoparticles; MNP@Cholesterol and MNP@Sulphadiazine. The interaction between the prepared MNPs and xanthine oxidase (XO) was studied as a potential method for the inhibition of its activity, for the extraction of XO from biological fluids or for the immobilization of XO on the surfaces of MNPs. The interaction studies involve incubation of XO solution with the suspension of the prepared MNPs using different concentration of XO solutions and fixed weights of MNPs. Adsorption studies of XO on MNPs showed that the prepared MNPS have the ability to extract suitable amounts of XO from solution. Circular dichroism study of the adsorption of XO on the prepared MNPs showed a significant changes in the secondary structures, namely reduction of the α-helix structure. Furthermore, fluorospectrophotometric study showed changes in the tertiary structure of the XO due to the interaction with the active sites of the prepared MNPs. Kinetic study of the inhibition of XO activity by the prepared MNPs showed a mixed inhibition due to the changes in the original XO enzyme after the interaction with the surfaces. Magnetic Fe3O4 showed the higher inhibition activity followed by MNP@Sulphadiazine and MNP@Choleterol-XO, respectively.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[[1]  Leong GJ, Ebnonnasir A, Schulze MC, Strand MB, Ngo C, Maloney D, Frisco SL, Dinh HN, Pivovar B, Gilmer GH, Kodambaka S, Ciobanu CV, Richards RM. Shape-directional growth of Pt and Pd nanoparticles.Nanoscale. 2014;6(19):11364-71.
 
[[2]  Castillo PM, de la Mata M, Casula MF, Sánchez-Alcázar JA, Zaderenko AP. PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system. Beilstein J Nanotechnol. 2014; 5: 1312-9.
 
[[3]  Li D, Tang X, Pulli B, Lin C, Zhao P, Cheng J, Lv Z, Yuan X, Luo Q, Cai H, Ye M. Theranostic nanoparticles based on bioreduciblepolyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging.Int J Nanomedicine. 2014; 9: 3347-61.
 
[[4]  Samanta A, Ravoo BJ. Magnetic Separation of Proteins by a Self-Assembled Supramolecular Ternary Complex.AngewChemInt Ed Engl. 2014 Sep 22.
 
[[5]  Kasten A, Grüttner C, Kühn JP, Bader R, Pasold J, Frerich B. Comparative In Vitro Study on Magnetic Iron Oxide Nanoparticles for MRI Tracking of Adipose Tissue-Derived Progenitor Cells.PLoS One. 2014; 9(9): e108055.
 
Show More References
[6]  Céspedes E, Byrne JM, Farrow N, Moise S, Coker VS, Bencsik M, Lloyd JR, Telling ND. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications. Nanoscale. 2014 Sep 18.
 
[7]  Kado, T. Structural and magnetic properties of magnetite-containing epitaxial iron oxide films grown on MgO(001) substrates. Journal of Applied Physics. 2008; 103(4), 043902-4.
 
[8]  Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges.Expert Opin Drug Deliv. 2014; 11(9): 1449-70.
 
[9]  Zhang ZJ, Ma J, Xu SB, Ren JH, Qin Y, Huang J, Yang KY, Zhang ZP, Wu G. Synthesis and characterization of surface-modified Fe3O4 super-paramagnetic nanoparticles. J HuazhongUnivSciTechnolog Med Sci. 2014; 34(2): 270-5.
 
[10]  Treuel L1, Eslahian KA, Docter D, Lang T, Zellner R, Nienhaus K, Nienhaus GU, Stauber RH, Maskos M. Physicochemical characterization of nanoparticles and their behavior in the biological environment. PhysChemChem Phys. 2014; 16(29): 15053-67.
 
[11]  Docter D, Bantz C, Westmeier D, Galla HJ, Wang Q, Kirkpatrick JC, Nielsen P, Maskos M, Stauber RH. The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles.Beilstein J Nanotechnol. 2014; 5: 1380-92.
 
[12]  Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. ProcNatlAcadSci USA, 2007, 16: 2050-2055.
 
[13]  Mu X, Qiao J, Qi L, Liu Y, Ma H. Construction of a D-amino acid oxidase reactor based on magnetic nanoparticles modified by a reactive polymer and its application in screening enzyme inhibitors.ACS Appl Mater Interfaces. 2014; 6(15): 12979-87.
 
[14]  Masuoka, N.; Nihei, K.; Maeta, A.; Yamagiwa, Y.; Kubo, I. Inhibitory effects of cardols and related compounds on superoxide anion generation by xanthine oxidase. Food Chem. 2014, 166: 270-274.
 
[15]  Kumar D, Kaur G, Negi A, Kumar S, Singh S, Kumar R. Synthesis and xanthine oxidase inhibitory activity of 5,6-dihydropyrazolo/pyrazolo[1,5-c]quinazoline derivatives.Bioorg Chem. 2014; 57C: 57-64.
 
[16]  Guan Q, Cheng Z, Ma X, Wang L, Feng D, Cui Y, Bao K, Wu L, Zhang W. Synthesis and bioevaluation of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acids as potent xanthine oxidase inhibitors.Eur J Med Chem. 2014; 85: 508-16.
 
[17]  Zhang Z, Zhang Y, Method of calculating the thermodynamic parameters from some isothermal absorption models J. Acta of Northwest Sci-Tech UnivAgric Forestry. 1998, 26(2): 94-98.
 
[18]  Kalckar H.M.. Differential spectrophotometry of purine compounds by means of specific enzymes; determination of hydroxypurine compounds. The Journal of biological chemistry. 1947; 167(2): 429-443.
 
[19]  Bradford, M.M. "Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding", Anal. Biochem. 1976; 72: 248-254.
 
[20]  You Q, Antony J, Sharma A, Nutting J, Sikes D, Meyer D. Iron/iron oxide core-shell nanoclusters for biomedical applications. J Nanopart Res. 2006; 8: 489-496.
 
[21]  Silva VAJ, Andrade PL, Silva MPC, Bustamante A,Valladares LDS, Aguiar JA. Synthesis andcharacterizationofFe3O4 nanoparticles coated with fucan polysaccharides. J MagnMagn Mater. 2013; 343: 138-143.
 
[22]  Conde J, Dias JT, Grazú V, Moros M, Baptista PV, de la Fuente JM. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem. 2014; 2: 48.
 
[23]  Behzadi S, Serpooshan V, Sakhtianchi R, Müller B, Landfester K, Crespy D, Mahmoudi M. Protein corona change the drug release profile of nanocarriers: The "overlooked" factor at the nanobio interface.Colloids Surf B Biointerfaces. 2014; pii: S0927-7765(14)00477-9.
 
[24]  Sobczynski DJ, Charoenphol P, Heslinga MJ, Onyskiw PJ, Namdee K, Thompson AJ, Eniola-Adefeso O. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.PLoS One. 2014; 9(9): e107408.
 
[25]  Aili, D., Enander, K., Rydberg, J., Nesterenko, I., Bjorefors, F., Baltzer, L., Liedberg B. Folding induced assembly of polypeptide decorated gold nanoparticles. J Am Chem Soc. 2008; 130: 5780-5788.
 
[26]  De M, Rana S, Rotello VM. Nickel-ion-mediated control of the stoichiometry of His-tagged protein/nanoparticle interactions. MacromolBiosci 2009, 9: 174-178.
 
[27]  Arroyo-Maya IJ, Hernández-Sánchez H, Jiménez-Cruz E, Camarillo-Cadena M, Hernández-Arana A. α-Lactalbumin nanoparticles prepared by desolvation and cross-linking: Structure and stability of the assembled protein. Biophys Chem. 2014; 193-194: 27-34.
 
[28]  Perez-Iratxeta C, Andrade-Navarro MA. K2D2: estimation of protein secondary structure from circular dichroism spectra. BMC Structural Biology. 2008; 13;8:25. doi: 10.1186/1472-6807-8-25.
 
[29]  Seehuber A, Dahint R. Conformation and activity of glucose oxidase on homogeneously coated and nanostructured surfaces. J PhysChem B. 2013; 117(23): 6980-9.
 
[30]  Carter EL, Tronrud DE, Taber SR, Karplus PA, Hausinger RP. Iron-containing urease in a pathogenic bacterium. ProcNatlAcadSci USA. 2011; 108: 13095-13099.
 
[31]  Caputo GA, London E. Cumulative effects of amino acid substitutions and hydrophobic mismatch upon the transmembrane stability and conformation of hydrophobic alpha-helices. Biochemistry. 2003; 42, 3275-85.
 
[32]  Lakowicz, J. R., In Principles of Fluorescence Spectroscopy, Kluwer-Plenum, NY, 1999.
 
[33]  Toth J. Adsorption: theory, modeling, and analysis Surfactant, Marcel Dekker, Sci. Ser. 2002; 107(50): 971-983.
 
[34]  Wang B, Peng W,YokelRA, Eric A. Influence of surface charge on lysozyme adsorption to ceria nanoparticles. AppSurf Sci. 2012; 258(14): 5332-5341.
 
[35]  Fischer N, Verma A, Goodman C, Simard J, Rotello V, Reversible "irreversible" inhibition of chymotrypsin using nanoparticle receptors. JAm ChemSoc 2003; 125:13387-13391.
 
[36]  FeiL, Perrett S. Effect of Nanoparticles on Protein Folding and Fibrillogenesis.Int J Mol Sci. 2009; 10: 646-655.
 
[37]  Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solid surfaces. AdvColl Interface Sci. 2011; 162(1-2): 87-106.
 
[38]  Case DA, Cheatham T, Darden T, Gohlke H, Luo R, Merz Jr KM, Onufriev A, Simmerling C, Wang B, Woods R: The Amber biomolecular simulation programs.J Comput Chem. 2005; 26: 1668-1688.
 
[39]  Shang W, Nuffer J, Dordick J, Siegel R. Unfolding of ribonuclease A on silica nanoparticle surfaces. NanoLett, 2007; 7: 1991-1995.
 
[40]  Wu SC, Lia YK Application of bacterial cellulose pellets in enzyme immobilization. J MolCatal B-Enzym. 2008; 54: 103-108.
 
[41]  Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. ChemSoc Rev. 2012; 41(7): 2780-99.
 
Show Less References

Article

Self-assembly of Globulin Nanofibrils at Various Ionic Strength: Microstructure and Gels

1Department of Food, Guangzhou City Polytechnic, P.R. China

2Guangdong Key Lab. of Agricultural Product processing, Sericulture & Agri-food Research Institute GAAS, Guangzhou, P.R. China


American Journal of Nanomaterials. 2014, 2(1), 8-12
DOI: 10.12691/ajn-2-1-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
Lihua Huang, Yehui Zhang, Haibin Li. Self-assembly of Globulin Nanofibrils at Various Ionic Strength: Microstructure and Gels. American Journal of Nanomaterials. 2014; 2(1):8-12. doi: 10.12691/ajn-2-1-3.

Correspondence to: Yehui  Zhang, Guangdong Key Lab. of Agricultural Product processing, Sericulture & Agri-food Research Institute GAAS, Guangzhou, P.R. China. Email: zhangyhgx@gmail.com

Abstract

The effects of various ionic strengths and concentrations on the structure and gel properties of rice bran globulin(RBG) at pH 2.0 were investigated using atomic force microscopy(AFM) and rheometer. AFM showed the assembling RBG fibrils translated from strand beads to branch clustered, when electrostatic repulsive forces attenuated gradually with increasing ionic strength. The percolation model G'~(C-Cp)n calculate the theoretical critical concentration formed RBG gels at various ionic strengths(0), which decreased from 15.17±0.63 to 2.26±0.27 wt%. RBG gels according to the actual complexion had been drawn by computer, the color and state of cubes were simulated. A granular dense structure and intensive mesh like gel network was observed, and a more homogenous structure were formed at low ionic strength.

Keywords

References

[[[[[[[[[[[[[
[[1]  Lisa RV, Michele V, Christopher MD, Tuomas PJK. A clear view of polymorphism, twist, and chirality in amyloid fibril formation. ACS Nano, 2013; 7: 10443-10448.
 
[[2]  Akkermans C, Goot AJ, Venem P, Linden E, Boom RM, Cynthia A, Atze JG, Paul V, Erik L, Remko MB.Formation of fibrillar whey protein aggregates: Influence of heat and shear treatment, and resulting rheology Food Hydrocolloids 2008; 22: 1315-1325.
 
[[3]  Tang CH, Zhang YH, Wen QB, Huang QR. Formation of Amyloid Fibrils from Kidney Bean 7S Globulin (Phaseolin) at pH 2.0. Journal of Agricultural and Food Chemistry 2010; 58: 8061-8068.
 
[[4]  Veerman C, Ruis H, Sagis LMC, Linden E. Effect of electrostatic interactions on the percolation concentration of fibrillar beta-lactoglobulin gels. Biomacromolecules 2002; 3: 869-873.
 
[[5]  Ashley EM, Abhishek S, Yaroslava GY. The effect of point mutations on structure and mechanical properties of collagen-like fibril: A molecular dynamics study. Materials Science and Engineering: C 2012; 32: 2583-2588.
 
Show More References
[6]  Satoru F, Fumiko M, Yasushige Y. Effects of Salt Concentration on Association of the Amyloid Protofilaments of Hen Egg White Lysozyme Studied by Time-resolved Neutron Scattering. J. Mol. Biol. (2003) 331, 21-28.
 
[7]  Farahnaky A, Askari H, Majzoobi M, Mesbahi G. The Impact of Concentration, Temperature and pH on Dynamic Rheology of Psyllium Gels. Journal of Food Engineering 2010; 100: 294-301.
 
[8]  Lang GH, Yukari K, Mayumi OK, Kazumi K. Evaluation of extraction solutions for biochemical analyses of the proteins in rice grains. Bioscience Biotechnology and Biochemistry 2013; 77: 126-131.
 
[9]  Weijers M, Velde F, Stijnman A, Pijpekamp A, Visschers RW. Structure and rheological properties of acid-induced egg white protein gels. Food Hydrocolloids. 20 (2006) 146-159.
 
[10]  Matthew BD, Kenneth HS, Rajesh RN. Protein- and Peptide-Directed Syntheses of Inorganic Materials. Chem. Rev., 2008, 108 (11), pp 4935-4978.
 
[11]  Erik L, Leonard MCS. Isotropic-force percolation in protein gels. Langmuir 2001; 17: 5821-5824.
 
[12]  Tang CH, Wang SS, Huang QR. Improvement of heat-induced fibril assembly of soy β-conglycinin (7S Globulins) at pH 2.0 through electrostatic screening. Food Research and International 2012; 46: 229-236.
 
[13]  Veerman C, Sagis LMC, Heck J, Linden E. Mesostructure of fibrillar bovine serum albumin gels. International Journal of Biological Macromolecules 2003; 31: 139-146.
 
[14]  Nakano M, Shen JR, Kamino K. Self-assembling peptide inspired by a barnacle underwater adhesive protein. Biomacromolecules 2007; 8: 1830-1835.
 
[15]  Ikeda S, Morris V. Fine-stranded and particulate aggregates of heat-denatured whey proteins visualized by atomic force microscopy. Biomacromolecules 2002; 3: 382-389.
 
[16]  Matzinos P, Álvarez R. Effect of ionic strength on rinsing and alkaline cleaning of ultrafiltration inorganic membranes fouled with whey proteins. Journal of Membrane Science 2002; 208: 23-30.
 
[17]  Moritz P, Ulf H, Daniel JM. Quantitative Imaging of the Electrostatic Field and Potential Generated by a Transmembrane Protein Pore at Subnanometer Resolution. Nano Lett., 2013, 13 (11), 5585-5593.
 
[18]  Luben NA, Renko V, Hans I, Carlo PMM. Multiple Steps during the Formation of β-Lactoglobulin Fibrils. Biomacromolecules 2003, 4, 1614-1622.
 
Show Less References

Article

One Pot Synthesis of Crystalline Silver Nanoparticles

1Department of Chemistry, University of Delhi, Delhi-110007, India

2Department of Chemistry, Ramjas College, University of Delhi, Delhi-110007, India


American Journal of Nanomaterials. 2014, 2(1), 4-7
DOI: 10.12691/ajn-2-1-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Nityananda Agasti, N.K. Kaushik. One Pot Synthesis of Crystalline Silver Nanoparticles. American Journal of Nanomaterials. 2014; 2(1):4-7. doi: 10.12691/ajn-2-1-2.

Correspondence to: Nityananda  Agasti, Department of Chemistry, University of Delhi, Delhi-110007, India. Email: nnagasti@gmail.com

Abstract

This paper describes a simple and convenient procedure for the preparation of crystalline silver nanoparticles. One pot synthesis of silver nanoparticles free from stabilizing agent has been investigated. Aqueous solution of AgNO3 has been reduced by N2H4.H2O in presence of CH3COONa. The aggregation of silver nanoparticles were prevented by CH3COONa in chemical bath and then washed away, leaving crystalline silver nanoparticles. The whole experiment has been carried out at room temperature, using water as solvent and also within very less time. The particles synthesized were characterized by UV-Visible, FTIR, TGA, TEM & X-ray diffraction studies.

Keywords

References

[[[[[[[[[[[[[
[[1]  Schimd. G., Chi. L.F., “Metal Clusters and Colloids,” Adv. Mater., 10 (7). 515. 1998.
 
[[2]  El-Sayed, M. A., “Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes,” Acc. Chem.Res., 34 (4). 257. 2001.
 
[[3]  Schmid, G., Clusters and Colloids: From Theory to Application, VCH, Weinheim, 1994.
 
[[4]  Carotenuto, G., Pepe, G. P., Nicolais, L., “Preparation and characterization of nano-sized Ag/PVP composites for optical applications,” Eur. Phys. J. B 16. 11. 2000.
 
[[5]  Gehr, R. J., Boyd, R. W., “Optical Properties of Nanostructured Optical Materials,” Chem. Mater., 8. 1807. 1996.
 
Show More References
[6]  Matejka, P., Vlckova, B., Vohlidal, J., Pancoska, P., Baumrunk, V., “The Role of Triton X-100 as an Adsorbate and a Molecular Spacer on the Surface of Silver Colloid: A Surface-Enhanced Raman Scattering Study,” J. Phys. Chem., 96. 1361. 1992
 
[7]  Stabel, A., Eichhorst-Gerner, K., Rabe, J. P., Gonzalez Elipe, A. R.,“Surface Defects and Homogeneous Distribution of Silver Particles on HOPG,” Langmuir, 14. 7324. 1998.
 
[8]  Silvert, P. Y., Herrera-Urbina, R., Duvauchelle, N., Vijayakrishnan,V., Tekaia-Elhsissen, K., “Preparation of colloidal silver dispersions by the polyol process Part 1 -Synthesis and characterization,” J. Mater. Chem., 6 (4). 573. 1996.
 
[9]  Pethkar, S., Aslam, M., Mulla, I. S., Ganeshan, P., Vijayamohanan, K.,“Preparation and characterisation of silver quantum dot superlattice using self-assembled monolayers of pentanedithiol,” J. Mater. Chem., 11. 1710. 2001.
 
[10]  Yanagihara, N., Uchida, K., Wakabayashi, M., Uetake, Y., Hara, T., “Effect of Radical Initiators on the Size and Formation of Silver Nanoclusters in Poly (methyl methacrylate),” Langmuir, 15. 3038. 1999.
 
[11]  Yasukawa, T., Miyamura, H., Kobayashi, S.J., “Polymer-Incarcerated Chiral Rh/Ag Nanoparticles for Asymmetric 1, 4-Addition Reactions of Arylboronic Acids to Enones: Remarkable Effects of Bimetallic Structure on Activity and Metal Leaching,” J. Am. Chem. Soc., 134. 16963. 2012.
 
[12]  Gross, E., Liu, J.H., Alayoglu, S., Marcus, M.A., Fakra, S.C., Toste, F.D., Somorjai, G.A., “Asymmetric Catalysis at the Mesoscale: Gold Nanoclusters Embedded in Chiral Self-Assembled Monolayer as Heterogeneous Catalyst for Asymmetric Reactions,” J. Am. Chem.,135. 3881. 2013.
 
[13]  Kahsar, K. R., Schwartz, D. K., Medlin, J. W., “Selective Hydrogenation of Polyunsaturated Fatty Acids Using Alkanethiol Self-Assembled Monolayer-Coated Pd/Al2O3 Catalysts,”ACS Catal., 3. 2041. 2013.
 
[14]  Xian, J., Hua, Q., Jiang, Z., Ma, Y., Huang, W., “Size-Dependent Interaction of the Poly(N-vinyl-2-pyrrolidone) Capping Ligand with Pd Nanocrystals,” Langmuir, 28. 6736. 2012.
 
[15]  Li, D., Wang, C., Tripkovic, D., Sun, S., Markovic, N.M., Stamenkovic, V.R., “Surfactant Removal for Colloidal Nanoparticles from Solution Synthesis: The Effect on Catalytic Performance,” ACS Catal., 2. 1358. 2012.
 
[16]  Shao, M., Odell, J. H., Choi, S-II., Xia, Y., “Electrochemical surface area measurements of platinum- and palladium-based nanoparticles,” Electrochem. Commun., 31. 46. 2013.
 
[17]  Mulvaney, P., “Surface Plasmon Spectroscopy of Nanosized Metal Particles,” Langmuir, 12. 788. 1996.
 
[18]  Kashiwagi, Y., Yamamoto, M., Nakamoto, M., “Facile size-regulated synthesis of silver nanoparticles by controlled thermolysis of silver alkylcarboxylates in the presence of alkylamines with different chain lengths,” Journal of Colloid and Interface Science, 300. 169. 2006.
 
Show Less References

Article

A Study of Magnetic Behaviour for Nanoparticles

1Department of Physics, National Institute of Technology, Srinagar, Kashmir, India

2Dexa Medica, Titan Center 3rd Floor, Jalan Boulevard Bintaro Block B7/B1 No. 05 Bintaro Jaya Sector 7, Tangerang, Indonesia

3Department of Physics, University of Kashmir, Srinagar, Kashmir, India

4Bemina Degree Collage, Srinagar, Kashmir, India


American Journal of Nanomaterials. 2014, 2(1), 1-3
DOI: 10.12691/ajn-2-1-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Mohammad Ashraf Shah, Ashaq Hussain Sofi, Marlina Rosalinda Sibuea, Shabir Ahmad Akhoon, Asloob Ahmad Rather, Ishaq Nahvi. A Study of Magnetic Behaviour for Nanoparticles. American Journal of Nanomaterials. 2014; 2(1):1-3. doi: 10.12691/ajn-2-1-1.

Correspondence to: Ashaq  Hussain Sofi, Department of Physics, National Institute of Technology, Srinagar, Kashmir, India. Email: shifs237@gmail.com

Abstract

In this paper we will analyse the feromagnetism in nanoparticles. We will try to explain why materials that do not exhibit magnetism at large scales, exhibit magnetism when nanoparticles of the same material are formed. This occurs because when the particle size is reduced, only one domain can form in one nanoparticle. These nanomaterials then exhibit magnetism at a large scale.

Keywords

References

[[[
[[1]  R. Balasubramaniam, Callister's Material Science and Enggineering, Wiley, (2013).
 
[[2]  S. O. Pillai and S. Pillai, Rudiments of Materials Science, New Age International publishers, (2005).
 
[[3]  R. Singh, J. Magn. Magn. Mater. 346, 58 (2013).
 
[[4]  C. M. Kachawa, Solid State Physics, Tata McGraw Hill, (1992).
 
[[5]  M. S. R. Roy and S. Singh, Nanoscience and Nanotechnology-Fundementals to Frontiers, Wiley, (2013).
 
Show More References
[6]  M. A. Shah and K. A. Shah, Nanotechnology-The Science of Small, Wiley (2013).
 
[7]  L. A. Pozhar, arxive: 1209.5341.
 
[8]  A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press, (2003).
 
Show Less References

Article

Sensing Capability of Fluorescent Sodium Salt of Amoxicillin

1Department of Chemistry, Kohat University of Science and Technology, Kohat, KPK, Pakistan

2Department of Chemistry, Shankar Campus, Abdul Wali Khan University Mardan, KPK, Pakistan


American Journal of Nanomaterials. 2013, 1(2), 27-30
DOI: 10.12691/ajn-1-2-3
Copyright © 2013 Science and Education Publishing

Cite this paper:
Abdul Hameed, Andaleeb Azam. Sensing Capability of Fluorescent Sodium Salt of Amoxicillin. American Journal of Nanomaterials. 2013; 1(2):27-30. doi: 10.12691/ajn-1-2-3.

Correspondence to: Abdul  Hameed, Department of Chemistry, Kohat University of Science and Technology, Kohat, KPK, Pakistan. Email: ham.chemist@gmail.com

Abstract

The capability of already available antibiotic drug ‘amoxicillin’ based on its fluorescent property has been explored. The fluorescent sodium salt of amoxicillin was used for the detection of heavy metals in aqueous solutions. It was found that Copper and Silver has a quenching effect on the fluorescence of amoxicillin. Cu2+ ions were detected in aqueous solution up to 1x10-7 M and Ag1+ ions up to 1x10-6 M. Hg2+ ions were also detected in aqueous samples but in high concentration.

Keywords

References

[[[[[[[[[[[[[[[[
[[1]  A. X. Trautwein (Ed.), Bioinorganic Chemistry, Wiley VCH, Weinheim, 1997.
 
[[2]  E. Merian (Ed.), Metals and Their Compounds in the Environment, VCH, Weinheim, 1991.
 
[[3]  L. Sigg, H. Xue, Metal speciation: concepts, analysis and effects, in G. Bidoglio, W. Stumm (Eds.), Chemistry of Aquatic Systems: Local and Global Perspectives, Kluwer Academic Publishers, Dordrecht, 1994, p.153.
 
[[4]  J. Szpunar, R. Lobinski, Fresenius J. Anal. Chem. 363 (1999) 550.
 
[[5]  D. Radisky, J. Kaplan, J. Biol. Chem. 274 (1999) 4481.
 
Show More References
[6]  D. Beyersmann, The significance of interactions in metal essentiality and toxicity, in :E. Merian (Ed.), Metals and Their Compounds in the Environment, VCH, Weinheim, 1991, p.491 Chapter I.10.
 
[7]  Brust, M.; Walker, M.; Bethell, D.; Schffrin, D. J.; Whyman, R., J. Chem. Soc., Chem. Commun. 1994, 801.
 
[8]  Templeton, A. C.; Wuelfing, M. P.; Murray, R. W., Acc. Chem. Res. 2000, 33, 27.
 
[9]  Zheng, J.; Zhang, C.; Dickson, R. M., J. Phys. Rev. Lett. 2004, 93, 077402.
 
[10]  Zheng, J.; Petty, J. T.; Dickson, R. M., J. Am. Chem. Soc. 2003, 125, 7780.
 
[11]  Schaaff, T. G.; Whetten, R. L., Giant Gold−Glutathione Cluster Compounds:  Intense Optical Activity in Metal-Based Transitions. The Journal of Physical Chemistry B 2000, 104 (12), 2630-2641.
 
[12]  Schaaff, T. G.; Knight, G.; Shafigullin, M. N.; Borkman, R. F.; Whetten, R. L., J. Phys. Chem. B 1998, 102, 10643.
 
[13]  Koneswaran, M.; Narayanaswamy, R., l-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sensors and Actuators B: Chemical 2009, 139 (1), 104-109.
 
[14]  Yang, W.; Gooding, J. J.; He, Z.; Li, Q.; Chen, G., Fast Colorimetric Detection of Copper Ions Using L-Cysteine Functionalized Gold Nanoparticles. Journal of Nanoscience and Nanotechnology 2007, 7 (2), 712-716.
 
[15]  Sugunan, A.; Thanachayanont, C.; Dutta, J.; Hilborn, J. G., Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Science and Technology of Advanced Materials 2005, 6 (3-4), 335-340.
 
[16]  Liu, J.; Lu, Y., A DNAzyme Catalytic Beacon Sensor for Paramagnetic Cu2+ Ions in Aqueous Solution with High Sensitivity and Selectivity. Journal of the American Chemical Society 2007, 129 (32), 9838-9839.
 
[17]  Lan, G.-Y.; Huang, C.-C.; Chang, H.-T., Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chemical Communications 2010, 46 (8), 1257-1259.
 
[18]  Zheng, Y.; Orbulescu, J.; Ji, X.; Andreopoulos, F. M.; Pham, S. M.; Leblanc, R. M., Development of Fluorescent Film Sensors for the Detection of Divalent Copper. Journal of the American Chemical Society 2003, 125 (9), 2680-2686.
 
[19]  Hameed, A.; Islam, N. U.; Shah, M. R.; Kanwal, S., Facile one-pot synthesis of gold nanoparticles and their sensing protocol. Chemical Communications 2011, 47 (43), 11987-11989.
 
[20]  Bird, A. E., ANALYTICAL PROFILES OF DRUG SUBSTANCES AND EXCIPIENTS-VOLUME 23. Analytical Profiles of Drug Substances and Excipients 1994, 23, 1.
 
[21]  Brittain, H. G., Solid-state fluorescence of the trihydrate phases of ampicillin and amoxicillin. AAPS PharmSciTech 2005, 6 (3), 444-448.
 
Show Less References

Article

Adsorption of Iron and Synthesis of Iron Nanoparticles by Aspergillus Species Kvp 12

1Department of Biotechnology, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India


American Journal of Nanomaterials. 2013, 1(2), 24-26
DOI: 10.12691/ajn-1-2-2
Copyright © 2013 Science and Education Publishing

Cite this paper:
K. V. Pavani, N.Sunil Kumar. Adsorption of Iron and Synthesis of Iron Nanoparticles by Aspergillus Species Kvp 12. American Journal of Nanomaterials. 2013; 1(2):24-26. doi: 10.12691/ajn-1-2-2.

Correspondence to: K. V. Pavani, Department of Biotechnology, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India. Email: pavani_20042003@yahoo.co.in

Abstract

Biosorption technology has gained tremendous importance in bioremediation and microbes could become the cheapest tool in detoxification of effluent streams. Aspergillus sp. isolated from the soil sample collected from the area near Hyderabad Metal Plating Industry, I.D.A, Balanagar, Hyderabad, India have been investigated in this study. The growth kinetics of Aspergillus sp. was studied by growing the fungi at different concentration of iron ranging between 0.2mM – 12 mM (Ferrous sulphate). The culture showed considerable inhibition of growth with iron when compared to the metal free controls. The maximum amount of iron was observed in the medium containing 3.0 mM concentration and further increase in the metal concentration was found to increase metal adsorption. Transmission Electron Microscopy analysis revealed the adsorption of iron nanoparticles on the cellwall.

Keywords

References

[[[[[[[[[[
[[1]  Volesky. B. and Holan, Z, “Biosorption of heavy metals”, Biotechnol. Prog, 11, 235-250, 1995.
 
[[2]  Verma, N. and Rehal, R, “Removal of Chromium by Albizia libbeck pods from industrial wastewater”, J. ind. Pollut. Control, 12, 1, 55-59, 1996.
 
[[3]  Egwaikhide, P.A. Asia, 1.O. and Emua, S.A, “Binding of Zinc, Nickel and Cadmium ions by carbonized Rice husk”, African. J. Sci, 3,2, 673-681, 2002.
 
[[4]  Kasan, H.C. and Baeckert, A.A.W, “Activated sludge treatment of coal gasification effluent in a petrochemical plant. Metal accumulation by heterotrophic bacteria”, Water Sci. Tech. 21,4/5, 297-303, 1989.
 
[[5]  Lodi, A. Solisoio, C. Converti, A. and DelBorghi, “Cadmium, Zinc, Copper, Silver and Chromium (III).Removal from waste waters by Sphaerotilus natans”, Bioprocess Eng. 19,3, 197- 203,1989.
 
Show More References
[6]  Taniguchietal, J. Hemmi, H. Tanahashi, K. Amano,N.Nakayama, T. Nishim, T. 2000. Zinc biosorption by a zinc resistant bacterium Brevibacterium sp. Strain, H2M-1. Appl Microbial Biotechnol. 54, 581-588.
 
[7]  Valdman,E and Leite S.G.F,“Biosorption of Cd, Zn and Cu by Saragssum Sp. Waste biomass”, Bioprocess Eng, 22, 171-173,2000.
 
[8]  González-Guerrero, M. Benabdellah, K. Ferrol, N. and Azcón-Aguilar, C, Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas—Functional Processes and Ecological Impacts. Springer, Berlin, 107-122, 2009.
 
[9]  Eisendle, M. Schrettl, M. Kragl, C. Müller, D. Illmer, P. and Haas, H, “The intracellular Siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans”, Eukaryot Cell, 5,10, 1596-1603,2006.
 
[10]  Schrettl, M. Kim, H.S. Eisendle, M. Krag,l C. Nierman, W.C, Heinekamp, T. Werner, E.R. Jacobsen, I. Illmer, P. Yi, H. Brakhage, A.A. Haas, H, “SreA-mediated iron regulation in Aspergillus fumigates”, Mol Microbiol, 70, 1, 27-43,2008.
 
[11]  Johnson, L, “Iron and siderophores in fungal-host interactions”, Mycol Res, 112,170-183, 2008.
 
[12]  Guerinot, M.L, “Microbial iron transport”, Annu. Rev. Microbial, 48,1, 743-772, 1994.
 
[13]  Beveridge,T.J. and Murray,R, “Sites of metal deposition in the cell wall of Bacillus subtilis”, Journal of Bacteriology, 141, 2, 876-887, 1980.
 
[14]  Johnson, D.B, “Biodiversity and ecology of acidophilic microorganisms”, FEMS Microbiology Ecology, 27, 4, 307-317, 1998.
 
[15]  De la Torre, M.A. and Gomez-Alarcon,G, Manganese and Iron Oxidation by Fungi Isolated from building Stone”, Microb Ecol, 27,2,177-188, 1994.
 
Show Less References

Article

Changes in the Structure and Magnetic Characteristic of Nanofilms and Control of Spin Current by Short Laser Pulses

1Laboratory of Magnetic Nanostructures, Institute of Magnetism NAS of Ukraine, Kyiv, Ukraine


American Journal of Nanomaterials. 2013, 1(2), 13-23
DOI: 10.12691/ajn-1-2-1
Copyright © 2013 Science and Education Publishing

Cite this paper:
Mykola M. Krupa. Changes in the Structure and Magnetic Characteristic of Nanofilms and Control of Spin Current by Short Laser Pulses. American Journal of Nanomaterials. 2013; 1(2):13-23. doi: 10.12691/ajn-1-2-1.

Correspondence to: Mykola M. Krupa, Laboratory of Magnetic Nanostructures, Institute of Magnetism NAS of Ukraine, Kyiv, Ukraine. Email: krupa@imag.kiev.ual

Abstract

The article focuses on photon drag effect under laser radiation in solid state materials. This effect causes a high concentration of nonequilibrium electrons in the area of the laser beam the exit out of material. Coulomb interaction of spatial charge of these electrons with the charged impurity atoms can cause their drift in the direction of laser radiation. The photon drag effect can be used in laser doping technology of thin films. In multilayer magnetic nanofilms the photon drag effect of polarized electrons can lead to magnetic reversal of magnetic layers, which can be used to control a high speed spin current in the elements of spintronics.

Keywords

References

[[[[[[[[[[[[[[[[[[
[[1]  Ohno, “Making Nonmagnetic Semiconductors Ferro-magnetic”, Science, vol. 281, pp. 951-956, August, 1998.
 
[[2]  J. Cibert, J. Bobo, U. Lüders, “Development of new materials for spintronics”, Comptes Rendus Physique, vol. 6, pp. 977-996, Sept. 2005.
 
[[3]  V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein, R. A. de Groot, “Half-metallicity in NiMnSb: A variational cluster approach with ab initio parameters”, Rev. Mod. Phys., vol. 81, pp. 315-323, May 2010.
 
[[4]  E. A. Al-Nuaimy, Hussein Al Abdulqader, Journal of Electron Devices, “BJT Fabrication Using Excimer Laser Assisted Spin-on Doping Technique”, Journal of Electron Devices, vol. 6, pp. 197-202, 2008.
 
[[5]  I. Zuti´c, J. Fabian, and S. Das Sarma, “Spintronics: Funda-mentals and Applications,” Rev. Mod. Phys., vol. 76, #2, pp. 323-410, Febr. 2004.
 
Show More References
[6]  P. S. Pershan, J. P. Ziel , and L. D. Malmstrom, Theoretical Discussion of the Inverse Faraday Effect, Raman Scattering, and Related Phenomena, Phys. Rev., vol. 143, #2. pp. 574-583, 1966.
 
[7]  R. Hertel, Theory of Optical Rotation, Faraday Effect, and Inverse Faraday Effect, Journal of Magnetism and Magnetic Materials, vol. 303, pp. L1-L4, 2006.
 
[8]  J. C. Slonczewski, Current-driven excitation of magnetic multilayers, Journal of Magnetism and Magnetic Materials, vol. 159, pp. L 1-L7, 1996.
 
[9]  J. Katine, F. Albert, R. Buhrman E. B. Myers and D. C. Ralph., Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu /Co Pillar, Phys. Rev. Letters, vol. 84, pp. 3149-3152, 2000.
 
[10]  M.M. Krupa, Spin_Dependent Current and Magnetization Reversal in Tb22Co5Fe73/Pr6O11/Tb19Co5Fe76 Nanofilms in Laser Radiation Field, Journal of Experimental and Theoretical Physics, vol. 108, pp. 856-865, #5, 2009.
 
[11]  M. M. Krupa, Laser Radiation Control of the Magnetic State of Multilayer Nanofilms, Technical Physics, vol. 56, #1, pp. 107-116. 2011.
 
[12]  A. M. Danishevskii, A. A. Kastalskii, S. M. Ryvkin, and I. D. Yaroshetskii, “Photon drag effect of the free carriers in direct interband transitions in semiconductors”, Sov. Phys. JETP, vol. 31, pp. 292-297, Nov. 1970.
 
[13]  A. F. Gibson, M. F. Kimmitt, and A. C. Walker, “Photon drag in Germanium,” Appl. Phys. Lett.,vol. 17, pp. 75-79, Febr. 1970.
 
[14]  J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals”, Phys. Rev., B, vol. 61, #15, pp. 10471-10477, April 2000.
 
[15]  M.M. Krupa, A. M. Pogorily, “Scanning of laser radiation and clearing of materials on the basis of the phenomenon light induced drift of particles in semiconductors”, Sov. Technical Physics, vol.68, № 4. – P.121-124, 1998.
 
[16]  M.M. Krupa, A.M. Korostil, Yu. B. Skirta, “Drift электронов and atoms in the field of laser radiation and its influence on optical properties of semiconductors”, Radiophys. and Quantum Electronic., vo. XLVIII, № 8 pp. 45-52, 2005.
 
[17]  M.M. Krupa, Yu. B. Skirta, “Drift of atoms of bismuth in the field of laser radiation and a data recording in thin films phthalocyanine dye”, Radiophysic and Quantum Electronic, vol. XLІХ, №6, pp. 513-518, 2006.
 
[18]  R. Merservey, P. M. Tedrov, “Spin-Polarized Electron Tun-neling”, Phys. Rep., vol. 238, #4, pp. 175-239, 1994.
 
[19]  R. Pittini, P. Wachter, Cerium compounds: The new gen-eration magneto-optical Kerr rotators with unprecedented large figure of merit”, JMMM, vol. 186, #3, pp. 306-312, July 1998.
 
[20]  H. J. Leamy, A. G. Dirks, “Microstructure and magnetism in amorphous rare-earth-transition-metal thin films. II Magnetic anisotropy “, J. Appl. Phys., vol. 50, №4, pp. 2871-2882, 1979.
 
[21]  M.M. Krupa, A.M. Korostil, Impact of laser irradiation on magneto-optical properties of multilayered film structures, Inter. Journal of Modern Physics B, vol. 21,#32, pp. 5339-5350, 2007.
 
[22]  M. Komori, T. Nukata, K. Tsutsumi, C. Inokyti, I. Sakyrai, “Amorphous TbFe Films for Magnetic Printing with Laser Writing”, IEEE Trans. Magnetic, vol. 20, №5, pp. 1042-1044, 1984.
 
[23]  M. Julliere, “Tunneling between ferromagnetic films”, Phys. Letter., vol. 54, #3, pp. 225-226, September 1975.
 
Show Less References

Article

Electric and Dielectric Study of Zinc Substituted Cobalt Nanoferrites Prepared by Solution Combustion Method


American Journal of Nanomaterials. 2013, 1(1), 9-12
DOI: 10.12691/ajn-1-1-3
Copyright © 2013 Science and Education Publishing

Cite this paper:
Ritu Rani, Gagan Kumar, Khalid Mujasam Batoo, M. Singh. Electric and Dielectric Study of Zinc Substituted Cobalt Nanoferrites Prepared by Solution Combustion Method. American Journal of Nanomaterials. 2013; 1(1):9-12. doi: 10.12691/ajn-1-1-3.

Correspondence to: Ritu Rani, . Email:

Abstract

In the present work, zinc substituted cobalt nanoferrites, with formula Co(1-x)ZnxFe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4), have been prepared by solution combustion method and are investigated for their electric and dielectric properties such as dc resistivity, dielectric constant and dielectric loss. Analysis of the X-ray diffraction pattern of all the samples confirmed the formation of spinel structure. The surface morphology of the samples is studied by using TEM. The dc resistivity was found to be increasing with an increasing substitution of zinc ions and the high value of dc resistivity, 108 Ω cm, make these nanoferrites more suitable at high frequency applications. Dielectric constant and dielectric loss tangent, measured in the frequency range from 1kHz to 1MHz, are found to be decreasing with an increase in frequency. Possible mechanisms responsible for the results are discussed minutely in this paper.

Keywords

References

[[[[[[[[[[[[[[[[[[[
[[1]  Chand, J., Kumar, Gagan, Kumar, P., Sharma, S. K., Knobel, M. and Singh, M., “Effect of Gd3+ doping on magnetic, electric and dielectric properties of MgGdxFe2−xO4 ferrites processed by solid state reaction technique,” J. Alloys and Compds., 509. 9638-9644. Oct. 2011.
 
[[2]  Kumar, Gagan, Chand, J., Verma, S. and Singh, M., “Mixed Mg-Mn Ferrites for High Frequency Applications Processed by Citrate Precursor Technique,” J. Phys. D: Appl. Phys., 42. 155001-155006. July. 2009.
 
[[3]  Gupta, Manik and Randhawa, B. S., “Microstructural, Magnetic and Electric Properties of Cs-Zn Ferrites Prepared by Solution Combustion Method,” Solid State Sciences, 14. 849-856. Jul. 2012.
 
[[4]  Jacob, B. P., Thankachan, S., Xavier, S. and Mohammed, E.M., “Dielectric Behavior and AC Conductivity of Tb3+ Doped Ni0.4Zn0.6Fe2O4 Nanoparticles,” J. Alloys and Compds., 541. 29-35. Nov. 2012.
 
[[5]  Hashim, M., Alimuddin, Kumar, S., Koob, B.H., Shirsath, Sagar E., Mohammed, E.M., Shah, Jyoti, Kotnala, R.K., Choi, H.K., Chung, H. and Kumar, Ravi, “Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles,” J. Alloys and Compds., 518. 11-18. Mar. 2012.
 
Show More References
[6]  Sharma, Anshu, Parmar, Kusum, Kotnala R.K. and Negi, N.S., “Magnetic and Dielectric Properties of CoxZn1-xFe2O4 Synthesized by Metallo-Organic Decomposition Technique,” International J. Adv.Engg. Tech., 5. 544-554. Nov. 2012.
 
[7]  Arulmurugan, R., Vaidyanathan, G., Sendhilnathan, S. and Jeyadevan, B., “Preparation and Properties of Temperature Sensitive Magnetic Fluid having Co0.5Zn0.5Fe2O4 and Mn0.5Zn0.5Fe2O4 Nanoparticles,” Physica B, 368. 223-230. Nov. 2005.
 
[8]  Meaz, T. M., Attia, S. M. and Ata, Abo El, “Effect of Tetravalent Titanium Ions Substitution on the Dielectric Properties of Co-Zn Ferrites,” J. Magn. Magn. Mater., 257. 296-305. Feb. 2003.
 
[9]  Köseoğlu, Y., Baykal, A., Gozuak, F. and Kavas, H., “Structural and Magnetic Properties of CoxZn1-xFe2O4 Nanocrystals Synthesized by Microwave Method,” Polyhedron, 28. 2887-2892. Sept. 2009.
 
[10]  Gul, I.H. and Maqsood, A., “Structural, Magnetic and Electrical Properties of Cobalt Ferrites Prepared by Sol-Gel Route,” J. Alloys and Compds., 465. 227-231. Oct. 2008.
 
[11]  Chengyi, Hou, Hao, Yu, Qinghong, Zhang, Yaogang, Li and Hongzhi, Wang, “Preparation and Magnetic Property Analysis of Monodisperse Co-Zn Ferrite Nanospheres,” J. Alloys and Compds., 491. 431-435. Feb. 2010.
 
[12]  Patil, V. G., Shirsath, S. E., More, S. D., Shukla, S. J. and Jadhav, K. M., “Effect of Zinc Substitution on Structural and Elastic Properties of Cobalt Ferrite,” Journal of Alloys and Compounds,” 488. 199-203. Nov. 2009.
 
[13]  Gozuak, F., Koseoglu, Y., Baykal, A. and Kavas, H., “Synthesis and Characterization of CoxZn1-xFe2O4 Magnetic Nanoparticles Via a PEG-Assisted Route,” J. Magn. Magn. Mater., 321. 2170-2177. Jul. 2009.
 
[14]  Tawfic, A., Hamada, M. and Hemeda, O.M., “Effect of Laser Irradiation on the Structure and Electromechanical Properties of Co-Zn Ferrite,” J. Magn. Magn. Mater., 250. 77-82. Sept. 2002.
 
[15]  Gul, I. H., Abbasi, A. Z., Amin, F., Anis-ur-Rehman, M. and Maqsood, A., “Structural, Magnetic and Electrical Properties of Co1-xZnxFe2O4 synthesized by Co-precipitation Method,” J. Magn. Magn. Mater., 311. 494-499. Apr. 2007.
 
[16]  Josyulu, O. S. and Sobhandari, J., “DC Conductivity and Dielectric Behavior of Cobalt-Zinc Ferrite,” Physica Status Solidi (a), 59. 323-329. May. 1980.
 
[17]  Singhal, Sonal, Singh, J., Barthwal, S. K. and Chandra, K., “Preparation and Characterization of Nickel-Substituted Cobalt Ferrite (Co1-xNixFe2O4),” J. Solid State Chem., 178. 3183-3189. Oct. 2005.
 
[18]  Kumar, Gagan, Rani, Ritu, Sharma, Sucheta, Batoo, K. M. and Singh, M., “Electric and Dielectric Study of Cobalt Substituted Mg-Mn Nanoferrites Synthesized by Solution Combustion Technique,” Ceram. Inter., 2012, In Press.
 
[19]  Rani, Ritu, Sharma, S. K., Pirota, K. R., Knobel, M., Thakur, Sangeeta and Singh, M., “Effect of Zinc Concentration on the Magnetic Properties of Cobalt–Zinc Nanoferrite,” Ceram. Inter., 38. 2389-2394. Apr. 2012.
 
[20]  Verwey, E. J. and De Boer, J. H., “Cation Arrangement in a few Oxides with Crystal Structures of the Spinel Type,” Recueil des Travaux Chimiques des Pays-Bas, 55. 531-540. May. 1936.
 
[21]  Lakshman, A., Subba Rao, P. S. V., Rao, B. P. and Rao, K. H., “Electrical Properties of In3+ and Cr3+ Substituted Magnesium- Manganese Ferrites,” J. Phys. D: Appl. Phys., 38. 673-678. Feb. 2005.
 
[22]  Fawzi, A. S., Sheikh, A. D. and Mathe, V. L., “Structural, Dielectric Properties and AC Conductivity of Ni(1-x)ZnxFe2O4 Spinel Ferrite,” J. Alloys and Compds., 502. 231-237. Jul. 2010.
 
[23]  Koops, C. G., “On the Dispersion of Resistivity and Dielectric Constant of some Semiconductors at Audio Frequencies,” Physical Review, 83. 121-124. Jul. 1951.
 
[24]  Jadhav, S. S., Shrisath, Sagar. E., Toksha, B. G., Shengule, D. R. and Jadhav, K. M., “Structural and Dielectric Properties of Ni-Zn Ferrite Nanoparticles Prepared by Co-precipitation Method,” J. Opto. Adv. Mater., 10. 2644-2648. Oct. 2008.
 
Show Less References

Article

Phyto-synthesis of Silver Nanoparticles Using Extracts of Ipomoea indica Flowers


American Journal of Nanomaterials. 2013, 1(1), 5-8
DOI: 10.12691/ajn-1-1-2
Copyright © 2013 Science and Education Publishing

Cite this paper:
K. V. Pavani, Gayathramma K, Aparajita Banerjee, Shah Suresh. Phyto-synthesis of Silver Nanoparticles Using Extracts of Ipomoea indica Flowers. American Journal of Nanomaterials. 2013; 1(1):5-8. doi: 10.12691/ajn-1-1-2.

Correspondence to: K. V. Pavani, . Email:

Abstract

The use of silver nanoparticles in the field of nanomedicine is keeping pace and innovating with the ever expanding horizon of Nanobiotechnology. Ipomea species is widely cultivated and use for different purposes, such as, nutritional, medicinal, ritual and agricultural. The present study deals with the synthesis and characterization of silver nanoparticles using methonolic extract of Ipomoea indica flowers. UV-visible spectroscopy studies were carried out to assess the formation silver nanoparticles. The formation of Ag-NPs was confirmed by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) studies. SEM image revealed that silver nanoparticles are quite polydispersed, the size ranging from 10nm to 50nm. The formation of crystalline silver nanoparticles was zconfirmed using X-ray diffraction analysis. Extracellular synthesis of Ag nanoparticles using dried biomass appears to be cost effective, eco-friendly to that of conventional methods of nanoparticles synthesis.

Keywords

References

[[[[[[[[[[[[[[[[[[[
[[1]  Guenter Schmid, “Large clusters and colloids.Metals in the embryonic state”, Chem. Rev, 92(8), 1709-1727, 1992.
 
[[2]  Daniel, M.C. and Astruc, D, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology”, Chem Rev, 104 (1), 293-346, 2004.
 
[[3]  Wong,T.S. and U.Schwaneberg,U, “Protein Engineering in Bioelectrocatalysis”, Curr. Opin. Biotechnol, 14 (6), 590-596, 2003.
 
[[4]  Ramanaviciusa, A., Kausaite, A. and Ramanaviciene, A, “Biofuel cell based on direct bioelectrocatalysis”, Biosens Bioelect, 20 (10), 1962-1967, 2005.
 
[[5]  Mohammadian, A., Shojaosadati, S.A. and Habibi Rezaee, M, “Fusarium oxysporum mediates photogeneration of silver nanoparticles”, J Sci Iran, 14 (4), 323-326, 2007.
 
Show More References
[6]  Chan,W.C.W., Maxwell,D.J., Gao,X.H., Bailey,R.E., Han,M.Y. and Nie,S.M, “Luminescent quantum dots for multiplexed biological detection and imaging”, Current Opinion in Biotechnology, 13 (1), 40-46, 2002.
 
[7]  Vedpriya Arya., “Living systems: Eco-friendly Nanofactories”, Digest Journal of Nanomaterials and Biostructures, 5 (1), 9-21, 2010.
 
[8]  Parashar,V., Parashar, R., Sharma B. and Pandey A.C, “Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization”, Digest Journal of Nanomaterials and Biostructures, 4 (1), 45-50, 2009.
 
[9]  Nguyen Thi Kim Thanh and Zeey Rosenzweig, “Development of an Aggregation-Based Immunoassay for Anti-Protein A Using Gold Nanoparticles”, Anal Chem, 74(7), 1624-1628, 2002.
 
[10]  Xiangling Ren., Xianwei Meng., Dong Chen., Fangqiong Tang., Jun Jiao, “Using silver nanoparticle to enhance current response of biosensor, Biosensors and Bioelectronics”, 21, 433-437, 2005.
 
[11]  Siavash Iravani., “Green Synthesis Of Metal Nanoparticles Using Plants”, Green Chemistry,13 ( 10), 2638-2650, 2011.
 
[12]  Rong-Jyh,L., Chung-Yi,C. and Wen-Li,L, “Cytotoxic activity of Ipomoea cairica”, Natural Product Research, 22 (9 ), 747-753, 2008.
 
[13]  Shin, S.H., Ye, M.K., Kim, H.S. and Kang, H.S, “The effects of nanosilver on the proliferation and cytokine expression by peripheral blood mononuclear cells”, Int Immuno pharmacol, 7, 1813-1818, 2007.
 
[14]  Marilena Meira, Eliezer Pereira da Silva, Jorge M. David, Juceni P. David, “Review of the genus Ipomea: traditional uses, chemistry and biological activities”, Rev. bras. Farmacogn, 22(3), 682-713, 2012.
 
[15]  B. D. Cullity. Elements of X-ray Diffraction, 2nd edn, Edison-Wesley Publishing Company Inc, USA, 1978.
 
[16]  Anozie,V.C., “Pharmacognostic studies on Datura metel Linn. Macro- morphology and micro-morphology of fruits and seed”, Herba Polonica, 32 (3/4), 197-208, 1986.
 
[17]  Leela, A. and Vivekanandan, M. “Tapping the unexploited plant resources for the synthesis of silver nanoparticles,” African J. of Biotechno., 7, 3162-3165, 2008.
 
[18]  Raut Rajesh, W., Lakkakula Jaya, R., Kolekar Niranjan, S., Mendhulkar Vijay, D. and Kashid Sahebrao, B, “Phytosynthesis of silver nanoparticles using Gliricidia sepium (Jacq.)” Current Nanoscience, 5(1), 117-122, 2009.
 
[19]  Bankar,A., Joshi,B., Kumar,A.R., S. Zinjarde, “Banana peel extract mediated novel route for the synthesis of silver nanoparticles”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 368 (1-3) 58-63, 2010.
 
[20]  Jain,D., Kumar Daima,H., S. Kachhwaha,S., Kothari, S.L,“Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities”, Digest Journal of Nanomaterials and Biostructures, 4 (3), 557-563, 2009.
 
[21]  Sathishkumar, M., Sneha, K., Won,S.W. Cho, C.W., Kim,S., Yun,Y.S, “Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity”, Colloids and Surfaces B: Biointerfaces, 73 (2), 332-338, 2009.
 
[22]  Garima Singhal., Riju Bhavesh., Kunal Kasariya., Ashish Ranjan Sharma., Rajendra Pal Singh, “Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity”, J Nanopart Res, 13,2981-2988, 2011.
 
[23]  Velavan, S., Arivoli, P. and Mahadevan, K. “Biological Reduction of Silver Nanoparticles Using Cassia Auriculata Flower Extract and Evaluation and Evaluation of Their in Vitro Antioxidant Activities”, Nanoscience and Nanotechnology: An International Journal, 2(4), 30-35, 2012.
 
[24]  Huang,J., Li,Q., Sun, D., Lu, Y., Su, Y., Yang,X., Wang,H., Wang,Y., Shao,W., He, N., Hong, J., Chen, C,Biosynthesis of silver and gold nanoparticles by novel sundried Cinnanonum camphora leaf, Nanotechnology 18 (10) 105104-105115, 2007.
 
Show Less References

Article

Preparation and Catalytic Activity of Gold Nanoparticles Stabilized by Poly(N-Vinylpyrrolidone) and Deposited onto Aluminum Oxide


American Journal of Nanomaterials. 2013, 1(1), 1-4
DOI: 10.12691/ajn-1-1-1
Copyright © 2013 Science and Education Publishing

Cite this paper:
Yesmurzayeva Nurlykyz, Selenova Bagdat, Kudaibergenov Sarkyt. Preparation and Catalytic Activity of Gold Nanoparticles Stabilized by Poly(N-Vinylpyrrolidone) and Deposited onto Aluminum Oxide. American Journal of Nanomaterials. 2013; 1(1):1-4. doi: 10.12691/ajn-1-1-1.

Correspondence to: Yesmurzayeva Nurlykyz, . Email:

Abstract

Gold nanoparticles (AuNPs) stabilized by poly(N-vinylpyrrolidone) (PVP) were prepared by “one-pot” synthetic protocol and characterized by UV-Vis spectroscopy, DLS and TEM. According to DLS measurements the average size of AuNPs stabilized by PVP in aqueous solution is varied from 10 to 25nm. The PVP stabilized AuNPs (AuNPs-PVP) were deposited on the surface of aluminum oxide (Al2O3/AuNPs-PVP) and its catalytic activity was evaluated with respect to decomposition of hydrogen peroxide. It was found that the amount of AuNPs-PVP deposited onto Al2O3 is extremely low and in the range of 0.06-0.1%. TEM images reveal that the average size of AuNPs-PVP deposited on the surface of Al2O3 is equal to 10-30 nm. The rate of H2O2 decomposition in the presence of Al2O3/AuNPs-PVP exhibits induction period in dependence of the molecular weight of PVP and increases in the following order PVP-350•103 > PVP-40•103 > PVP-10•103.

Keywords

References

[[[[[[[[
[[1]  Motoyuki I., Hidehiro K, “Surface modification for improving the stability of nanoparticles in liquid media,” KONA Powder and particle journal, 119-129, 2009.
 
[[2]  Suresh K. Balasubramanian, Liming Yang, Lin-Yue L. Yung, Choon-Nam Ong, Wei-Yi Ong, Liya E. Yu, “Characterization, purification and stability of gold nanoparticles,” Biomaterials, 31, 9023-9030, 2010.
 
[[3]  Jingfang Zhou, John Ralston, Rossen Sedev, David A. Beattie, “Functionalized gold nanoparticles: Synthesis, structure and colloid stability,” Journal of Colloid and Interface Science, 331, 251-262, 2009.
 
[[4]  M. Haruta, T. Kobayashi, H. Sano, N. Yamada, “Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0°C,” Chemistry Letters, 16, 405-408, 1987.
 
[[5]  Lu-Cun Wang, Xin-Song Huang, Qian Liu, Yong-Mei Liu, Yong Cao, He-Yong He, Kang-Nian Fan, Ji-Hua Zhuang, “Gold nanoparticles deposited on manganese(III) oxide as novel efficient catalyst for low temperature CO oxidation,” Journal of Catalysis, 259, 66-74, 2008.
 
Show More References
[6]  S.A.C. Carabineiro, A.M.T. Silva, G. Drazic, P.B. Tavares, J.L. Figueiredo, “Gold nanoparticles on ceria supports for the oxidation of carbon monoxide,” Catalysis Today, 154, 21-30, 2010.
 
[7]  Lu-Cun Wang, Qian Liu, Xin-Song Huang, Yong-Mei Liu, Yong Cao, Kang-Nian Fan, “Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation,” Applied Catalysis B: Environmental, 88, 204-212, 2009.
 
[8]  V. Costa, M. Estrada, Y. Demidova, I. Prosvirin, V. Kriventsov ,R. Cotta, S. Fuentes, A. Simakov, E. Gusevskaya, “Gold nanoparticles supported on magnesium oxide as catalysts for the aerobic oxidation of alcohols under alkali-free conditions,” Journal of Catalysis, 292, 148-156, 2012.
 
[9]  K.Y. Ho and K.L. Yeung, “Properties of TiO2 support and the performance of Au/TiO2 catalyst for CO oxidation reaction,” Gold Bull., 40, 15-30, 2007.
 
[10]  Jai Prakash, A.Tripathi, V Rigato, J C Pivin, etc. “Synthesis of Au nanoparticles at the surface and embedded in carbonaceous matrix by 150 keV ion irradiation,” Journal of Physics D: Applied Physics, 44(12), 2011.
 
[11]  S. Ram, L. Agrawal, A. Mishra, S. Roy, “Synthesis and optical properties of surface stabilized gold nanoparticles with poly(vinyl pyrrolidone). Polymer molecules of a nanofluid,” Advanced Science Letters, 4, 3431-3438, 2011.
 
[12]  D.L. Feldheim, C.A. Foss, Metal Nanoparticles: Synthesis, Characterization and Applications, Basel Marsel Dekker Inc., New York, 2002.
 
[13]  B.K. Min, C.M. Friend, “Heterogeneous gold-based catalysis for green chemistry:  Low-temperature CO oxidation and propene oxidation,” Chemical Reviews 107, 2709-24, 2007.
 
Show Less References