ISSN (Print): 2372-3114

ISSN (Online): 2372-3122

Editor-in-Chief: Apply for this position

Website: http://www.sciepub.com/journal/AJN

   

Article

Synthesis, Characterization and Thermoluminescence Studies of (ZnS)1-x(MnTe)x Nanophosphors

1School of Studies in Physics and Astrophysics, Pt. RaviShankar Shukla University, Raipur-492010 (C.G.), India

2HOD Nanotechnology Rajiv Ganhi Techanical University, Bhopal (M.P.)


American Journal of Nanomaterials. 2016, 4(3), 52-57
doi: 10.12691/ajn-4-3-1
Copyright © 2016 Science and Education Publishing

Cite this paper:
Deepti Pateria, Jyostna Chauhan. Synthesis, Characterization and Thermoluminescence Studies of (ZnS)1-x(MnTe)x Nanophosphors. American Journal of Nanomaterials. 2016; 4(3):52-57. doi: 10.12691/ajn-4-3-1.

Correspondence to: Jyostna  Chauhan, HOD Nanotechnology Rajiv Ganhi Techanical University, Bhopal (M.P.). Email: jyotsnachauhan2006@gmail.com

Abstract

The present paper reports the thermoluminescence (TL) of (ZnS) 1-x (MnTe) x nanophosphors which was prepared by wet chemical synthesis. (ZnS)1-x(MnTe)x nanophosphors give intense thermoluminescence. The structure investigated by X-ray diffraction patterns confirms the formation of sphalerite phase whose space group is found to be F3 m. From XRD mesurement average size of particles was found of 11 nm. The TEM measurement indicates that the particle size is in the 9-13 nm. Nanometre size phosphors are preferred in a number of applications not only due to their particle size but also due to smooth imaging of the stress. (ZnS) 1-x (MnTe) x is very use full material and can be used in various luminescence applications such as making of various sensors and thermoluminescence application like dosimetry, ete. Initially the TL intensity increases with increasing value of x because the number of luminescence centres increases. However, for higher values of x the TL intensity decreases because of the concentration quenching. Thus the TL, Mechanoluminescence (ML) and Photoluminescence (PL) intensities are optimum for a particular value of x, that is, for x=0.05. Thermoluminescence of (ZnS) 1-x (MnTe) x nanophosphor has not reported, till now. There are two peaks in thermoluminescence glow curves of in which the first peak lies at 105°C-100°C and the second peak lies at 183.5°C -178.5°C. The activation energies for frist and second peaks are found to be 0.45 eV and 0.75 eV, respectively.

Keywords

References

[1]  S.W.S. Mckveever, thermoluminescence of solids, Cambridge University press, (1988),
 
[2]  Claudio Furetta, “Hand book of thermoluminescence” World Scientific Pub. Co. Inc. (2003).
 
[3]  M.Oberhofer and A.Scharmann, Applied thermoluminescence dosimetry, edited by M.Oberhofer and A.Scharmann, published by adam higher Ltd. Techno house, Redchiffney, Bristel (1981).
 
[4]  D.R.Vij, Luminescence of solids, Edited by D.R. Vij, Plennum press, New York and London (1998).
 
[5]  Stuart James Fleming, Thermoluminescence techniques in archaeology, Clarendon Press, (1979).
 
Show More References
[6]  B.P. Chandra, V.K. Chandra, Piyush Jha, Luminescence of II-VI semiconductor nanoparticle. Sol. Stat. Phenomenon, 222 (2015) 1.
 
[7]  P. Yang, M. Lü, D. Xü, D. Yuan and G. Zhon, Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chemical Physics Lett. 336 (2001)76.
 
[8]  R.N. Bhargava and D. Gallangher, Optical properties of manganese-doped nanocrystals of ZnS. Physical Review Letters 72(1994) 416.
 
[9]  H. Chander, A Review on Synthesis of Nanophosphors – Future Luminescent Materials Material Science and Engineering, R49 (2005)113.
 
[10]  X. Fang, T.Zhai, U.K.Gautum, L.Li, L.Wu, Y.Bando, D.Golberg, ZnS nanostructures: from synthesis to applications Progress in Materials Science, 56(2011)175-287.
 
[11]  K. Manzoor, S.R. Vadera, N. Kumar, T.R.N. Kutty, Energy transfer from organic surface adsorbate-polyvinyl pyrrolidone molecules to luminescent centers in ZnS nanocrystalsSolid State Communication, 129 (2004) 469.
 
[12]  H. Yang, S. Santra, and P.H. Holloway, Nanobiomaterials Handbook Journal of Nanoscience and Nanotechanology 5(2005)1364.
 
[13]  Y. Yang, J.M. Huang, S.Y. Liu, J.C. Shen, Macromolecules Containing Metal and Metal-Like Elements.J.Mater.Chem. 7(1997)131.
 
[14]  K. Manzoor, S.R. Vadera, N. Kumar, T.R.N. Kutty, Inorganic Nanoparticles: Synthesis, Applications, and Perspectives Applied Physics Letters 84(2004) 284.
 
[15]  B.P. Chandra, C.N. Xu, H. Yamada, X.G. Zheng, Intense visible luminescence from Nd-doped yttrium oxysulfide. Journal of Luminescnce, 130 (2010)442.
 
[16]  C.N. Xu, T. Watanabe, M. Akiyama, X.G. Zheng, Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels Appl.Phys.Lett. 74(1999)1236.
 
[17]  B.P. Chandra, V. K. Chandra, Piyush Jha, Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials Physica B 461(2015) 38.
 
[18]  W. Chen, Z. Wang, Z. Lin, and L. Lin, Advanced Material J. Appl. Phys. 82 (1997a) 3111,156-159.
 
[19]  W. Chen, Z. Wang, Z. Lin, and L. Lin, Appl. Phys. Advanced Materials Lett. 82(1997) 3111, 156-159.
 
[20]  M. Zahedifar, N. Taghavinia, M. Aminpour, Synthesis and Thermoluminescence of ZnS:Mn2+ Nanoparticles Nanotechnology and its Applications 929( 2007)128.
 
[21]  A. N. Yazici, M. Oztas, M. Bedir, Effect of sample producing conditions on the thermoluminescence properties of ZnS thin films developed by spray pyrolysis method Optical Materials 29(2007)1091.
 
[22]  R. Sharma, D.P. Bisen, S.J. Dhoble, N. Bramhe, B.P. Chandra, Mechanoluminescence and thermoluminescence of Mn doped ZnS nanocrystals Journal of Luminescence 131(2011)2089.
 
[23]  R. L Singh and D. Singh, Particle Size Effect on TL Emission of ZnS Nanoparticles and Determination of Its Kinetic Parameters Journals of Nanomaterials Article ID-239182(2012)8.
 
[24]  M. Rao, D.R. Reddy, B.K. Reddy, C.N. Xu, Intense red mechanoluminescence from (ZnS) 1- x(MnTe) x Phys Lett. A 372 (2008) 4122-4126.
 
[25]  M.Rao, R.P Vijayalakshmi, D.RReddy, B.K Reddy. EPR and susceptibility studies on (ZnS)1-x(MnTe)x powders Spectrochimica Act. A 69 (2008) 688-691.
 
[26]  T. Toriyi, Y. Adachi, H. Yamada,Y. Imai and C. N. Xu, Enhancement of mechanoluminescence from ZnS:Mn, Te by Wet Process Key Engg. Mat. 388(2009) 301-304.
 
[27]  A. Divya,. B. K. Reddy,S. Sambasivam,. P. S. Reddy, Photoluminescence and EPR studies of ZnS nanoparticles co-doped with Mn and Te. J Nano- electron. Phys. 3 (2011) 639-646.
 
[28]  H. Nikol, A. Vogler, Inorg. Chem. 32, (1993).1072.
 
Show Less References

Article

Modeling of the Scattering Process and the Optical Photo-generation Rate of a Dye Sensitized Solar Cell: Influence of the TiO2 Radius

1Groupe de physique du Solide et Sciences des Matériaux, Faculté des Sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD), B.P. 25114 Dakar-Fann Dakar (Sénégal)


American Journal of Nanomaterials. 2016, 4(3), 58-62
doi: 10.12691/ajn-4-3-2
Copyright © 2016 Science and Education Publishing

Cite this paper:
E. H. O. Gueye, P. D. Tall, O. Sakho, C. B. Ndao, M. B. Gaye, N. M. Ndiaye, B. D. Ngom, A.C. Beye. Modeling of the Scattering Process and the Optical Photo-generation Rate of a Dye Sensitized Solar Cell: Influence of the TiO2 Radius. American Journal of Nanomaterials. 2016; 4(3):58-62. doi: 10.12691/ajn-4-3-2.

Correspondence to: B.  D. Ngom, Groupe de physique du Solide et Sciences des Matériaux, Faculté des Sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD), B.P. 25114 Dakar-Fann Dakar (Sénégal). Email: bdngom@gmail.com

Abstract

We report on a methodology for optical and electrical modeling of dye-sensitized solar cells (DSSCs). In order to take into account the scattering process, the optical model is based on the determination of the effective permittivity of the mixture and the scattering coefficient using Mie and Bruggeman theories, considering spherical particles. Then, from the radiative transfer equation, the optical generation rate of cell is deduced. From the presented model, the dependence effects of the nanoparticles size upon the extinction coefficient and the optical generation rate are evidenced. Thus, we noticed that the extinction coefficient decreases with the increase of the TiO2 nanoparticles and vanishes when the wavelengths increases in the visible spectrum. A significant uniformity of the absorption for radius smaller than 10 nm is observed, however at a radius about 80 nm, we observe a non-uniformity. The simulated results based on this model are in good agreement with the experimental results.

Keywords

References

[1]  O’Regan, B., Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353-737, 1991.
 
[2]  Wang, Q., Ito, S., Gratzel, M., Fabregat-Santiago, F., Mora-Sero, I., Bisquert, J., Bessho, T., and Imai, H., “Characteristics of High Efficiency Dye-Sensitized Solar Cells,” J. Phys. Chem. B 110, 25210-25221, 2006.
 
[3]  Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F.E., Tavernelli, I., Rothlisberger, U., Nazeeruddin M.K., and Grätzel, M., “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nature Chemistry 6, 242-247, 2014.
 
[4]  Green, M. A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E. D., “Solar cell efficiency tables (Version 45),” Progress in photovoltaics: research and applications, 23(1), 1-9, 2015.
 
[5]  Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L., J. Appl. Phys., Part 2, 45, L638-L640, 2006.
 
Show More References
[6]  Gao, F.; Wang, Y., Shi, D., Zhang, J., Wang, M. K., Jing, X. Y., Humphry-Baker, R., Wang, P., Zakeeruddin, S. M., Grätzel, M., J. Am. Chem. Soc. 130, 10720-10728 ,2008.
 
[7]  Ferber, J., and Luther, J., “Computer simulations of light scattering and absorption in dye-sensitized solar cells.” Solar Energy Materials and Solar Cells 54 (1998)
 
[8]  Rothenberger, G., Comte, P., Gratzel, M., “A contribution to the optical design of dye_sensitized nanocrystalline solar cells,” Solar Energy Materials & Solar Cells, 58, 321-336, 1999.
 
[9]  Soedergren, S., Hagfeldt, A., Olsson, J., and Lindquist, S. E., “Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells,” The Journal of Physical Chemistry, 98(21), 5552-5556, 1994.
 
[10]  Matthews, D., Infelta, P., and Grätzel, M, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes.” Solar Energy Materials and Solar Cells, 44(2), 119-155, 1996.
 
[11]  Ferber, J., Stangl, R., and Luther, J., “An electrical model of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, 53(1), 29-54, 1998.
 
[12]  Usami, A., “Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrichemical cell,” Chemical Physics Letters, 277(1), 105-108, 1997.
 
[13]  Usami, A., “Theoretical study of charge transportation in dye-sensitized nanocrystalline TiO2 electrodes,” Chemical physics letters, 292(1), 223-228, 1998.
 
[14]  Ferber, J., Stangl, R., and Luther, J., “An electrical model of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, 53(1), 29-54, 1998.
 
[15]  Stangl, R., Ferber, J., & Luther, J., “On the modeling of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, 54(1), 255-264, 1998.
 
[16]  Usami, A., & Ozaki, H., “Computer simulations of charge transport in dye-sensitized nanocrystalline photovoltaic cells,” The Journal of Physical Chemistry B, 105(20), 4577-4583, 2001.
 
[17]  Bisquert, J., Cahen, D., Hodes, G., Rühle, S., & Zaban, A., “Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells,” The Journal of Physical Chemistry B, 108(24), 8106-8118, 2004.
 
[18]  Filipič, M., Berginc, M., Smole, F., & Topič, M., “Analysis of electron recombination in dye-sensitized solar cell,” Current Applied Physics, 12(1), 238-246, 2012.
 
[19]  Wenger, S., Schmid, M., Rothenberger, G., Gentsch, A., Gratzel, M., and Schumacher, J. O., “Coupled Optical and Electronic Modeling of Dye-Sensitized Solar Cells for Steady-State Parameter Extraction,” J. Phys. Chem. C 115, 10218–10229, 2011.
 
[20]  Topič, M., Čampa, A., Filipič, M., Berginc, M., Krašovec, U. O., & Smole, F., “Optical and electrical modelling and characterization of dye-sensitized solar cells,” Current Applied Physics, 10(3), S425-S430, 2010.
 
[21]  Gueye, E.H.O., Tall, P. D., Ndao, C. B., Dioum, A., Dione, A. N., & Beye, A. C. (2016). An Optical and Electrical Modeling of Dye Sensitized Solar Cell: Influence of the Thickness of the Photoactive Layer. American Journal of Modeling and Optimization, 4(1), 13-18.
 
[22]  C. Rozé, T. Girasole, G. Gréhan, G.Gouesbet, B.Maheu. Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters. Optics communications 194. (2001). 251-263.
 
[23]  G. Kortum, Reflectance Spectroscopy, Springer, Berlin, 1969.
 
[24]  B. Maheu, J. N. Letoulouzan and G. Gouesbet. Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters. Applied Optics Vol. 23, No. 19 (1984).
 
[25]  A. Dioum, S. Ndiaye, E. H. O. Gueye, M. B. Gaye, D. N. Faye, O. Sakho, M. Faye and A. C. Beye. 3-D Modeling of bilayer heterojunction organic solar cell based on Copper Phthalocyanine and Fullerene (CuPc/C60): evidence of total excitons dissociation at the donor-acceptor interface. Global Journal of Pure and Applied Sciences, Vol 19 (2013).
 
Show Less References

Article

Turnability of the Plasmonic Response of the Gold Nanoparticles in Infrared Region

1Laboratoire de Photonique et de Nano-Fabrication, Faculté des sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD) B.P. 25114 Dakar-Fann Dakar, Senegal


American Journal of Nanomaterials. 2016, 4(3), 63-69
doi: 10.12691/ajn-4-3-3
Copyright © 2016 Science and Education Publishing

Cite this paper:
A Sambou, B D Ngom, L Gomis, A C Beye. Turnability of the Plasmonic Response of the Gold Nanoparticles in Infrared Region. American Journal of Nanomaterials. 2016; 4(3):63-69. doi: 10.12691/ajn-4-3-3.

Correspondence to: B  D Ngom, Laboratoire de Photonique et de Nano-Fabrication, Faculté des sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD) B.P. 25114 Dakar-Fann Dakar, Senegal. Email: bdngom@gmail.com

Abstract

We report on the modulation of the optical properties namely the Surface Plasmon Resonance (SPR) of gold nanoparticles core-shell as function of the surrounding medium (water, ethanol). We have study two different combinations (1) silica thin film coating gold nanospheres and (2) gold thin film coating silica nanoparticles. The optical model used is based on Mie theory by considering spherical gold nanoparticles core-shell and the simulation is done using Matlab program. The results show an important influence of the surrounding medium and the size of the core as well as the shell thickness, on the optical properties with a redshift of the Surface Plasmon Resonance (SPR). By using Mie theory and Drude model for the simulation of the Surface Plasmon Resonance model of spherical nanoparticles showed that for the control of the Surface Plasmon Resonance of the gold thin film coating silica nanoparticles it is important to considered three parameters (i) the size of core (ii) the surrounding medium and (iii) shell thickness, which enable the turning of the SPR through the near infrared; where as gold nanosphere coated by silica results has a maximum wavelength at 530 nm, this Plasmon peak corresponding a R1/d ratio of 1.6. Thus, this work enabled optimizing core-shell structure with well-controlled sizes for biomedical application.

Keywords

References

[1]  S. Eibner, R. A. O. Jaime, B. Lamien, R. Basto, H. R. B. Orlande, O. Fudym, Effet photo-thermique de l’inclusion de nanoparticules dans des matériaux fantômes de milieux biologiques.
 
[2]  A. Moores and F. Goettmann, New J. Chem., 30 (2006). 1121-1132.
 
[3]  P. Tuersun, Optik 127 (2016). 3466-3470.
 
[4]  C. Noguez J. Phys. Chem. C 111 (2007). 3806-3819.
 
[5]  P. Chekuri, E. S. Glazer, S. A. Curley, Advanced Drug Delivery Review, 62 (2010). 339-345.
 
Show More References
[6]  S. Soulé, J. Allouche, J-C. Dupin, H. Martinez, Micropoeous and Mesoporous Materials 171 (2013). 72-77.
 
[7]  L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas and J. L. West, Proceedings of the National Academy of Sciences USA, 100 (2003). 13549-13554.
 
[8]  C. Wu, C. Yu and M. Chu, International Journal of Nanomedicine 6 (2011). 807-813.
 
[9]  M. T. Delapierre, J. Mohamed, S. Mornet, E. Duguet, S. Ravaine, Gold Bulletin (2008). 195-207.
 
[10]  C. Graf and A. V Blaaderen, Langmuir 18 (2002). 524-534.
 
[11]  V. V. Apyari, S. G. Dmitrienko, Y. A. Zolotov, Sensors and Actuators B 188 (2013). 1109-1115.
 
[12]  M. J. Ko, Adv. Mater. Opt. Electron, 8 (1998). 173-180.
 
[13]  N. G. Khlebtsov, L. A. Dykman, journal of Quantitative Spectroscopy & Radiative Transfer 111 (2010). 1-35.
 
[14]  J. Oh, H. Yoon and J. Park, Biomed Eng Lett 3 (2013). 67-73.
 
[15]  P. Mulvaney, L. M. Liz-Marzan, M. Giersig and T. Ung, J. Mater. Chem., 10 (2000). 1259-1270.
 
[16]  S. Link and M. El-Sayed, J. Phys. Chem. B 103 (1999). 4212-4217.
 
[17]  A. S. Iglesias, I. P. Santos, J. P. Juste, B. R. Gonzalez, F.J. G. de Abajo and L. M.L. Marzan, ADVANCED MATERIALS 18 (2006). 2529-2534.
 
[18]  H. Horvath, Journal of Quantitative Spectroscopy & Radiative Transfer 110 (2009). 787-799.
 
[19]  M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar and R. L Whetten, B 101 (1997). 3706-3712.
 
[20]  P. B. Johnson and R. W. Christy, PHYSICAL REVIEW B 6 (1972). 4370-4379.
 
[21]  M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., And C. A. Ward, Applied optics 22 (1983). 1099-1120.
 
[22]  E. Palik, Handbook of Optical Constants of Solids Vol I, Academic Press, Orlando, pp. 759.
 
[23]  G. Weng, J. Li, J. Zhu and J. Zhao, Colloids and Surfaces A: Physicochem. Eng. Aspects 369 (2010). 253-259.
 
[24]  T. A. Erickson and J. W. Tunnell, Gold Nanoshell in Biomedical Applications.
 
[25]  B. R. Cooper, H. Ehrenreich and H. R. Philipp, Phys. Re 138 (1965). 494-507.
 
[26]  S. Berthier and J. Lafait, J. Physique 47 (1986). 249-257.
 
[27]  P. G. Etchegoin, E. C. Le Ru and M. Meyer, J. Chem. Phys. 125 (2006). 164705.
 
[28]  D. Rioux, S. Vallières, S. Besner, P. Munoz, E. Mazur and M. Meunier, Adv. Optical Mater (2013). 1-7.
 
[29]  M. Vallet-Regi and F. Balas, Open Biomedical Engineering Journal 2 (2008). 1-9.
 
[30]  A. Akbarzadeh, D. Zare, A. Farhangi, M. R. Mehrabi, D. Norouzian, American Journal of Applied Sciences 6 (2009). 691-695.
 
[31]  R. G. Chaudhuri and S. Paria, CHEMICAL REVIEWS 112 (2012). 2373-2433.
 
[32]  H. Zhang, DR Dunphy, X. Jiang, H. Meng, B. Sun, D. Tarn, M. Xue, X. Wang, S. Ling, Z. Ji, R. Li, FL. Garcia, J. Yang, ML. kirk, T. Xia, JL. Zink, A. Nel, CJ. Brinker, J AM Chem Soc. 134 (2012). 15790-15804.
 
[33]  Y. MORIGUCHI, X. MENG, K. FUJITA, S. MURAI and K. TANAKA, J. Jpn. Soc. Powder Metallurgy 60 (2012). 49-54.
 
[34]  B. Sadtler and A. Wei, CHEM. COMMUN (2002). 1604-1605.
 
[35]  S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J. Halas, Chem. Phys. Lett 288 (1998). 243.
 
[36]  C. Loo, A. Lin, L. Hirsch, M-H. Lee, J. Barton, N. Halas, J. West and R. Drezek, Technology in Cancer Research & Treatment 3 (2004). 33-40.
 
Show Less References