ISSN (Print): 2372-3114

ISSN (Online): 2372-3122

Editor-in-Chief: Apply for this position

Website: http://www.sciepub.com/journal/AJN

   

Article

Measurement of Forced Convective Heat Transfer Coefficient of Low Volume Fraction CuO-PVA Nanofluids under Laminar Flow Condition

1Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, Bangladesh

2Pilot Plant and Process Development Center (PP & PDC), Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh

3Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, Bangladesh


American Journal of Nanomaterials. 2015, 3(2), 64-67
doi: 10.12691/ajn-3-2-3
Copyright © 2016 Science and Education Publishing

Cite this paper:
Ismat Zerin Luna, A. M. Sarwaruddin Chowdhury, M. A. Gafur, Ruhul A. Khan. Measurement of Forced Convective Heat Transfer Coefficient of Low Volume Fraction CuO-PVA Nanofluids under Laminar Flow Condition. American Journal of Nanomaterials. 2015; 3(2):64-67. doi: 10.12691/ajn-3-2-3.

Correspondence to: Ismat  Zerin Luna, Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, Bangladesh. Email: ismatzerinluna@gmail.com

Abstract

Experimental investigations of forced convective heat transfer coefficient of CuO-PVA nanofluids under uniform and constant heat flux are reported in this paper. Different nanofluid samples at different volume concentrations (0.05, 0.1 & 0.2%) were prepared by dispersing CuO NPs with an average size of 32.50 nm in 4 wt% PVA solution using ultrasonication and magnetic stirring. The forced convective heat transfer coefficient of the CuO-PVA nanofluids was measured with the help of vertical shell-and-tube heat exchanger where spiral circular copper tube was used. All the experiments were performed under laminar conditions ( Re ≤ 2300). The results under laminar flow conditions showed considerable enhancement of convective heat transfer with the use of nanofluids. There was increase in heat transfer coefficient of nanofluids CuO-PVA when compared with their base fluids. The increase is significant even though the concentration is less.

Keywords

References

[1]  Khan, R.A., Beck, S., Dussault, D., Salmieri, S., Bouchard, J. and Lacroix, M. (2013) Mechanical and Barrier Properties of Nanocrystalline Cellulose Reinforced Poly(caprolactone) Composites: Effect of Gamma Radiation. Journal of Applied Polymer Science, 129, 3038-3046.
 
[2]  Ahamed, M., Alhadlaq, H.A., Khan, M., Karuppiah, P. and Al-Dhabi, N.A. (2014) Synthesis, Characterization, and Antimicrobial Activity of Copper Oxide Nanoparticles. Journal of Nanomaterials, 3, 33-42.
 
[3]  Mustafa, G., Tahir, H., Sultan, M. and Akhtar, N. (2013) Synthesis and Characterization of Cupric Oxide (CuO) Nanoparticles and Their Application for the Removal of Dyes. African Journal of Biotechnology, 12, 6650-6662.
 
[4]  Kida, T., Oka, T., Nagano, M., Ishiwata, Y. and Zheng, X.G. (2007) Synthesis and Application of Stable Copper Oxide Nanoparticle Suspensions for Nanoparticulate Film Fabrication.
 
[5]  Kim, Y.S., Hwang, I.S., Kim, S.J., Lee, C.Y. and Lee, J.H. (2008) CuO Nanowire Gas Sensors for Air Quality Control in Automotive Cabin. Journal of Sensors and Actuators B: Chemical, 135, 298-303.
 
Show More References
[6]  Anandan, S. and Yang, S. (2007) Emergent Methods to Synthesize and Characterize Semiconductor CuO Nanoparticles with Various Morphologies—An Overview. Journal of Experimental Nanoscience, 2, 23-56.
 
[7]  Zhang, W., Guo, F., Wang, F., Zhao, N., Liu, L. and Li, J. (2014) Synthesis of Quinazolines via CuO Nanoparticles Catalyzed Aerobic Oxidative Coupling of Aromatic Alcohols and Amidines. Journal of Organic and Biomolecular Chemistry, 12, 5752-5766.
 
[8]  Suleiman, M., Mousa, M., Hussein, A., Hammouti, B., Hadda, T.B. and Warad, I. (2013) Copper (II)-Oxide Nanostructures: Synthesis, Characterizations and Their Applications—Review. Journal of Materials and Environmental Science, 5, 792-807.
 
[9]  Manimaran, R., Palaniradja, K., Alagumurthi, N., Sendhilnathan, S. and Hussain, J. (2014) Preparation and Characterization of Copper Oxide Nanofluid for Heat Transfer Applications. Applied Nanoscience, 4, 163-167.
 
[10]  Bhimani V, Ratho P, Sorathiya A. Experimental study of heat transfer enhancement using water based nanofluids as a new coolant for car radiators. International Journal of Emerging Technology and Advanced Engineering 2013;3:295-302.
 
[11]  P. Sivashanmugam, Application of nanofluids in heat transfer, in: S.N. Kazi (Ed.), An Overview of Heat Transfer, INTECH Publications, Croatia, Chapter 14, 2012, pp. 411-440.
 
[12]  M. Jalal, H. Meisami, M. Pouyagohar, Experimental study of CuO/water nanofluid effect on convective heat transfer of a heat sink, MiddleEast Journal of Scientific Research 13 (2013) 606-611.
 
[13]  H. Chang, Y. Wu, X. Chen, M. Kao, Fabrication of Cu based nanofluid with superior dispersion, National Taipei University of Technology Journal 5 (2000) 201-208.
 
[14]  A.G. Nasibulin, P.P. Ahonen, O. Richard, E.I. Kauppinen, I.S. Altman, Copper and copper oxide nanoparticle formation by chemical vapor nucleation from copper (II) acetylacetonate, Journal of Nanoparticle Research 3 (2001) 383-398.
 
[15]  G.K. Murugalakshmi, N. Selvakumar, Experimental studies of thermal transport in heat transfer fluids using infrared thermography, International Journal of Innovative Research in Science, Engineering and Technology 3 (2014) 13-22.
 
[16]  Kolekar R. An experimental study of the flow boiling of refrigerant-based nanofluids: University of Illinois at Urbana-Champaign; 2014.
 
[17]  Sivashanmugam P. Application of Nanofluids in Heat Transfer: INTECH Open Access Publisher; 2012.
 
[18]  Liu MS, Lin MC, Huang IT, Wang CC. Enhancement of thermal conductivity with CuO for nanofluids. Chemical engineering & technology 2006; 29:72-7.
 
[19]  Anandan D, Rajan K. Synthesis and stability of cupric oxide-based nanofluid: A novel coolant for efficient cooling. Asian J Sci Res 2012; 5:218-27.
 
[20]  Pandey V, Mishra G, Verma S, Wan M, Yadav R. Synthesis and Ultrasonic Investigations of CuO-PVA Nanofluid. 2012.
 
[21]  International Centre for Diffraction Data (ICCD), Joint Committee on Powder Diffraction Standards, Diffraction Data File No. 05-0661. 2000.
 
[22]  Radhakrishnan AA, Beena BB. Structural and Optical Absorption Analysis of CuO Nanoparticles. Indian Journal of Advances in Chemical Science 2014;2:158-61.
 
[23]  Hub B. Calculation of Forced Convection Heat Transfer Coefficients. 2013.
 
[24]  Asirvatham, Lazarus Godson, et al. "Experimental study on forced convective heat transfer with low volume fraction of CuO/water nanofluid." Energies 2.1 (2009): 97-119.
 
[25]  Sivakumar A, Alagumurthi N, Senthilvelan T. Experimental and Numerical Investigation of Forced Convective Heat Transfer Coefficient in Nanofluids of Al2O3/Water And CuO/EG in A Serpentine Shaped Microchannel Heat Sink. International Journal of Heat and Technology 2015;33.
 
[26]  Senthilraja S, Vijayakumar K. Analysis of Heat Transfer Coefficient of CuO/Water Nanofluid using Double Pipe Heat Exchanger. International Journal of Engineering 2013;6:675-80.
 
Show Less References

Article

Comparative Investigation and Generalized of the Core/Shell Effects on the Magnetics Properties in the Ferromagnetic Cubic Nanoparticles by the Transverse Ising Model

1Groupe Physique des Solides et Sciences des Matériaux, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (UCAD), B.P. 25114, Dakar-Fann Dakar, Sénégal


American Journal of Nanomaterials. 2016, 4(1), 1-7
doi: 10.12691/ajn-4-1-1
Copyright © 2016 Science and Education Publishing

Cite this paper:
Alioune Aidara Diouf, Bassirou Lo, Alhadj Hisseine Issaka Ali, Aboubaker Chedikh Beye. Comparative Investigation and Generalized of the Core/Shell Effects on the Magnetics Properties in the Ferromagnetic Cubic Nanoparticles by the Transverse Ising Model. American Journal of Nanomaterials. 2016; 4(1):1-7. doi: 10.12691/ajn-4-1-1.

Correspondence to: Alioune  Aidara Diouf, Groupe Physique des Solides et Sciences des Matériaux, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (UCAD), B.P. 25114, Dakar-Fann Dakar, Sénégal. Email: aliouneaidara.diouf@ucad.edu.sn

Abstract

The effective field theory within a probability distribution technique that accounts for the self-spin correlation functions is used to study the magnetic properties of the ferromagnetic system described by the spin S= 1/2 Ising model. The thermal behaviors of magnetization and longitudinal hysteresis are examined in details to study the effects of shell on the magnetics properties in the nanoparticles.

Keywords

References

[1]  S. Bouhou, I. Essaoudi, A. Ainane, M. Saber, F. Dujardin, J.J. de Miguel, Journal of magnetism and Magnetic Materials 324, 2434(2012).
 
[2]  S. Bouhou, I. Essaoudi, A. Ainane, M. Saber, R.Ahuja, F. Dujardin, J. Supercond Nov Magn. 26, 201(2013).
 
[3]  Oscar Iglesias, Amilcar Labarta, Journal of Magnetism and Magnetic Materials 738,290 (2005).
 
[4]  Oscar Iglesias, Amilcar Labarta, Physica B 343, 286 (2004).
 
[5]  M. El Hamri, S. Bouhou, I.Essaoudi, A. Ainane, R. Ahuja, Investigation of the surface shell effects on the magnetic properties of a transverse antiferro-magnetic Ising model, Superlattices and Microstructures S0749-6036(15)00006-3 (2015).
 

Article

Microwave Assisted Synthesis of Sn Promoted Pt Catalysts and Their Ethanol Electro-oxidation Activities

1Chemical Engineering Department, Yüzüncü Yıl University, Van, Turkey

2Department of Chemistry, Yüzüncü Yıl University, Van, Turkey


American Journal of Nanomaterials. 2016, 4(1), 8-11
doi: 10.12691/ajn-4-1-2
Copyright © 2016 Science and Education Publishing

Cite this paper:
Dilan Atbas, Aykut Çağlar, Hilal Kivrak, Arif Kivrak. Microwave Assisted Synthesis of Sn Promoted Pt Catalysts and Their Ethanol Electro-oxidation Activities. American Journal of Nanomaterials. 2016; 4(1):8-11. doi: 10.12691/ajn-4-1-2.

Correspondence to: Hilal  Kivrak, Chemical Engineering Department, Yüzüncü Yıl University, Van, Turkey. Email: hilalkivrak@gmail.com, hilalkivrak@yyu.edu.tr

Abstract

In the present work, bi-metallic Pt-Sn electro catalysts were prepared by microwave assisted polyol method at 9:1, 7:3, and 5:5 Pt: Sn atomic ratios on carbon nanotube. The ethanol electro-oxidation activities of these catalysts were measured by cyclic voltammetry (CV). The effect of Sn addition to Pt for the improvement of ethanol electro-oxidation was also measured by CV measurements. Pt-Sn (07:03) catalyst exhibits the highest ethanol electro-oxidation activity. Furthermore, the rotating disk measurements were performed at 0-2000 rpm rotating rates on Pt-Sn (07:03) catalyst. The effect of ethanol concentration on ethanol electro-oxidation activity at varying ethanol concentrations (0.03 M-8.00 M) were measured on Pt-Sn (07:03) catalyst. CO stripping measurements were performed to determine the CO resistance of Pt-Sn electrocatalysts. As a result, CO oxidation onset potential decreases by the addition of Sn to Pt, revealing that Sn addition promotes the CO resistance of platinum.

Keywords

References

[1]  G.C. Li, P.G. Pickup, Analysis of performance losses of direct ethanol fuel cells with the aid of a reference electrode, Journal of Power Sources, 161 (2006) 256-263.
 
[2]  W.J. Zhou, W.Z. Li, S.Q. Song, Z.H. Zhou, L.H. Jiang, G.Q. Sun, Q. Xin, K. Poulianitis, S. Kontou, P. Tsiakaras, Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells, in: 8th Grove Fuel Cell Symposium, London, ENGLAND, 2003, pp. 217-223.
 
[3]  T. Lopes, E. Antolini, E.R. Gonzalez, Carbon supported Pt-Pd alloy as an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol fuel cells, International Journal of Hydrogen Energy, 33 (2008) 5563-5570.
 
[4]  L. Cao, G.Q. Sun, H.Q. Li, Q. Xin, Carbon-supported IrSn catalysts for a direct ethanol fuel cell, Electrochemistry Communications, 9 (2007) 2541-2546.
 
[5]  E. Antolini, Catalysts for direct ethanol fuel cells, Journal of Power Sources, 170 (2007) 1-12.
 
Show More References
[6]  H.F. Wang, Z.P. Liu, Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: New transition-state searching method for resolving the complex reaction network, Journal of the American Chemical Society, 130 (2008) 10996-11004.
 
[7]  A.O. Neto, A.Y. Watanabe, R.M.D. Rodrigues, M. Linardi, C. Forbicini, E.V. Spinace, Electrooxidation of ethanol using Pt rare earth-C electrocatalysts prepared by an alcohol reduction process, Ionics, 14 (2008) 577-581.
 
[8]  D.M. dos Anjos, F. Hahn, J.M. Leger, K.B. Kokoh, G. Tremiliosi, Ethanol electrooxidation on Pt-Sn and Pt-Sn-W bulk alloys, in: 16th Brazillian Symposium of Electrochemistry and Electroanalytical Chemistry, Aguas de Lindoia, BRAZIL, 2007, pp. 795-802.
 
[9]  E. Ribadeneira, B.A. Hoyos, Evaluation of Pt-Ru-Ni and Pt-Sn-Ni catalysts as anodes in direct ethanol fuel cells, Journal of Power Sources, 180 (2008) 238-242.
 
[10]  L.H. Jiang, H.X. Zang, G.Q. Sun, Q. Xin, Influence of preparation method on performance of PtSn/C anode electrocatalyst for direct ethanol fuel cells, Chinese Journal of Catalysis, 27 (2006) 15-19.
 
[11]  F.L.S. Purgato, P. Olivi, J.M. Leger, A.R. de Andrade, G. Tremiliosi, E.R. Gonzalez, C. Lamy, K.B. Kokoh, Activity of platinum-tin catalysts prepared by the Pechini-Adams method for the electrooxidation of ethanol, Journal of Electroanalytical Chemistry, 628 (2009) 81-89.
 
[12]  J. Riberio, D.M. dos Anjos, K.B. Kokoh, C. Coutanceau, J.M. Leger, P. Olivi, A.R. de Andrade, G. Tremiliosi-Filho, Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell, Electrochimica Acta, 52 (2007) 6997-7006.
 
[13]  J. Ribeiro, D.M. dos Anjos, J.M. Leger, F. Hahn, P. Olivi, A.R. Andrade, G. Tremiliosi-Filho, K.B. Kokoh, Effect of W on PtSn/C catalysts for ethanol electrooxidation, Journal of Applied Electrochemistry, 38 (2008) 653-662.
 
[14]  D.R. Lycke, E.L. Gyenge, Electrochemically assisted organosol method for Pt-Sn nanoparticle synthesis and in situ deposition on graphite felt support: Extended reaction zone anodes for direct ethanol fuel cells, Electrochimica Acta, 52 (2007) 4287-4298.
 
[15]  X.Z. Xue, J.J. Ge, T. Tian, C.P. Liu, W. Xing, T.H. Lu, Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process, Journal of Power Sources, 172 (2007) 560-569.
 
[16]  D. Zhao, M.-Q. Shi, W.-M. Liu, Y.-Q. Chu, C.-A. Ma, Special microwave-assisted one-pot synthesis of low loading Pt- Ru alloy nanoparticles on reduced graphene oxide for methanol oxidation, Micro & Nano Letters, 9 (2014) 50-54.
 
[17]  H. Demir Kivrak, The effect of temperature and concentration for methanol electrooxidation on Pt-Ru catalyst synthesized by microwave assisted route, Turkish Journal of Chemistry, 39 (2015) 563-575.
 
[18]  S.C.S. Lai, M.T.M. Koper, Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes, in: Conference on Electrocatalysis Theory and Experiment at the Interface, Southampton, ENGLAND, 2008, pp. 399-416.
 
[19]  A.B. Kumar, Daniel A., Influence of Halide Ions on Anodic Oxidation of Ethanol on Palladium, in, 2016, pp. 201-206.
 
Show Less References