ISSN (Print): 2372-3114

ISSN (Online): 2372-3122

Editor-in-Chief: Apply for this position




Morphological and Chemical Composition Characterization of Commercial Sepia Melanin

1UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies,

2University of South Africa, Pretoria-South Africa

3Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Cape Town, South Africa

4Laboratoire de Photonique et de nanofablication, Groupe de Physique du Solide et des Science matériaux (GPSSM), Faculté de Science et Techniques, Université Cheikh Anta Diop de Dakar(UCAD), Dakar, Sénégal

5CSIR- National Centre for Nano-Structured Materials, Pretoria, South Africa

6University of South Africa, Pretoria-South Africa;Department of Physics, Florida Research Centre, University of South Africa, Florida-South Africa

American Journal of Nanomaterials. 2015, 3(1), 22-27
doi: 10.12691/ajn-3-1-3
Copyright © 2015 Science and Education Publishing

Cite this paper:
Agnes Mbonyiryivuze, Z. Y. Nuru, Balla Diop Ngom, Bonex Mwakikunga, Simon Mokhotjwa Dhlamini, Eugene Park, Malik Maaza. Morphological and Chemical Composition Characterization of Commercial Sepia Melanin. American Journal of Nanomaterials. 2015; 3(1):22-27. doi: 10.12691/ajn-3-1-3.

Correspondence to: Agnes  Mbonyiryivuze, UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies,. Email:


Melanins are difficult to characterize because of their intractable chemical properties and the heterogeneity in their structural features. Melanin pigments, in fact, are composed of many different types of monomeric units that are connected through strong carbon-carbon bonds. Its high insolubility and undefined chemical entities are two obstacles in its complete characterization. The morphological characterization and particle size distribution for sepia melanin by Scanning Electron Microscopy (SEM) on surface structure and Transmission Electron Microscopy (TEM) to confirm the morphology obtained from SEM was done. Both results show that Sepia melanin is formed by many aggregates agglomerated together. These aggregates are formed also by small spherical granules with different size distributions that have been determined using image-J software. The small granule diameter obtained from different TEM and SEM micrographs were 100-200nm. EDS reveals that C and O were the most abundant in sepia melanin with concentration average concentrations of about 57% and 24% respectively. The major compositions of sepia melanin are C, O, Na, Cl, while the minor are Mg, Ca, K, S and N. From TEM micrograph at high resolution, it was possible to measure the distance between polymers layers of sepia melanin using image-J software and it was 0.323 nm = 3.23 Å.



[1]  S. A. Centeno and J. Shamir, “Surface enhanced Raman scattering (SERS) and FTIRcharacterization of the sepia melanin pigment used in works of art,” Journal of Molecular Structure, vol. 873, p. 149-159, 2008.
[2]  C. D. Derby, “Cephalopod ink:Production, Chemistry, Functions and applications,” Mar. Drugs, vol. 12, pp. 2700-2730, 2014.
[3]  Z. Huang, H. Lui, X. K. Chen, A. Alajlan, D. I. McLean and H. Zeng, “Raman spectroscopy of in vivo cutaneous melanin,” Journal of Biomedical Optics , vol. 9(6), p. 1198-1205, 2004.
[4]  A. R. Katritzzky, N. G. Akhmedov, S. N. Denisenko and O. V. Denisko, “1H NMR spectroscopic characterization of solutions of sepia melanin, sepia melanin free acid and human hair melanin,” Pigment Cells Res, vol. 15(2), pp. 93-97, 2002.
[5]  M. Magarelli, P. Passamonti and C. Renieri, “Purification, characterization and analysis of sepia melanin from commercial Sepia ink (Sepia officinalis),” Rev CES Med Vet Zootec, vol. 5(2), pp. 18-28, 2010.
Show More References
[6]  D. J. Kim, K.-Y. Ju and J.-K. Lee, “The synthetic melanin nanoparticles having an excellent binding capacity,” Bull. Korean Chem. Soc, Vols. 33, No. 11, pp. 3788-3792, 2012.
[7]  S. Subianto, Electrochemical Synthesis of –Like Polyindolequinone, PhD. thesis,, Inorganic material research Program, the Queensland University of Technology, 2006.
[8]  K. Tarangini and S. Mishra, “Production, characterization and analysis of melanin from isolated marine pseudomonas sp. using vegetable waste.” Research Journal of Engineering Sciences, vol. 2(5), pp. 40-46, 2013.
[9]  G. DJ, Dermotology, An illustrated Colour Tex, 3 rd ed., Edinburgh:Churchill Livingstone, 2002.
[10]  G. Perna, M. Lasalvia, C. Gallo, G. Quartucci and V. Capozzi, “Vibrational characterization of synthetic eumelanin by means of raman and surface enhanced raman scattering,” The Open Surface Science Journal, vol. 5, pp. 1-8, 2013.
[11]  N. A. Alarfaj, M. A. E. Abdalla and A. M. Al-Hamza, “A Sensitive electrogenerated chemiluminescence assay for determination of melanin in natural and biological samples,” International Journal of Electrochemical Science, vol. 7, pp. 7888-7901, 2012.
[12]  S. S. Sajjan, A. O, G. B. Kulkarni, A. S. Nayak, S. B. Mashetty and T. B. Karegoudar, “Properties and functions of melanin pigment from Klebsiella sp. GSK,” Korean Journal of Microbiology and Biotechnology, vol. 41(1), p. 60-69, 2013.
[13]  M. Magarelli, Purification, characterization and photodegradation studies of modified sepia melanin Sepia (Sepia officinalis).Determination of Eumelanin content in fibers from Alpaca (Vicugna pacos), Doctoral Thesis., Macerata: University of Camerino, 2011.
[14]  D. Peruru, R. S, N. Ahmed VH, P. S. Sandeep, S. Raju, S. Nazan and S. Begum, “Isolation of eumelanin from Sepia officinalis and investigation of its antimicrobial activity by ointment formulation,” International Journal of Pharmacy, vol. 2(2), pp. 67-72, 2012.
[15]  F. Bernsmann, O. Ersen, J.-C. Voegel, E. Jan, N. A. Kotov and V. Ball, “Melanin-containing films: Growth from dopamine solutions versus layer-by-layer deposition,” ChemPhysChem, vol. 11, p. 3299-3305, 2010.
[16]  D. N. Peles, Application of photoemission electron microscopy to melanin and melanosom, Duke University, 2011.
[17]  S. Meng and E. Kaxiras, “Theoretical models of eumelanin protomolecules and their optical properties,” Biophysical Journal, vol. 94, p. 2095-2105, 2008.
[18]  C. G. Kumar, N. Sahu, G. N. Reddy, R. Prasad, N. Nagesh and K. A., “Production of melanin pigment from Pseudomonas stutzeri isolated from red seaweed Hypnea musciformis,” Letters in Applied Microbiology, 2013.
[19]  G. Arun, M. Angeetha, M. Eyini and P. Gunasekaran, “Effect of copper sulphate and resorcinol on the extracellular production of melanin and laccase by Schizophyllum commune Fr. and Pleurotus cystidiosus var. Formosensis,” Indian Journal of Advances in Plant Research, vol. 1(5), pp. 55-61, 2014.
[20]  J. Reisz, The spectroscopic properties of Melanin, Doctoral Thesis, Brisbane: University of Queensland, 2006.
[21]  R. F. Egerton, “An Introduction to TEM, SEM, and AEM,” in Physical Principles, Alberta, Edmonton: University of Alberta, 2005.
[22]  S. K. Fagerland, Investigation of focused ion Beam/scanning electron microscope parameters for slice and view and Energy dispersive X-ray spectroscopy of embedded brain tissue, Master’s thesis, Norwegian University of Science and Technology, 2014.
[23]  J. B. Kortright and A. C. Thompson, “X-ray emmission energies,” in X-Ray Data Booklet, Berkeley, Center for X-ray Optics and Advanced Light Source, 2001.
[24]  D. J. Kim, K.-Y. Ju and J.-K. Lee, “The synthetic melanin nanoparticles having an excellent binding capacity,” Bull. Korean Chem. Soc, vol. 33(11), pp. 3788-3792, 2012.
[25]  J.-W. Lee, H.-B. Cho, T. Nakayama, T. Sekino, S.-I. Tanaka, K. Minato, T. Ueno, T. Suzuki, H. Suematsu, Y. Tokoi and K. Niihara, “Dye sensitized solar cells using purified squid ink nanoparticles coated on Ti O2 nanotubes/nanoparticles,” Journal of Ceramic Society of Japan, vol. 121(1), pp. 123-127, 2013.
[26]  F. Natalio, R. Andre, S. A. Pihan, M. Humanes, R. Weverd and W. Treme, “V2O5 nanowires with an intrinsic iodination activity leading to the formation of self-assembled melanin-like biopolymers,” Journal of Materials Chemistry, vol. 21, p. 11923-11929, 2011.
[27]  J. P. Bothma, Exploring the structure-propertyrelationships in eumelanin, Masters of Philosophy Thesis, School of Physical Science, Queensland University, 2008.
[28]  A. A. R. Watt, J. P. Bothma and P. Meredith, “The supramolecular structure of melanin,” Soft Matter, vol. 5, p. 3754-3760, 2009.
[29]  D. Moses, M. Mattoni, N. Slack, J. Waite and F. Zok, “Role of melanin in mechanical properties of Glycera jaws,” Acta Biomaterialia, vol. 2, p. 521-530, 2006.
[30]  C.-T. Chen, V. Ball, J. J. d. A. Gracio, M. K. Singh, V. Toniazzo, D. Ruch and M. J. Buehler, “Self-Assembly of tetramers of 5,6-dihydroxyindole explains the primary physical properties of eumelanin: experiment, simulation, and design,” American Chemical Society, vol. 7(2), p. 1524-1532, 2013.
[31]  K. Glass, S. Ito, P. R. Wilby, T. Sota, A. Nakamura, R. Bowerse, J. Vinther, S. Dutta, R. Summons, D. E. G. Briggs, K. Wakamatsu and J. D. Simon, “Direct chemical evidence for eumelanin pigment from the Jurassic period,” PNAS Early Edition, pp. 1-6, 2012.
Show Less References


Synthesis and Mechanical Characterisation of Aluminium-Copper-Alumina Nano Composites Powder Embedded in Glass/Epoxy Laminates

1Department of Aeronautical Engineering, IARE, Hyderabad, Telangana

2Metallurgy & Material Sciences Department, IIT Madras, Chennai, TamilNadu

3Geetam University, Hyderabad, Telangana

American Journal of Nanomaterials. 2015, 3(1), 28-39
doi: 10.12691/ajn-3-1-4
Copyright © 2015 Science and Education Publishing

Cite this paper:
P K Dash, Prof. B. S. Murty, R B Karthik Aamanchi. Synthesis and Mechanical Characterisation of Aluminium-Copper-Alumina Nano Composites Powder Embedded in Glass/Epoxy Laminates. American Journal of Nanomaterials. 2015; 3(1):28-39. doi: 10.12691/ajn-3-1-4.

Correspondence to: P  K Dash, Department of Aeronautical Engineering, IARE, Hyderabad, Telangana. Email:


This paper presents the synthesis and mechanical properties study of Aluminum-Copper nanocomposite powders with variation in volume percentages of alumina. The powders were synthesized using mechanical alloying (high energy ball milling technique). Samples of size 2010 mm were produced from nanocomposite powders by spark plasma sintering technique and conventional sintering method. The microstructural verifications were carried out using X-ray diffraction. Transition electron microscopy were used to determine the phases formed and size of the particles. Thermal analysis and hardness of these samples were measured by conducting DSC and Vickers’s Hardness Test. Also, the powders of ACANC were embedded into Glass/Epoxy laminates for further identification of NC powders effects on mechanical properties like tensile and compressive strength. The samples prepared using conventional sintering technique had gone through two different types of annealing before sintering and shown enhanced hardness, yield strength and increment in density. The nanocomposite embedded laminates have shown improved tensile, compression and hardness values in compare to virgin specimens.



[1]  Durai, T. G., Das, K. and Das, S., “Synthesis and characterization of Al matrix composites reinforced by in situ alumina particulates”, Mater. Sci. Eng. A, Vol. 445-446, 2007, pp. 100-105.
[2]  Anđić, Z., Korać, M., Tasić, M., Kamberović, Z. and Raić, K., “Synthesis and sintering of cu-al2O3 nanocomposite powders produced by a thermochemical route”, Metalurgija Journal of Metallurgy, 2008, pp.71-81.
[3]  Hesabi, Z. R., Simchi, A., and Reihani, S. M. S., “Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites”, Mater Sci Eng A, Vol. 428, 2006, pp. 159-168.
[4]  Tavoosi, M., Karimzadeh, F., and Enayati, M. H., “Fabrication of Al–Zn/α-Al2O3 nanocomposite by mechanical alloying”, Materials Letters Vol. 62, No. 2, 2008, pp. 282-285.
[5]  Mazen, A. A., and Ahmed, A. Y. “Effect of alumina additions on the mechanical behavior of PM MMC with low strength matrix”, Current Advances in Mechanical Design and Production, Vol. VII, 2000, pp. 397-406.
Show More References
[6]  Arami, H., and Simchi, A., “Reactive milling synthesis of nanocrystalline Al–Cu/Al2O3 nanocomposite”, Mater. Sci. Eng. A, Vol. 464, No. 1-2, 2007, 225-232.
[7]  Yadav, T. P., Yadav, R. M., and Singh, D. P., “Mechanical Milling: a Top Down Approach for the Synthesis of Nanomaterials and Nanocomposites”, Nanoscience and Nanotechnology, Vol. 2, No. 3, 2012, pp. 22-48.
[8]  Nayak, S.S., Kim, D.H., Pabi, S. K. and Murty, B. S., “Aluminium-based NCs by non-equilibrium processing routes”, Trans. Indian Inst. Met. Vol.59, No. 2, April 2006, pp. 193-198.
[9]  Oh, S. T., Sekino, T., and Niihara, K., “Fabrication and mechanical properties of 5 Vol% copper dispersed Alumina NC”, Journal of the European Ceramic society, Vol-18, 1998, pp. 31-37.
[10]  Feldheim, D. L. and Foss C. A. (eds) 2002 Metal nanoparticles: Synthesis, characterization and applications (Marcel Dekker Inc.).
[11]  Nachum, S., Fleck, N.A., Ashby, M.F., Colella, A., and Matteazzi, P., “The microstructural basis for the mechanical properties and electrical resistivity of nanocrystalline Cu–Al2O3”, Materials Science and Engineering Series A, Vol. 527, 2010, pp. 5065-5071.
[12]  Padmanabhan, K., “Time-temperature failure analysis of epoxies and unidirectional glass/epoxy composites in compression”, Composites, Vol. Part A 27A, 1996, pp. 585-596.
[13]  Orolínová, M., Ďurišin, J., Ďurišinová, K., Danková, Z. and Ďurišin, M., “Effect of Microstructure on Properties of Cu-Al2O3 Nanocomposite”, Chemical and Materials Engineering, Vol.1, No. 2, 2013, pp. 60-67.
[14]  Shehata, F., Abdelhameed, M., Fathy, A. and Moustafa, S. F., “Fabrication of Copper- Alumina Nanocomposites by Mechanochemical Routes”, Jr. of Nano Research, Vol. 6, 2009, pp 51-60.
[15]  Saheb, N., Iqbal, Z., Khalil, A., Hakeem, A. S., Aqeeli, N. A., Laoui, T., Qutub, A. A. and Kirchner, R., “Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review”, Journal of Nanomaterials, Volume 2012, Article ID 983470, pp. 1-13.
[16]  Wu, J.M., Li, Z.Z., “Nanostructure composite obtained by mechanically driven reduction reactions of CuO and Aluminium powder mixture”, Journal of alloys and compounds, Vol. 299, 2000, pp. 9-16.
[17]  Mahapatra, A., “Fabrication and characterization of novel iron oxide/ alumina nanomaterials for environmental applications”, Ph.D Thesis, NIT, Rourkela, Odisha, 2013.
[18]  Koli, D. K., Agnihotri, G., and Purohit, R., “Properties and Characterization of Al-Al2O3 Composites Processed by Casting and Powder Metallurgy Routes (Review)”, International Journal of Latest Trends in Engineering and Technology (IJLTET), Vol. 2 Issue 4 July 2013, pp. 486-496.
[19]  Ramezani, M., and Neitzert, T., “Mechanical milling of aluminum powder using planetary ball milling process”, Jr of Achievements in Materials and Manufacturing Engineering, Vol.55, No. 2, 2012, pp. 790-798.
[20]  Upadhyaya, A., and Upadhyaya, G. S., “Sintering of copper-alumina composites through blending and mechanical alloying powder metallurgy routes”, Mater. Des., Vol.16, No. 1, 1995, pp. 41-45.
[21]  Valibeygloo, N., Khosroshahi, R. A., and Mousavian, R. T., “ Microstructural and mechanical properties of Al-4.5wt% Cu reinforced with alumina nanoparticles by stir casting method”, Int. Jr. of Mineral, Metallurgy and Materials, Vol. 20, No. 10, Oct. 2013, pp. 978-988.
[22]  Tavoosi, M., Karimzadeh, F., and Enayati, M. H., “Fabrication of Al–Zn/α-Al2O3 nanocomposite by mechanical alloying”, Materials Letters Vol. 62, No. 2, 2008, pp. 282-285.
[23]  O'Donnell, G. and Looney, L., “Production of aluminium matrix composite components using conventional PM technology”, Mater. Sci. Eng. A, Vol. 303, No. 1-2, 2001, pp. 292-301.
[24]  Zebarjad, S. M., and Sajjadi, S. A., “Microstructure evaluation of Al–Al2O3 composite produced by mechanical alloying method”, Materials & Design. Vol. 27, 2006, pp.684-688.
[25]  Ruiz-Navas, E. M., Fogagnolo, J. B., Velasco, F., Ruiz-Prieto, J. M., and Froyen, L., “One step production of aluminium matrix composite Powders by mechanical alloying”, Composites Part A: Applied Science and Manufacturing, Vol. 37, No. 11, 2006, pp. 2114-2120.
[26]  Mula, S., Padhi, P., Panigrahi, S.C., Pabi, S.K., and Ghosh, S., “On structure and mechanical properties of ultrasonically cast Al–2% Al2O3 Nanocomposite”, Materials Research Bulletin, Vol. 44, No. 1, 2009, pp 154-1160.
[27]  Rahimiana, M., Nader, P., and Naser, E., “Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy”, Materials Science and Engineering, Vol. A527, 2010, pp. 1031-1038.
[28]  Rajkovic, V., Bozic, D., and Jovanovic, M. T., “Effects of copper and Al2O3 particles on characteristics of Cu–Al2O3 composites”, Materials and Design, Vol. 31, 2010, pp. 1962-1970.
[29]  Razavi, H. Z., Hafizpour, H. R. and Simchi, R., “An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling”, Materials Science and Engineering, Vol. A454-455, 2007, pp. 89-98.
[30]  Razavi, S.S., Yazdani, R. and Manafi, S. A., “Effect of volume fraction and particle size of Alumina reinforcements on compaction and densification behavior of Al-Alumina NCs”, Materials and Engineering, (Article in Press).
[31]  Simchi, H. and Simchi, A., “Tensile and fatigue fracture of nanometric alumina reinforced copper with bimodal grain size distribution”, Materials Science and Engineering, Vol. Part A: 507, 2009, pp. 200-206.
[32]  Aboraia, M. S., Wasly, H. S., Doheim, M. A., Abdalla, G. A., and Mahmoud, A. E., “Characterization of Al/(10%Al2O3-10%ZrO2) Nanocomposite Powders Fabricated by High-Energy Ball Milling”, Int. Jr. of Eng. Res. and Appl. (IJERA), Vol. 3, Issue 3, May-Jun 2013, pp.474-482.
[33]  Arami, H., and Simchi, A., “Reactive milling synthesis of nanocrystalline Al–Cu/Al2O3 nanocomposite”, Mater. Sci. Eng. A, Vol. 464, No. 1-2, 2007, 225-232.
[34]  Olszówka-Myalska, A., Szala, J. and Cwajna, J. “Characterization of reinforcement distribution in Al/(Al2O3)p composites obtained from composite powder”, Materials Characterization, Vol. 46, No. 2-3, 2001, pp. 189-195.
[35]  Smagorinski, M. E., Tsantrizos, P. G., Grenier, S., Cavasin, A., Brzezinski, T. and Kim, G., “The properties and microstructure of Al-based composites reinforced with ceramic particles” Mat. Sci. and Eng. A, Vol. 244, No. 1, 1998, pp. 86-90.
[36]  Fogagnolo, J. B., Velasco, F., Robert, M. H., and Torralba, J. M., “Effect of mechanical alloying on the morphology, microstructure and properties of aluminum matrix composite powders”, Mater Sci Eng A, Vol. 342, No. 1-2, 2003; 131-143.
[37]  Zebarjad, S. M., and Sajjadi, S. A., “Dependency of physical and mechanical properties of mechanical alloyed Al–Al2O3 composite on milling time”, Materials & Design, Vol. 28, No. 7, 2007, pp. 2113-2120.
[38]  Shehata, F., Abdelhameed, M., Fathy, A. and Elmahdy, M., “Preparation and Characteristics of Cu-Al2O3 Nanocomposite”, Open Journal of Metal, 2011, 1, 25-33.
[39]  Hosseini, N., Karimzadeh, F., Abbasi, M. H and Enayati, M. H, “Tribological properties of Al6061–Al2O3 NC prepared by milling and hot pressing”, Materials and Design, Vol. 31, 2010, pp. 4777-4785.
[40]  Zao, F. M. and Takeda, N., “Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites”, Composites, Vol. Part A:31, 2000, pp. 1215-1224.
[41]  Casati, R. and Vedani, M., Metal Matrix Composites Reinforced by Nano-Particles—A Review”, Metals, Vol. 4, 2014, pp. 65-83.
[42]  Mostaed, E.; Saghafian, H.; Mostaed, A.; Shokuhfar, A.; Rezaie, H.R. Investigation on preparation af Al-4.5%Cu/SiCp nanocomposites powder via mechanical milling. Powder Tech. 2012, 221, 278-283.
[43]  Zh. Alferov and L. Esaki ed., “Nanostructures: physics and technology”, 19th International Symposium Ekaterinburg, Russia, June 20-25, 2011.
[44]  Koch, C.C., “The synthesis and structure of nanocrystalline materials produced by mechanical attrition”, Jr. Nanostruct. Mater., Vol. 2, 1993, pp. 109-29.
[45]  Woo K. D. and Lee H. B., “Fabrication of Al alloy matrix composite reinforced with subsive-sized Al2O3 particles by the in situ displacement reaction using high-energy ball-milled powder”, Materials Science and Engineering A. Vol. 449–451, 2007, pp 829-832.
[46]  Tavoosi, M., Karimzadeh, F., and Enayati, M. H., “Fabrication of Al–Zn/α-Al2O3 nanocomposite by mechanical alloying”, Mater. Lett., Vol. 62, 2008, pp. 282-285.
[47]  Wieczorek-Ciurowa, K., Oleszak, D., and Gamrat, K., “Mechanosynthesis and process characterization of some nanostructured intermetallics–ceramics composites”, Jr. Alloys Compd., Vol. 434-435, 2007, pp. 501-504.
[48]  Hwang, S. J., and Lee, J. H., “Mechanochemical synthesis of Cu–Al2O3 nanocomposites”, Mater. Sci. Eng. A, Vol. 405, 2005, pp. 140-146.
[49]  Kleiner, S., Bertocco, F., Khalid, F.A., and Beffort, O., “Decomposition of process control agent during mechanical milling and its influence on displacement reactions in the Al–TiO2 system”, Materials Chemistry and Physics, Vol. 89, No. 2-3, 2005, pp. 362-366.
[50]  Kaczmar, J. W., and Naplocha, K., “Wear behaviour of composite materials based on 2024 Al-alloy reinforced with δ alumina fibres”, Jr. of Achievements in Materials and Manufacting Eng., Vol. 43, No. 1, 2010, pp. 88-93.
Show Less References


An integrated in Vitro and in Vivo Testing Approach to Assess Pulmonary Toxicity of Engineered Cadmium-Doped Silica Nanoparticles

1Department of Clinical Surgical, Diagnostic and Pediatric Sciences, Faculty of Medicine and Surgery, University of Pavia, Pavia, Italy

2Department of Pathophysiology, Experimental Medicine, and Public Health, University of Siena, Siena, Italy

3Laboratory of Clinical and Experimental Toxicology, Toxicology Division, IRCCS Salvatore Maugeri Foundation, Scientific Institute of Pavia Medical Centre, Pavia, Italy

American Journal of Nanomaterials. 2015, 3(2), 40-56
doi: 10.12691/ajn-3-2-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Uliana De Simone, Elisa Roda, Cinzia Signorini, Teresa Coccini. An integrated in Vitro and in Vivo Testing Approach to Assess Pulmonary Toxicity of Engineered Cadmium-Doped Silica Nanoparticles. American Journal of Nanomaterials. 2015; 3(2):40-56. doi: 10.12691/ajn-3-2-1.

Correspondence to: Teresa  Coccini, Laboratory of Clinical and Experimental Toxicology, Toxicology Division, IRCCS Salvatore Maugeri Foundation, Scientific Institute of Pavia Medical Centre, Pavia, Italy. Email:


An in vitro and in vivo testing strategy for assessing the pulmonary effects was used to investigate the safety characteristics of silica nanoparticles doped with cadmium (Cd-SiNPs). In A549 cells, Cd-SiNPs (0.5-100 μg/ml) caused (i) mitochondrial dysfunction and apoptosis at 1 μg/ml, (ii) GSH depletion at 10μg/ml, (iii) membrane alterations at 25 μg/ml, after 1-day, and (iv) cell growth and proliferation inhibition at 0.05 μg/ml after prolonged exposure. Cd-SiNP effects were more pronounced compared to CdCl2. SiNPs affected GSH content only. In vivo results revealed early (1 day) and persistent (until 1 month) rat lung damage after intratracheal instillation of Cd-SiNPs (1mg/rat) in terms of enhanced apoptotic phenomena and altered lung parenchyma morphology. Cd-SiNPs and CdCl2 caused a delayed occurrence of oxidative stress by increasing SOD1, iNOS, and F2-IsoPs. The latter was preceded by marked increase of F2-IsoPs levels in plasma. SiNPs did not cause oxidative stress. Cd-SiNPs showed a higher reactivity than CdCl2 and SiNPs. In vitro and in vivo data on Cd-SiNP toxicity suggest that the lung is a susceptible target tissue. These findings support the concept that multiple assays and an integrated testing strategy should be recommended to characterize toxicological response to NPs.



[1]  Thomas K. and Sayre P, “Research strategies for safety evaluation of nanomaterials, Part I: evaluating the human health implications of exposure to nanoscale materials,” Toxicology Sciences, 87 (2). 316-321. 2005.
[2]  European Commission, Brussels, 3.10.2012, COM 572 final. Communication from the commission to the European Parliament, the Council and the European Economic and Social Committee. Second Regulatory Review on Nanomaterials, 2012.
[3]  EPA (2008 January), “Draft nanomaterial research strategy (NRS)”, EPA/600/S-08/002, 2008.
[4]  Food and drug Administration U.S.A., “A FDA prospective on nanomedicine current initiatives in the US”, 2010.
[5]  NIOSH (National Institute for Occupational Safety and Health), “Current Intelligence Bulletin: Occupational Exposure to Carbon Nanotubes and Nanofibers,”, 2010.
Show More References
[6]  Warheit D.B., Borm, P.J.A., Hennes, C. and Lademann J, “Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop,” Inhalation Toxicology, 19 (8). 631-643. 2007.
[7]  National Institute of Standard and technology (NIST), Htm.
[8]  Card, J.W., Zeldin, D.C., Bonner, J.C. and Nestmann, E.R, “Pulmonary applications and toxicity of engineered nanoparticles,” American Journal of Physiology. Lung Cellular and Molecular Physiology, 295 (3). L400-L411. 2008.
[9]  Donaldson, K., Li, X. and MacNee, W, “Ultrafine (nanometre) particle mediated lung injury,” Journal of Aerosol Science, 29 (5-6). 553-560. 1998.
[10]  Sajid, M., Ilyas, M., Basheer, C., Tariq, M., Daud, M., Baig, N. and Shehzad, F, “Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects,” Environmental Science and Pollution Research International, 22 (6). 4122-4143. 2015.
[11]  Miller, F., Asgharian, B. and Hofmann, W, Dosimetry of nanoparticles in humans: from children to adults, Gardner DE (ed.) Toxicol. Lung, 4th ed. CRC Press, Boca Raton, 2005, 151-194.
[12]  Mühlfeld, C., Gehr, P. and Rothen-Rutishauser, B, “Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract,” Swiss Medical Weekly, 138 (27-28). 387-391. 2008.
[13]  Cho, W.S., Choi, M., Han, B.S., Cho, M., Oh, J., Park, K., Kim, S.J. and Kim, S.H., Jeong, J, “Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles,” Toxicology Letters, 175 (1-3). 24-33. 2007.
[14]  Kaewamatawong, T., Shimada, A., Okajima, M., Inoue, H., Morita, T., Inoue, K. and Takano, H, “Acute and subacute pulmonary toxicity of low dose of ultrafine colloidal silica particles in mice after intratracheal instillation,” Toxicologic Pathology, 34 (7). 958-965. 2006.
[15]  Eom H.J. and Choi J, “Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B,” Toxicology in Vitro, vol. 23, no. 7, pp. 1326-1332, 2009.
[16]  Lin, W., Huang, Y.W., Zhou, X.D. and Ma, Y, “In vitro toxicity of silica nanoparticles in human lung cancer cells,” Toxicology and Applied Pharmacology, 217 (2). 252-259. 2006.
[17]  Panas, A., Marquardt, C., Nalcaci, O., Bockhorn, H., Baumann, W., Paur, H.R., Mülhopt, S., Diabaté, S. and Weiss, C, “Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages,” Nanotoxicology, 7 (3). 259-273. 2013.
[18]  Park, E.J. and Park, K, “Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro,” Toxicology Letters, 184 (1). 18-25. 2009.
[19]  Borm, P.J., Robbins, D., Haubold S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins, R., Stone, V., Kreyling, W., Lademann, J., Krutmann, J., Warheit, D. and Oberdorster, E, “The potential risks of nanomaterials: a review carried out for ECETOC,” Particle and Fibre Toxicology, 3.11. 2006.
[20]  Rzigalinski, B.A. and J. Strobl, S, “Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots,” Toxicology and Applied Pharmacology, 238 (3). 280-288. 2009.
[21]  Mahmoudi, M., Serpooshan V. and Laurent, S, “Engineered nanoparticles for biomolecular imaging,” Nanoscale, 3 (8). 3007-3026. 2011.
[22]  Simovic, S., Ghouchi-Eskandar, N., Sinn, A.M., Losic, D. and Prestidge, C.A, “Silica materials in drug delivery applications,” Current Drug Discovery Technologies, vol. 8, no. 3, pp. 269-27., 2011.
[23]  Vivero-Escoto, J.L., Slowing, I.I., Trewyn, B.G. and Lin, V.S, “Mesoporous silica nanoparticles for intracellular controlled drug delivery,” Small, 6 (18). 1952-1967. 2010.
[24]  Napierska. D., Thomassen. L.C., Lison, D., Martens, J.A. and Hoet, P.H, “The nanosilica hazard: another variable entity” Particle and Fibre Toxicology, 7 (1). 39. 2010.
[25]  Oberdörster, G., Cherian, M.G. and Baggs, R.B, “Correlation between cadmium induced pulmonary carcinogenicity, metallothionein expression, and inflammatory processes: a species comparison,” Environmental Health Perspectives, 102 (3). 257-263. 1994.
[26]  IARC (International Agency for Research on Cancer), “Arsenic, metals, fibres, and dusts. A review of human carcinogens,” IARC Monographs, vol. 100 C, pp. 1-526, 2009.
[27]  National Toxicology Program U.S.A, “Report on Carcinogens,” Twelfth Edition, U.S. Department of Health and Human Services Public Health Service National Toxicology Program, 2011.
[28]  Shapiro, D.L., Nardone, L.L., Rooney S.A., Motoyama, E.K. and Munozm, J.L, “Phospholipid biosynthesis and secretion by a cell line (A549) which resembles type II aleveolar epithelial cells,” Biochimica et Biophysica Acta, 530 (2). 197-207. 1978.
[29]  Stringer, B., Imrich, A. and Kobzik, L, “Lung epithelial cell (A549) interaction with un opsonized environmental particulates: quantitation of particle specific binding and IL-8 production,” Experimental Lung Research., 22 (5). 495-508. 1996.
[30]  Stearns, R.C., Paulauskis, J.D. and Godleski, J.J, “Endocytosis of ultrafine particles by A549 cells,” American Journal of Respiratory Cell and Molecular Biology, 24 (2). 108-115. 2001.
[31]  Coccini, T., Barni, S., Vaccarone, R., Mustarelli, P., Manzo, L. and Roda, E, “Pulmonary toxicity of instilled cadmium-doped silica nanoparticles during acute and subacute stages in rats,” Histology and Histopathology, 28 (2). 195-209. 2013.
[32]  De Simone, U., Manzo, L., Profumo, A. and Coccini, T, “In vitro toxicity evaluation of engineered cadmium-coated silica nanoparticles on human pulmonary cells” Journal of Toxicology, 2013; 2013: 931785.
[33]  De Simone, U., Manzo, L., Ferrari, C., Bakeine, J., Locatelli, C. and Coccini, T, “Short and long-term exposure of CNS cell lines to BPA-f a radiosensitizer for Boron Neutron Capture Therapy: safety dose evaluation by a battery of cytotoxicity tests,” Neurotoxicology, 35. 84-90. 2013.
[34]  Damiano, V.V., Cherian, P.V., Frankel, F.R., Steeger, J.R., Sohn, M., Oppenheim, D. and Weinbaum, G, “Intraluminal fibrosis induced unilaterally by lobar instillation of CdCl2 into the rat lung,” The American Journal of Pathology, 137 (4). 883-894. 1990.
[35]  Driscoll, K.E., Maurer, J.K., Poynter, J., Higgins, J., Asquith, T. and Miller, N.S, “Stimulation of rat alveolar macrophage fibronectin release in a cadmium chloride model of lung injury and fibrosis,” Toxicology and Applied Pharmacology, 116 (1). 30-37. 1992.
[36]  Weibel, E.R, Stereological methods, Vol. 1: Practical methods for biological morphometry. Academic Press Inc. London 1979.
[37]  Signorini, C., Comporti, M. and Giorgi, G, “Ion trap tandem mass spectrometric determination of F2-isoprostanes,” Journal of Mass Spectrometry, 38 (10). 1067-1074. 2003.
[38]  Signorini, C., Ciccoli, L., Leoncini, S., Carloni, S., Perrone, S., Comporti, M., Balduini, W. and Buonocore, G, “Free iron, total F2-isoprostanes and total F4-neuroprostanes in a model of neonatal hypoxicischemic encephalopathy: neuroprotective effect of melatonin,” Journal of Pineal Research, 46 (2).148-154. 2009.
[39]  De Felice, C., Ciccoli, L., Leoncini, S., Signorini, C., Rossi, M., Vannuccini, L., Guazzi, G., Latini, G., Comporti, M., Valacchi, G. and Hayek, J, “Systemic oxidative stress in classic Rett syndrome,” Free Radical Biology & Medicine, 47 (4). 440-448. 2009.
[40]  Signorini, C., Perrone, S., Sgherri, C., Ciccoli, L., Buonocore, G., Leoncini, S., Rossi, V., Vecchio, D. and Comporti, M, “Plasma esterified F2-isoprostanes and oxidative stress in newborns: role of nonprotein-bound iron,” Pediatric Research, 63 (3). 287-291. 2008.
[41]  Soffler, C., Campbell, V.L. and Hassel, D.M, “Measurement of urinary F2- isoprostanes as markers of in vivo lipid peroxidation: a comparison of enzyme immunoassays with gas chromatography-mass spectrometry in domestic animal species,” Journal of Veterinary Diagnostic Investigation, 22 (22). 200-209. 2010.
[42]  Maurer-Jones, M.A. and Haynes, C.L, “Toward correlation in in vivo and in vitro nanotoxicology studies,” The Journal of Law, Medicine & Ethics, 40 (4). 795-801. 2013.
[43]  Driscoll, K.E., Costa, D.L., Hatch, G., Henderson, R., Oberdorster, G., Salem, H. and Schlesinger, R.B, “Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations,” Toxicological Sciences, 55 (1). 24-25. 2000.
[44]  Oberdörster, G., Baumert, H.P. and Hochrainer, D, “The clearance of cadmium aerosols after inhalation exposure,” American Industrial Hygiene Association Journal, 40 (6). 443-450. 1979.
[45]  Oberdörster, G, Pulmonary deposition, clearance and effects of inhaled soluble and insoluble cadmium compounds, Nordberg GF, Herber RFM, Alessio L, eds. Cadmium in the human environment: Toxicity and carcinogenicity. Lyon: International Agency for Research on Cancer, 1992, 189-204.
[46]  Oberdörster, G., Cherian, M.G. and Baggs, R.B, “Importance of species differences in experimental pulmonary carcinogenicity of inhaled cadmium for extrapolation to humans,” Toxicology Letters, 72 (1-3). 339-343. 1994.
[47]  ATSDR (Agency for Toxic Substances and Disease Registry) “Toxicological profile for Cadmium (Draft for Public Comment)”, Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service, 2008.
[48]  Coccini, T., Roda, E., Barni, S., Signorini, C. and Manzo, L, “Long-lasting oxidative pulmonary insult in rat after intratracheal instillation of silica nanoparticles doped with cadmium,” Toxicology, 302 (2-3). 203-211. 2012.
[49]  Ochi, T., Takahashi, K. and Ohsawa, M, “Indirect evidence for the induction of a prooxidant state by cadmium chloride in cultured mammalian cells and a possible mechanism for the induction,” Mutation Research, vol. 180 (2). 257-266. 1987.
[50]  Chin, T.A., and Templeton, D.M, “Protective elevations of glutathione and metallothionein in cadmium-exposed mesangial cells,” Toxicology, 77 (1-2). 145-156. 1993.
[51]  Gaubin, Y., Vaissade, F., Croute, F., Beau, B., Soleilhavoup, J. and Murat, J, “Implication of free radicals and glutathione in the mechanism of cadmium-induced expression of stress proteins in the A549 human lung cell-line,” Biochimica et Biophysica Acta, 1495 (1). 4-13, 2000.
[52]  Sauvageau, J.A. and Jumarie, C, “Different mechanisms for metal-induced adaptation to cadmium in the human lung cell lines A549 and H441,” Cell Biology and Toxicology, 29 (3). 159-173. 2013.
[53]  Li, K.G., Chen, J.T., Bai, S.S., Wen, X., Song, S.Y., Yu, Q., Li, J. and Wang, Y.Q, “Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots,” Toxicology In Vitro, 23 (6). 1007-1013. 2009.
[54]  Aoyagi, T., Hayakawa, K., Miyaji, K., Ishikawa, H. and Hata, M, “Cadmium nephrotoxicity and evacuation from the body in a rat modeled subchronic intoxication,” International Journal of Urology, 10 (6). 332-338. 2003.
[55]  Park, E.J., Yi, J., Kim, Y., Choi, K. and Park, K, “Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism,” Toxicology In Vitro, 24 (3). 872-878. 2010.
[56]  Limbach, L.K., Wich, P., Manser, P., Grass, R.N., Bruinink, A. and Stark, W.J, “Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress,” Environmental Science & Technology, 41 (11). 4158-4163. 2007.
[57]  Jin, Y., Kannan, S., Wu, M. and Zhao, J.X, “Toxicity of luminescent silica nanoparticles to living cells,” Chemical Research in Toxicology, 20 (8). 1126-1133. 2007.
[58]  Shi, Y., Yadav, S., Wang, F. and Wang, H, “Endotoxin promotes adverse effects of amorphous silica nanoparticles on lung epithelial cells in vitro,” Journal of Toxicology and Environmental Health. Part A, 73 (11). 748-756. 2010.
[59]  Akhtar, M.J., Ahamed, M., Kumar, S., Siddiqui, H., Patil, G., Ashquin, M. and Ahmad, I, “Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells,” Toxicology, 276 (2). 95-102. 2010.
[60]  Choi, S.J., Oh, J.M. and Choy, J.H, “Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells,” Journal of Inorganic Biochemistry, 103 (3). 463-471. 2009.
[61]  Henderson, R.F., Driscoll, K.E., Harkema, J.R., Lindenschmidt, R.C., Chang, I.Y., Maples, K.R. and Barr, E.B, “A comparison of the inflammatory response of the lung to inhaled versus instilled particles in F-344 rats,” Fundamental and Applied Toxicology, 24 (2). 183-197. 1995.
[62]  Jacobsen, N.R., Moller, P., Jensen, K.A., Vogel, U., Ladefoged, O., Loft, S. and Wallin, H, “Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE−/− mice,” Particle and Fibre Toxicology, 6 (2). doi: 10.1186/1743-8977-6-2. 2009.
[63]  Morimoto, Y., Hirohashi, M., Ogami, A., Oyabu, T., Myojo, T., Todoroki, M., Yamamoto, M., Hashiba, M., Mizuguchi, Y., Lee, B.W,, Kuroda, E., Shimada, M., Wang, W.N., Yamamoto ,K., Fujita, K., Endoh, S., Uchida, K., Kobayashi, N., Mizuno, K., Inada, M., Tao, H., Nakazato, T., Nakanishi, J. and Tanaka, I, “Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation,” Nanotoxicology, 6 (6). 587-599. 2012.
[64]  Ogami, A., Morimoto, Y., Myojo, T. and Oyabu, T, “Biological effect of fullerene (C60) to lung by inhalation or instillation,” Journal of UOEH, 34 (1). 65-75. 2012.
[65]  Jackson, P., Hougaard, K.S., Boisen, A.M., Jacobsen, N.R., Jensen, K.A., Møller, P., Brunborg, G., Gutzkow, K.B., Andersen, O., Loft, S., Vogel, U. and Wallin, H, “Pulmonary exposure to carbon black by inhalation or instillation in pregnant mice: effects on liver DNA strand breaks in dams and offspring,” Nanotoxicology, 6 (5). 486-500. 2012.
[66]  Baisch, B.L., Corson, N.M, Wade-Mercer, P., Gelein, R., Kennell, A.J., Oberdörster, G. and Elder, A1, “Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation,” Particle and Fibre Toxicology, 2014.
[67]  Roberts, J.R., Antonini, J.M., Porter, D.W., Chapman, R.S., Scabilloni, J.F., Young, S.H., Schwegler-Berry, D., Castranova, V. and Mercer, R.R, “Lung toxicity and biodistribution of Cd/Se-ZnS quantum dots with different surface functional groups after pulmonary exposure in rats,” Particle and Fibre Toxicology. 2013.
[68]  Bolognin, M., Kirschvink, N., Leemans, J., De Buscher, V., Snaps, F., Gustin, P., Peeters, D. and Clercx, C, “Characterization of the acute and reversible airway inflammation induced by cadmium chloride inhalation in healthy dogs and evaluation of the effects of salbutamol and prednisolone,” Veterinary Journal, 179 (3). 443-50. 2009.
[69]  Blum, J.L., Rosenblum, L.K., Grunig, G., Beasley, M.B., Xiong, J.Q. and Zelikoff, J.T, “Short-term inhalation of cadmium oxide nanoparticles alters pulmonary dynamics associated with lung injury, inflammation, and repair in a mouse model,” Inhalation Toxicology, 26 (1). 48-58. 2014.
[70]  Sayes, C.M., Reed, K.L. and Warheit, D.B, “Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles,” Toxicological Sciences, 97 (1). 163-80. 2007.
[71]  Han, Y.G., Xu, J., Li, Z.G., Ren, G.G. and Yang, Z, “In vitro toxicity of multi-walled carbon nanotubes in C6 rat glioma cells,” NeuroToxicology, 33 (5). 1128-1134. 2012.
Show Less References