American Journal of Microbiological Research

ISSN (Print): 2328-4129

ISSN (Online): 2328-4137

Website: http://www.sciepub.com/journal/AJMR

Article

Molecular Identification 0f 16s Ribosomal RNA Gene of Helicobacter pylori Isolated from Gastric Biopsies in Sudan

1Department of Microbiology, Kassala University, Sudan

2Department of Microbiology, Khartoum University, Sudan

3Virology Department Central lab, Sudan

4Consultant Physician and Gastroenterology, Sudan

5Department of Bioinformatics, Africa City of Technology, Sudan

6Division of Molecular Genetics, Institute of Human Genetics, University of Tübingen, Germany


American Journal of Microbiological Research. 2015, 3(2), 50-54
DOI: 10.12691/ajmr-3-2-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Mona Mamoun, Elsanousi S. M., Khalid A. Enan, Abdelmounem E. Abdo, Mohamed A. Hassan. Molecular Identification 0f 16s Ribosomal RNA Gene of Helicobacter pylori Isolated from Gastric Biopsies in Sudan. American Journal of Microbiological Research. 2015; 3(2):50-54. doi: 10.12691/ajmr-3-2-1.

Correspondence to: Mona  Mamoun, Department of Microbiology, Kassala University, Sudan. Email: mnmamoun@gmail.com

Abstract

H. pylori are a ubiquitous microorganism infecting up to half of the world’s population. A total of 81 gastric biopsies taken from patients complaining of gastric disorders in Khartoum state, Sudan screened for H.pylori. Eighteen samples (22.2%) yielded positive culture results. The majority of them were males. Also results indicated higher prevalence of H. pylori in patients with gastritis. Further identification performed using PCR targeted a region of 16S ribosomal RNA gene of H. pylori and gene amplified on 12 samples. Six of isolated sequences subjected to BLAST analysis that showed high similarity to GenBank strains of H. pylori.Multiple sequence alignments were performed between isolated 16S rRNA gene sequences and most related H.pylori strains deposited on GenBank. One isolate differed on one base-pair substitution (G-A) from other isolates and selected reference H.pylori strains. Phylogenetic analysis based on 16S rRNA gene sequences reflects that H.pylori could be originated from Africa.

Keywords

References

[1]  Warren JR, Marshall BJ. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet; 1:1273-1275. 1983.
 
[2]  Brown L. M. Helicobacter pylori: epidemiology and routes of transmission. Epidemiol. Rev.22:283-97. 2000.
 
[3]  Lacy BE, Rosemore J. Helicobacter pylori: ulcers and more: the beginning of an era. J Nutr.131:2789S-93S. 2001.
 
[4]  Everhart J. E. Recent developments in the epidemiology of Helicobacter pylori. Gastroenterol Clin North Am.29: 559-579. 2000.
 
[5]  Woodward M, Morrison C, McColl K. An investigation into factors associated with Helicobacter pylori infection. J Clin Epidemiol.53:175-181. 2000.
 
Show More References
[6]  Makola D, Peura D, Crowe S. Helicobacter pylori infection and related gastrointestinal diseases. J Clin Gastroenterol.41:548–-8. 2007.
 
[7]  Dunn BE, Cohen H, Blaser MJ. Helicobacter pylori. Clinical Microbiology Reviews; 10: 720-741. 1997.
 
[8]  Midolo P, Marshall BJ. Accurate diagnosis of Helicobacter pylori: Urease tests. Gastroenterol Clin North Am; 29:871-878. 2000.
 
[9]  Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, et al. Traces of human migrations in Helicobacter pylori populations. Science; 299:1582-1585. 2003.
 
[10]  Garner JA, TL C: Analysis of genetic diversity in cytotoxin-producing and non-cytotoxin-producing Helicobacter pylori strains. J Infect Dis. 172:290-293. 1995.
 
[11]  Achtman M, Azuma T, Berg DE, Ito Y, Morelli G, et al. Recombination and clonal groupings within Helicobacter pylori from different geographical regions. Mol Microbiol. 32: 459-470. 1999.
 
[12]  Covacci A, Telford JL, Del Giudice G, Parsonnet J, Rappuoli R. Helicobacter pylori virulence and genetic geography. Science; 284: 1328-1333. 1999.
 
[13]  Suerbaum S, Maynard Smith J, Bapumia K, Morelli G, Smith NH, et al. Free recombination within Helicobacter pylori. Proc Natl Acad Sci U S A. 95:12619-12624. 1998.
 
[14]  Taylor JM, Ziman ME, Huff JL, Moroski NM, Vajdy M, Solnick JV. Helicobacter pylori lipopolysaccharide promotes a Th1 type immune response in immunized mice. Vaccine; 24(23):4987-94. 2006.
 
[15]  Hoshina S, Kahn SM, Jiang W, Green PH, Neu HC, Chin N. Direct detection and amplification of Helicobacter pylori ribosomal 16S gene segments from gastric endoscopic biopsies. Diagn Microbial Infect Dis.13:473-9. 1990.
 
[16]  Yoshida H, Hirota K, Shiratori Y, Nihei T, Amano S, Yoshida A. Use of a gastric juice-based PCR assay to detect Helicobacterpylori infection in culture-negative patients. J Clin Microbiol; 36:317-20. 1998.
 
[17]  Chong SK, Lou Q, Fitzgerald JF, Lee CH. Evaluation of 16SR RNA gene PCR with primers Hp1 and Hp2 for detection of Helicobacter pylori J Clin Microbiol; 34:2728-30. 1996.
 
[18]  Smith SI, Oyedeji KS, Arigbabu AO, Cantet F, Megraud F, et al. (2004).Comparison of three PCR methods for detection of Helicobacter pylori DNA and detection of cagA gene in gastric biopsy specimens. World J Gastroenterol. 10:1958-1960.
 
[19]  Gorkiewicz G, Feierl G, Schober C, Dieber F, Kofer J, et al. Species- specific identification of Campylobacters by partial 16S rRNA gene sequencing. J Clin Microbiol. 41: 2537-2546. 2003.
 
[20]  Khan MM, Stoker NG, Drasar BS. Sequence diversity of a fragment of the 16S RNAgene from Helicobacter pylori. Microbios 103, 2000.
 
[21]  Atschul SF, Madden TL, Schaffer AA et al. Gapped BLAST and PSI-BLAST. A new generation of protein database search programmes”. NucleicAcid Res. 25: 3389-3402. 1997.
 
[22]  Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT”. Nucl. Acids. Symp. Ser. 41: 95-98. 1999.
 
[23]  McWilliam H, Li W, Uludag M. Analysis Tool Web Services from the EMBL-EBI” Nucleic acids research: 2013.
 
[24]  Chevenet F., Brun C., Banuls AL., Jacq B., Chisten R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics; 10; 7:439. Oct, 2006.
 
[25]  Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.F., Guindon S., Lefort V., Lescot M., Claverie J.M., Gascuel O. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008
 
[26]  Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5):1792-7. Mar, 2004.
 
[27]  Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 17(4):540-52. Apr, 2000.
 
[28]  Guindon S., Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 52(5):696-704. Oct, 2003.
 
[29]  Anisimova M., Gascuel O. Approximate likelihood ratio test for branchs: A fast, accurate and powerful alternative. Syst Biol. 55(4):539-52. Aug, 2006.
 
[30]  Woodward M, Morrison C, McColl K: An investigation into factors associated with Helicobacter pylori infection.
 
[31]  Zhiyu Zhang, Qing Zheng, Xiaoyu Chen, Shudong Xiao, Wenzhong Liu and Hong Lu, The Helicobacter pylori duodenal ulcer promoting gene, dupA in China, BMC Gastroenterology, 8:49.2008.
 
[32]  Stella I. Smith, Muinah A. Fowora, Jesse A. Otegbayo, Fatimah B. Abdulkareem, Emmanuel A.Omonigbehin, Akere Adegboyega, Monica Contreras, Rainer HaasComparison of PCR with other diagnostic techniques for the detection of H. pylori infection in patients presenting with gastroduodenal symptons in Nigeria. Int J Mol Epidemiol Genet. 2(2):178-184. 2011.
 
[33]  Marais A, Monteiro L, Occhialini M, Pina M,Lamoliatte H and Megraud F. Direct detectionof Helicobacter pylori resistance to macrolides by a polymerase chain reaction/DNA enzyme immunoassay in gastric biopsy specimens. Gut. 44: 463-467. 1999.
 
[34]  Peek RM, Miller GG, Tham KT, Perez-Perez GI, Cover TL, Atherton JC, et al. Detection of Helicobacter pylori gene expression in human gastric mucosa. J Clin Microbiol. 33(1):28-32.1995.
 
[35]  A. A. Vanzwet, J. C. Thijs, A. M. D. Kooistra-Smid, J. Schirm AND J. A. M. Snijder. Sensitivity of Culture Compared with That of Polymerase Chain Reaction for Detection of Helicobacterpylori from Antral Biopsy Samples. American Society for Microbiology, 1993.
 
[36]  Ousman Secka, Martin Antonio, Mary Tapgun, Douglas E Berg, Christian Bottomley, Vivat Thomas,Robert Walton, Tumani Corrah, Richard A Adegbola and Julian E Thomas. PCR-based genotyping of Helicobacter pylori ofGambian children and adults directly from biopsy specimens and bacterial cultures. Gut Pathogens, 3:5.2011.
 
[37]  Mohamed Siddig Abdalaziz, Munsoor Mohammed Munsoor, Wifaq Al fatih Siyam. Association between Helicobacter pylori Infection and Stomach Tumors in Sudan Using Polymerase Chain Reaction. Australian Journal of Basic and Applied Sciences, 7(4): 769-773, 2013.
 
[38]  Xu GM, Ji XH, Li ZS, Man XH, Zhang HF. Clinical significance of PCR in Helicobacter pylori DNA detection in human gastric disorders. China Nati J New Gastroenterol. 3(2):98-100. 1997.
 
[39]  Bruce, W., Eckloff, Podzorski, P., Kline, C., and Cockerill, R., Int. J. Sys. Bacteriol.44 (2) 320. 1994.
 
[40]  Vandamme P, Harrington CS, Jalava K, On SL. Misidentifying helicobacters: the Helicobacter cinaedi example. J Clin Microbiol.38: 2261-2266. 2000.
 
[41]  Stackebrandt, E. & Liesack, W. The potential of rDNA in identification autodiagnostics, in “Nonradioactive labelling and detection of biomolecules”(C. Kessler). Springer-Verlag, Berlin. 232-239 1992.
 
[42]  Dauga, C., Gillis, M., Vandamme, P., Ageron, E., Grimont, F., Kersters, K., de Mahenge, C., Peloux, Y. & Grimont, P.A.D. Balneatrix alpica gen. nov., sp. nov., a bacterium associated with pneumonia and meningitidis in a spa therapy center. Rex Microbial.144, 35-46. 1993.
 
[43]  Guo-Chao Wei, Jing Chen, Ai-Yun Liu, Miao Zhang, Xiao-Jun Liu, Dan Liu, Jun Xu, Bing-Rong Liu, Hong Ling, Hua-Xing Wu, Ya-Ju Du. Prevalence of Helicobacter pylori vacA, cagA and iceA genotypes and correlation with clinical outcome, 2012.
 
[44]  Y Yamaokaa, M Kitab, T Kodamaa, N Sawaia, K Kashimaa, J Imanishib. Induction of various cytokines and development of severe mucosal inflammation by cagA gene positive Helicobacter pylori strains, Kyoto Prefectural University of Medicine, Kyoto, Japan 1997.
 
[45]  Taylor DE, Eaton M, Chang N and Salama SM. Construction of a Helicobacter pylori genome map and demonstration of diversity at the genome level. J. Bacteriol. 174, 6800-6806. 1992.
 
[46]  Yoshan Moodley, Bodo Linz, Robert P. Bond, Martin Nieuwoudt,Himla Soodyall, Carina M. Schlebusch,5Steffi Bernhöft, James Hale, Sebastian Suerbaum, Lawrence Mugisha, Schalk W. van der Merwe, and Mark Achtman. Age of the Association between Helicobacter pylori and Man PLoS Pathog. 8 (5): e1002693. May 2012.
 
Show Less References

Article

Isolation and Molecular Characterization of Cellulolytic Bacillus Isolates from Soil and Compost

1Department of Botany and Agric. Biotechnology, Faculty of Agriculture, University of Khartoum, 13314 Shambat, Sudan

2Department of Botany, Faculty of Science, University of Khartoum, Sudan


American Journal of Microbiological Research. 2015, 3(2), 55-58
DOI: 10.12691/ajmr-3-2-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Elhadi A. I. Elkhalil, Fatima Y. Gaffar, Marmar A. El Siddig, Huda A. H. Osman. Isolation and Molecular Characterization of Cellulolytic Bacillus Isolates from Soil and Compost. American Journal of Microbiological Research. 2015; 3(2):55-58. doi: 10.12691/ajmr-3-2-2.

Correspondence to: Elhadi  A. I. Elkhalil, Department of Botany and Agric. Biotechnology, Faculty of Agriculture, University of Khartoum, 13314 Shambat, Sudan. Email: eaikhalil@yahoo.com

Abstract

Fifty five Bacillus isolates were isolated from compost, and alkaline silty clay soil (rhizosphere of potato plant) in Shambat, Khartoum North, Sudan, and screened using morphological tests, biochemical and molecular characterization using 16s rDNA analysis., Screening of cellulase producing isolates was done using carboxyl methyl cellulose (CMC) as a substrate at 25°C. Twenty six isolates were found to be cellulase producers. Among the isolates, four isolates, 9+, 23, 20 and 13 showed high potential in producing extracellular cellulase and had an average cellulase activity of 2.89, 3.12, 3.48 and 3.53 Unit/ml, respectively. Genetic distance between the four isolates with high cellulase activity was determined with RAPD analysis based on OPC-3 primer.

Keywords

References

[1]  Dio R.H. (2008). Cellulases of mesophilic microorganisms: Cellulosome and no cellulosome producers. Ann NY A cad Sci. (1125): 167-279.
 
[2]  Rastogi G.; MappidiG.l.; Gurram R.N.; Adhikari A. Bischoff K. M.; Hughes S.R.; Apel W.A.; Bangss Dixon D.J. and Sani, R.K. (2009). Isolation and characterization of cellulose degrading bacteria from the deep subsurface of the Homestako gold mine, lead, southe Dakota, VSA. J Ind Microbiol Biotechol 36 (4): 585-598.
 
[3]  Meddeb-Mouelhi, F.; Moisan, J.K. and Beauregard, M. (2014). A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity. Enzyme and Microbial Technology, 66: 16-19.
 
[4]  Percival Zhang, Y. H.; Himmel, M. E. and Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 24: 452-481.
 
[5]  Kasana R.C.; DharH.; Dutt S. andGulati A. (2008) Arapid and easy method for the detection of microbial cellulases on agar plates using grams iodine. CurrMicrobiol 57 (5): 503-507.
 
Show More References
[6]  Kim; Woon T.; Kim Y.; Kim S.; Lee J.; Dark C. and Kim H. (2010) Identification and Distribution of Bacillus species in Doenjang by Whole-cell Protein Patterns and 16s r RNA Gene sequence Analysis. J. Microbiol. Biotechnol, 20 (8): 1210-1214.
 
[7]  Qingming Y.; Zongping X. and Tiansheng T. (1997). Rapid Classification of Bacillus Isolate Using RAPD Technique. Wuhan University. Journal of Natural Sciences 2: 1, 105-109.
 
[8]  Woese C.R.; E. Stackebbrandt; T. J. Macke and G. E. fox (1985) Aphylogenetic definition of the major eubacterial taxa syst. Appl. Microbiol. 6: 143-151.
 
[9]  Barney M.; Volgyi A.; Novarro A. and Ruder D. (2001) Riboprinting and 16s r RNA Gene sequencing for Identification of Brewery Pediococcus Isolate. Appl Environ Microbiol 67 (2): 553-560.
 
[10]  Lindquist J. (2006) Bacillus isolation. Bact. 102 Website-Fall.
 
[11]  Harrigan W.F. and McCance M.E (1976) Laboratory Methods in Microbiology, Academic press, London and New York.
 
[12]  Kasing A. (1995). Cellulase production, Practical biotechnology, Practical Biotechnology, Sarawak, Malaysia.
 
[13]  Kotchoni S.O. and Shonukan O.O. (2002) Regulatory mutations affecting the synthesis of cellulase in Bacillus pumilus. World journal of Microbiology and Biotechnology 18: 487-491.
 
[14]  Miller G.L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31 (3): 426-428.
 
[15]  Soumet C.; Ermel, G.; Fach, P. and Colin, P. (1994).Evaluation of different DNA extraction procedures for the detection of Salmonella from chicken products by polymerase chain reaction. Lett. Appl. Microbiol., 19, 294-298.
 
[16]  Saitou, N. and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing polyogenetic trees. Molecular Biology Evolution. 4 (4): 406-425.
 
[17]  SneathP.H. and Mair N.S. (1986). Bergy’s Manual of systemic bacteriology, ninth edition. Vol. 2, Wiliams and Wilkins Baltimore, U.S.A.
 
[18]  Drancourt M.; Bollet C.; Calioz A.; Martelin R.; Gayral J. and Raoutt D. (2000). 16s Ribosomal DNA sequence Analysis of a large collection of Environmental and clinical Un identifiable Bacterial isolates. J clin Microbiol 38 (10): 3623-3630.
 
Show Less References

Article

Detection of Extended Spectrum Beta Lactamase (ESBL) Producing Klebsiella pneumoniae Associated with Tuberculosis Suspected Patients in Basra Governorate, South of Iraq

1College of Nursing / University of Basra


American Journal of Microbiological Research. 2015, 3(2), 59-61
DOI: 10.12691/ajmr-3-2-3
Copyright © 2015 Science and Education Publishing

Cite this paper:
Abdulameer Abdullah Al-Mussawi. Detection of Extended Spectrum Beta Lactamase (ESBL) Producing Klebsiella pneumoniae Associated with Tuberculosis Suspected Patients in Basra Governorate, South of Iraq. American Journal of Microbiological Research. 2015; 3(2):59-61. doi: 10.12691/ajmr-3-2-3.

Correspondence to: Abdulameer  Abdullah Al-Mussawi, College of Nursing / University of Basra. Email: dr_ameer2006@yahoo.com

Abstract

Objective: To investigate extended spectrum β- lactamase (ESBL) producing Klebsiella pneumoniae isolated from sputum of tuberculosis suspected patients in Basra governorate. Methods: A total of 28 (30.4 %) isolates of K. pneumoniae were recovered from 92 sputum clinical specimens at Pulmonary and Respiratory Diseases Center (PRDC) in Basra Governorate, Iraq. All these isolates were tested for ESBL production by using chromogenic media. Results: Of 28 isolates of K. pneumoniae, 6 (21.4%) were positive for ESBL production. Conclusion: This finding demonstrates a high percentage of ESBL producers among clinical isolates of K. pneumoniae. Presence of ESBL producing K. pneumoniae associated with TB patient gives a high risk factor to patients.

Keywords

References

[1]  Sarathbabu R, Ramani TV, Bhaskara rao K, Panda S. Antibiotic susceptibility pattern of Klebsiella pneumoniae isolated from sputum, urine and pus samples. J Pharm and Biolo Sci. 2012; 1( 2): 4-9.
 
[2]  Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009; 9: 228-236.
 
[3]  Walsh C. Antibiotics: actions, origins, resistance. Washington DC.2003; ASM Press.
 
[4]  Ghuysen J M. Serine beta-lactamases and penicillin-binding proteins. Ann Rev Microbiol. 1991; 45:37-67.
 
[5]  Paterson D L, Bonomo R A. Extended-spectrum beta-lactamases: a clinical update. Clinical Microbiology Reviews. 2005; 18: 657-686. [PubMed: 16223952].
 
Show More References
[6]  Morosini M I, Canton R, Martinez-Beltran J, Negri M C, Perez- Dia J C, Baquero F, Blazquez J. New extended-spectrum TEM-type b-lactamase from Salmonella enterica subsp enterica isolated in a nosocomial outbreak. Antimicrob. Agents Chemother. 1995; 39: 458-461.
 
[7]  Philippon A, Ben-Redjeb S, Fournier G, Ben-Hassen A. Epidemiology of extended spectrum b-lactamases. Infec.1989; 17: 347-354.
 
[8]  Cormican M G, Marshall S A, Jones R N. Detection of Extended-Spectrum b-Lactamase (ESBL)- Producing Strains by the Etest ESBL Screen. J Clin Microbiol. 1996; 34(8): 1880-1884.
 
[9]  Tavakoli H, Bayat M, Kousha A, Panahi P. The Application of Chromogenic Culture Media for Rapid Detection of Food and Water Borne Pathogen. Am-Euras. J. Agric. & Environ. Sci. 2008; 4 (6): 693-698.
 
[10]  Kumar MS, Lakshmi V, Rajagopalan R. Occurrence of extended spectrum b−lactamases among enterobacteriaceae spp. isolated at a tertiary care institute. Indian J Med Microbiol. 2006; 24:208-211.
 
[11]  Ndugulile F, Jureen R, Harthug S, Urassa W, Langeland N. Extended spectrum b-lactamases among gram negative bacteria of nosocomial origin from an intensive care unit of a tertiary health facility in Tanzania. BMC Infect Dis. 2005; 5:86.
 
[12]  Ahmed A, Zafar A, Mirza S. Antimicrobial activity of tigecycline against nosocomial pathogens in Pakistan: a multicenter study. J Pak Med Assoc. 2009; 59:240-2.
 
[13]  James AL, Perry JD, Rigby A. Stanforth SP. Synthesis and evaluation of novel chromogenic aminopeptidase substrates for microorganism detection and identification. Bioorganic and Medicinal Chemistry Letters. 2007; 17(5): 1418-1421.
 
[14]  Manafi M, Restaino P, Schubert L. Isolation and detection of L. monocytogenes using protect media. J Appl Bacteriol. 2005; 62: 244-51.
 
[15]  Pfaller M A, Segreti J. Overview of the epidemiological profile and laboratory detection of extended-spectrum b-lactamases. Clin Infect Dis. 2006; 42:153-S163.
 
[16]  Roshan M, Ikram A, Mirza I A, Malik N, Abbasi A, Alizai S A. Susceptibility Pattern of Extended Spectrum ß- actamase Producing Isolates in Various Clinical Specimens. J of the Coll of Physici and Surge Pak. 2011; 21 (6): 342-346.
 
Show Less References

Article

Isolation and Molecular Identification of New Emergent Candida Lusitaniae Isolated from Sudanese Immunocompromised Patients Infected with Oropharyngeal Candidiasis

1Department of Clinical Laboratory, College of Applied medical sciences, Al Jouf University, Sakaka, Saudi Arabia

2Department of Microbiology, College of Medical laboratory, Sudan University of science and technology, Khartoum, Sudan


American Journal of Microbiological Research. 2015, 3(2), 62-64
DOI: 10.12691/ajmr-3-2-4
Copyright © 2015 Science and Education Publishing

Cite this paper:
Mutaz F. Saad, Amr M. Albasha. Isolation and Molecular Identification of New Emergent Candida Lusitaniae Isolated from Sudanese Immunocompromised Patients Infected with Oropharyngeal Candidiasis. American Journal of Microbiological Research. 2015; 3(2):62-64. doi: 10.12691/ajmr-3-2-4.

Correspondence to: Mutaz  F. Saad, Department of Clinical Laboratory, College of Applied medical sciences, Al Jouf University, Sakaka, Saudi Arabia. Email: mutazsaad74@gmail.com

Abstract

Seventy seven oral swab samples (n=77) were collected in period between august 2007 to may 2008 from hospitalized immunocompromised and HIV patients suspected for Oropharyngeal Candidiasis and admitted in different hospitals in Ed-wiuem state and Khartoum state, Sudan. All samples were inoculated on Sabouraud dextrose agar and identified by colonial morphology, Germ tube test and Vitek2 compact system for biochemical identification and antifungal susceptibility test. Out of 77 oral swab samples collected from immunocompromised and HIV patients, 41 (53.3%) samples showed positive growth of Candida, and 36 (46.7%) samples showed negative growth. The identification showed that out of forty one positive cultures, 32 isolates found as Candida albicans (78%), while nine samples (n=9) appeared as non-Candida albicans (22%) and found as Candida lusitaniae according to GTT and Vitek2 Compact identification. Then DNA was extracted from all non-Candida albicans isolates and DNA sequencing was carried and D1/D2 region were determined using NL1 primer. DNA based identification showed that all nine (n=9) GTT negative isolates were Candida lusitaniae (Anamorh Clavispora lusitaniae). This study documented that there are new emergent species of Candida should be considered when dealing with specimen collected from patients suspected for yeast infections. Our results provide useful information that C. lusitaniae can be isolated as well as other Candida species from immunocompromised patients in Sudan.

Keywords

References

[1]  Blinkhorn, R. J., D. Adelstein, and P. J. Spagnuolo. 1989. Emergence of a new opportunistic pathogen, Candida lusitaniae. J. Clin. Microbiol. 27: 236-240.
 
[2]  Christenson, J. C., A. Guruswamy, G. Mukwaya, and P. Rettig. 1987. Candida lusitaniae: an emerging human pathogen. Pediatr. Infect. Dis. J. 6: 755-757.
 
[3]  Guinet, R., J. Chanas, A. Goullier, G. Bonnefoy, and P. Ambroise-Thomas. 1983. Fetal septicemia due to amphotericin B-resistant Candida lusitaniae. J. Clin. Microbiol. 18: 443-444.
 
[4]  Hadfield, T. L., M. B. Smith, R. E. Winn, M. G. Rinaldi, and C. Guerra. 1987. Mycosis caused by Candida lusitaniae. Rev. Infect. Dis. 9: 1006-1012.
 
[5]  Hazen, K. C. 1995. New and emerging yeast pathogens. Clin. Microbiol. Rev. 8: 462-478.
 
Show More References
[6]  Sanchez, V., J. A. Vazquez, D. Barth-Jones, L. Dembry, J. D. Sobel, and M. J.Zervos. 1992. Epidemiology of nosocomial acquisition of Candida lusitaniae. J. Clin. Microbiol. 30: 3005-3008.
 
[7]  Favel, A., Michel-Nguyen, A., Peyron, F. et al. (2003). Colony morphology switching of Candida lusitaniae and acquisition of multidrug resistance during treatment of a renal infection in a newborn: case-report and review of the literature. Diagnostic Microbiology and Infectious Disease 47, 331-9.
 
[8]  Pfaller, M. A., and D. J. Diekema. 2002. Role of sentinel surveillance of candidemia: trends in species distribution and antifungal susceptibility. J. Clin. Microbiol. 40: 3551-3557
 
[9]  Guinet, R., J. Chanas, A. Goullier, G. Bonnefoy, and P. Am-broise-Thomas (1983). Fatal septicemia due to amphotericin B-resistant Candida lusitaniae. J. Clin. Microbiol. 18: 443-444.
 
[10]  Merz, W. G., and G. R. Sandford (1979). Isolation and charac-terization of a polyene-resistant variant of Candida tropicalis. J. Clin. Microbiol. 9: 677-680.
 
[11]  Pappagianis, D., M. S. Collins, R. Hector, and J. Remington. (1979). Development of resistance to amphotericin B in Candida lusitaniae infecting a human. Antimicrob. Agents Chemother. 16: 123-126.
 
[12]  Holzschu, D. L., H. L. Presley, M. Miranda, and H. J. Phaff. (1979). Identification of Candida lusitaniae as an opportunistic yeast in humans. J. Clin. Microbiol. 10:202-205.
 
[13]  Van Uden, N., and H. Buckley. 1970. Candida Berkhout, p. 893-1087. In J. Lodder (ed.), The yeasts-a taxonomic study. North-Holland Publishing Co., Amsterdam.
 
[14]  Yoon, S. A., J. A. Vazquez, P. E. Steffan, J. D. Sobel, and R. A. Akins. 1999. High-frequency, in vitro reversible switching of Candida lusitaniae clinical isolates from amphotericin B susceptibility to resistance. Antimicrob. Agents Chemother. 43:836-845.
 
[15]  Nancy B. M., Haihua F., Ellen J. B.,1Ana C. G., Allison H., Richard J. H., and Michael A. Pfaller. (2002). Change in Colony Morphology of Candida lusitaniae in Association with Development of Amphotericin B Resistance. Antimicrob. Agents Chemother. 46: 1325-1328.
 
Show Less References

Article

Isolation and Screening of Indigenous Bambara Groundnut (Vigna Subterranea) Nodulating Bacteria for their Tolerance to Some Environmental Stresses

1Department of Plant Biology, Faculty of Science, University of Douala, Douala, Cameroon

2Laboratory of Soil Microbiology, Biotechnology Centre, University of Yaounde I, Yaounde, Cameroon

3Department of Biological Sciences, University of Ngaoundere, Ngaoundere, Cameroon

4Department of Microbiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon


American Journal of Microbiological Research. 2015, 3(2), 65-75
DOI: 10.12691/ajmr-3-2-5
Copyright © 2015 Science and Education Publishing

Cite this paper:
Ngo Nkot Laurette, Ngo Bisseck Maxémilienne, Fankem Henri, Adamou Souleymanou, Kamguia Kamdem, Ngakou Albert, Nwaga Dieudonné, Etoa François-Xavier. Isolation and Screening of Indigenous Bambara Groundnut (Vigna Subterranea) Nodulating Bacteria for their Tolerance to Some Environmental Stresses. American Journal of Microbiological Research. 2015; 3(2):65-75. doi: 10.12691/ajmr-3-2-5.

Correspondence to: Ngo  Nkot Laurette, Department of Plant Biology, Faculty of Science, University of Douala, Douala, Cameroon. Email: lnkot@yahoo.fr

Abstract

Environmental stresses are important limiting factors for crops production. The aim of this experiment is to isolate Legume Nodulating Bacteria (LNB) obtained from root nodules of bambara groundnut (Vigna subterranea L.) plants and evaluate their performance under some environmental constraints. Samples were collected in Cameroon from three location sites of the Humid-forest zone: Logbessou in the Littoral region; Mfoua in the South and Boga in the Centre region. Nodulation of bambara groundnut was examined in plastic bags and root nodules were collected from seedling. After their isolation, the bacteria were confirmed as LNB by re-nodulating Macroptilium atropurpureum. The morphological, cultural and phenotypic characteristics (utilization of carbon, tolerance to salt, pH, aluminium) of isolates were determined. The results obtained were analyzed statistically by ANOVA using the software SPSS analysis version 11.5. Duncan test was used to measure the difference among the means at a level of p<0.05. A collection of 18 isolates was obtained on Yeast Extract Mannitol Agar medium. Authentication experiments, confirmed that the majority of the isolates (66.67%) were LNB due to their ability to infect the host plant. Bambara groundnut isolates are different morphologically. Dendrogram of the phenotypic characteristics showed that, below the boundary level of 50% average similarity, isolates fell into at least three distinct groups. All isolates showed fast-growing capacity. Most isolates (66.67%) were able to grow in a medium with pH as low as and Al concentration of 50 µM (58.33 %). Some isolates (50%) showed weak growth capacity at 4% NaCl. The bambara groundnut isolates tested were able to use a broad range of carbohydrates as sole source of carbon. The isolates from the present study may be useful to increase the symbiotic nitrogen fixation in legume.

Keywords

References

[1]  Adeparusi EO (2001). Effect of processing on some minerals, anti-nutrients and nutritional composition of African yam bean. J. Sustain. Environ. 3:101-108.
 
[2]  Allen ON, Allen EK (1981). The Leguminosae. A Source Book of Characteristics, Uses and Nodulation, The University of Wisconsin Press, 812 p.
 
[3]  Anderson, JM, Ingram JS (1993). Tropical soil biology and fertility: a hand book of methods. 2nd ed. C.A.B. International Wallingford, U.K. 171 p.
 
[4]  Appunu C, Reddy LML, Reddy CVCM, Sen D, Dhar B (2009). Symbiotic diversity among acid-tolerant bradyrhizobial isolates with cowpea. J. A. S. 4 (3): 126-131.
 
[5]  Arias A, Martı´nez-Drets G (1976). Glycerol metabolism in Rhizobium. Can. J. Microbiol. 22 (2): 150-153.
 
Show More References
[6]  Athar M, Johnson AD (1996) Nodulation, biomass production and nitrogen in alfalfa under drought. J. Plant Nutr. 19: 185-199.
 
[7]  Azam-Ali SN, Sesay A, Karikari SK, Massawe FJ, Aguilar-Manjarrez J, Brennan M, Hampson KJ (2001). Assessing the potential of an underutilised crop-a case study using bambara groundnut. Exp. Agric. 37: 433-472.
 
[8]  Bado BV (2002). Rôle des légumineuses sur la fertilité des sols ferrugineux tropicaux des zones guinéennes et soudaniennes du Burkina Faso. PhD thesis, Université Laval, Laval, Canada.
 
[9]  Bala A, Murphy PJ, Osunde AO, Giller KE (2003). Nodulation of tree legumes and the ecology of their native rhizobial populations in tropical soils. Appl. Soil Ecol. 22:211-223.
 
[10]  Bamshaiye OM, Adegbol, JA, Bamishaiye EI (2011). Bambara groundnut: an Under-Utilized Nut in Africa. Advances in Agricultural Biotechnology 1: 60-72.
 
[11]  BaoLing H, ChengQun L, Bo W, LiQin F (2007). A rhizobia strain isolated from root nodule of gymnosperm Podocarpus macrophyllus. Science in China Series C-Life Science 50: 1-6.
 
[12]  Bargaz A, Faghire M, Farissi M, Drevon JJ, Ghoulam C (2013). Oxidative stress in the root nodules of Phaseolus vulgaris L. is induced under conditions of phosphorus deficiency. Acta Physiol. Plant. 35: 1633-1644.
 
[13]  Belane AK, Dakora FD (2009). Measurement of N2 fixation in 30 cowpea (Vigna unguiculata L. Walp.) genotypes under field conditions in Ghana using 15N natural abundance technique. Symbiosis 48: 47-57.
 
[14]  Buendia-Claveria AM, Rodriguez-Navaro DN, Santamaria-Linaza C, Ruiz-Sainz JE, Temprano-Vera F (1994). Evaluation of the symbiotic properties of Rhizobium fredii in European soils. Syst. Appl. Microbiol. 17: 155-160.
 
[15]  Cheriet D, Ouartsi A, Chekireb D, Babaarbi S (2014). Phenotypic and symbiotic characterization of rhizobia isolated from Medicago ciliaris L. growing in Zerizer from Algeria. Afr. J. Microbiol. Res. 8 (17): 1763-1778.
 
[16]  Ciani M, Diriye FU (1995). Presence of rhizobia in soils of Somalia. Worl J. Microbiol. Biotechnol. 11:615-617.
 
[17]  Costa, FM, Schiavo JA, Brasi MS, Leite J, Xavier GR, Fernandes-Jr PI (2014). Phenotypic and molecular fingerprinting of fast growing rhizobia of field-grown pigeonpea from the eastern edge of the Brazilian Pantanal. Genet. Mol. Res. 13 (1): 469-482.
 
[18]  Dakora FD, Muofhe LM (1997). Nitrogen fixation and nitrogen nutrition in symbiotic bambara groundnut (Vigna subterranean (L.)Verdc.) and Kerting’s bean (Macrotyloma geocarpum (Harms) Marech et Baud.). In Heller J, Begemann F, Mushonga J (Eds.) Bambara Groundnut Vigna Subterranea (L.) Verdc: Proceedings of the Workshop on Conservation and Improvement of Bambara Groundnut (Vigna Subterranea (L.) at Harare, Zimbabwe. Bioversity International, pp 72-77.
 
[19]  Dogbe W, Fening JO, Kumaga FWK, Danso SKA (2002). Maximizing the benefits of using mucuna on farmers’mixed farming. Trop. Sci. 42: 87-91.
 
[20]  Egbe OM, Godwin Adu Alhassan GA, Ijoyah M (2013). Nodulation, Nitrogen Yield and Fixation by Bambara Groundnut (Vigna Subterranea (L.)Verdc.) Landraces Intercropped with Cowpea and Maize in Southern Guinea Savanna of Nigeria. Agricultural Science 1: 15-28.
 
[21]  ElSheikh EAE, Wood M (1989) Response of chickpea and soybean rhizobia to salt: Influence of carbon source, temperature and pH. Soil Biol. Biochem. 21: 883-887.
 
[22]  Essendoubi M, Brhada F, Eljamali, JE, Filali-Maltouf A, Bonnassie S, Georgeault S, Blanco C, Jebbar M (2007). Osmoadaptative responses in the rhizobia nodulating acacia isolated from south-eastern Moroccan Sahara. Environ. Microbiol. 9 (3): 603-611.
 
[23]  Faghire M, Bargaz A, Farissi M, Palma F, Mandri B, Lluch C, Tejera García NA, Herrera-Cervera JA, Oufdou K, Ghoulam C (2011). Effect of salinity on nodulation, nitrogen fixation and growth of common bean (Phaseolus vulgaris) inoculated with rhizobial strains isolated from the Haouz region of Morocco. Symbiosis 55: 69-75.
 
[24]  Fankem H, Tchuisseu Tchakounte GV, Ngo Nkot L, Nguesseu Njanjouo G, Nwaga D, Etoa FX (2014a). Maize (Zea mays) growth promotion by rock-phosphate solubilising bacteria isolated from nutrient deficient soils of Cameroun. Afr. J. Microbiol. Res. 8 (40): 3770-3579.
 
[25]  Fankem H, Ngo Nkot L, Nguesseu Njanjouo G, Tchuisseu Tchakounte GV, Tchiaze Ifoué A V, Nwaga D (2014b). Rock phosphate solubilisation by strains of Penicillium spp. Isolated from farm and forest soils of three ecological zones of Cameroon. Am. J. Agric. For. 2 (2): 25-32.
 
[26]  Farissi M, Ghoulam C, Bouizgaren A (2013). Changes in water deficit saturation and photosynthetic pigments of alfalfa populations under salinity and assessment of proline role in salt tolerance. Agric. Sci. Res. J. 3: 29-35
 
[27]  Farissi M, Bouizgaren A, Aziz F, Faghire M, Ghoulam C (2014). Isolation and screening of rhizobial strains nodulating alfalfa for their tolerance to some environmental stresses. Pacesetter J. Agric Sci. Res. 2 (2): 9-19.
 
[28]  Fasoyiro SB, Ajibade SR, Omole AJ, Adeniyan ON, Farinde EO (2006). Proximate, minerals and anti-nutritional factors of some underutilized grain legumes in south western Nigeria. Nutr. Food Science 36: 18-23.
 
[29]  Fening JO, Danso SKA (2002). Variation in symbiotic effectiveness of cowpea bradyrhizobia indigenous to Ghanaian soils. Appl. Soil Ecol. 21: 23-29.
 
[30]  Fernandes-Jr PI, Lima AA, Passos SR, Gava CAT (2012). Phenotypic diversity and amylolytic activity of fast growing rhizobia from pigeonpea [Cajanus cajan (L.) Millsp.]. Braz. J. Microbiol. 43: 1604-1612.
 
[31]  Freitas ADS, Borges WL, Andrade MMM, Sampaio EVSB, Santos CERS, Passos SR, Xavier GR, Mulato BM, Lyra MCCP (2014). Characteristics of nodule bacteria from Mimosa spp grown in soils of the Brazilian semiarid region. Afr. J. Microbiol. Res. 8 (8): 788-796.
 
[32]  Hillocks RJ, Bennett C, Mponda OM (2012). Bambara nut: A review of utlisation, market potential and crop improvement. Afr. Crop Sci. J. 20 (1): 1-16.
 
[33]  Hungria M, Vargas MAT (2000). Environmental factors affecting nitrogen fixation in grain legumes in the tropics with an emphasis on Brazil. Field Crops Res. 65: 151-164.
 
[34]  Jida M, Assefa F (2011). Phenotypic and plant growth promoting characteristics of Rhizobium leguminosarum bv. viciae from lentil growing areas of Ethiopia. Afr. J. Microbiol. Res.5: 4133-4142.
 
[35]  Johnston AWB, Beringer JE (1976). Pea root nodules containing more than one Rhizobium species. Nature 264:502-504.
 
[36]  Jordan DC (1984). Family III. Rhizobiaceae. In: Krieg NR, Holt JG. (Eds.) Bergey’s Manual of Systematic Bacteriology, Williams and Wilkins, Baltimore, pp 234-242.
 
[37]  Kishinevsky BD, Zur M, Friedman Y, Meromi G, Ben-Moshe E, Nemas C (1996). Variation in nitrogen fixation and yield in landraces of bambara groundnut (Vigna subterranea L.). Field Crop. Res. 48 (1): 57-64.
 
[38]  Klu GYP, Amoatey HM, Bansa D, Kumaeja FK (2001). Cultivation and use of African yam bean (Sphenostylis stenocarpa ex A Rich) in the Volta region of Chana. J. Food Technol. Africa 6: 74-77.
 
[39]  Kouninki H, Sobda G, Nukenine NE (2014). Screening of Bambara groundnut (Vigna subterranea) lines for Callosobruchus maculatus resistance in the Far North Region of Cameroon. Journal of Renewable Agriculture 2 (1): 18-22.
 
[40]  Küçük C, Kivanc M, Kinaci E (2006). Characterization of Rhizobium sp. Isolated from Bean. Turk. J. Biol. 30: 127-132.
 
[41]  Leite J, Seido SL, Passos SR, Xavier GR, Rumjanek NG, Martins LMV (2009). Biodiversity of rhizobia associated with cowpea cultivars in soils of the lower half of the São Francisco River Valley. R. Bras. Ci. Solo 33: 1215-1226.
 
[42]  Lyra MCCP, Freitas ADS, Silva TA, Santos CERS (2013). Phenotypic and molecular characteristics of rhizobia isolated from nodules of peanut (Arachis hypogaea L.) grown in Brazilian Spodosols. Afr. J. Biotechnol. 12: 2147-2156.
 
[43]  Maâtallah J, Berraho E, Sanjuan J, Lluch C (2002). Phenotypic characterization of rhizobia isolated from chickpea (Cicer arietinum) growing in Moroccoan soils. Agronomie, 22: 321-329.
 
[44]  Mbenoun LE (1992). Characterization of Bradyrhizobium sp of cowpea and bambara groundnut isolated from diverse agro-ecologic zones of Cameroon. MSc. dissertation, University of Yaounde, 65 p.
 
[45]  Mbenoun LE (1992). Caractérisation de Bradyrhizobium sp. du niébé et du poids bambara isolés de diverses zones agroécologiques du Cameroun. Mémoire de maîtrise, Université de Yaoundé. 65 p.
 
[46]  Missbah El Idrissi M, Abdelmoumen H (2008). Carbohydrates as carbon sources in rhizobia under salt stress. Symbiosis 46: 33-44.
 
[47]  Mohale KC, Belane AK, Dakora FD (2014). Symbiotic N nutrition, C assimilation, and plant water use efficiency in Bambara groundnut (Vigna subterranea L. Verdc) grown in farmers fields in South Africa, measured using 15N and 13C natural abundance. Biol. Fertil. Soils 50: 307-319.
 
[48]  Mpepereki S, Makonese F, Wollum AG (1997). Physiological characterization of indigenous rhizobia nodulating Vigna unguiculata in Zimbabwean soils. Symbiosis 22: 275-292.
 
[49]  Muthini M, Maingi JM, Muoma JO, Amoding A, Mukaminega D, Osoro N, Mgutu A, Ombori O (2014). Morphological assessment and effectiveness of indigenous rhizobia isolates that nodulate P. vulgaris in water hyacinth compost testing field in Lake Victoria Basin. Br. J. Appl. Sci. Tech. 4 (5): 718-738.
 
[50]  Ndiang Z, Bell JM, Missoup AD, Fokam PE, AmougouAkoa (2012). Etude de la variabilité morphologique de quelques variétés de voandzou (Vigna subterranea (L.) Verdc) au Cameroun. Journal of Applied Biosciences 60: 4410-4420.
 
[51]  Ngakou A, Megueni C, Ousseni H, Massai A (2009). Study on the isolation and characterization of rhizobia strains as biofertilizer tools for growth improvement of four grain legumes in Ngaoundéré-Cameroon. Int. J. Biol. Sci. 3 (5): 1078-1089.
 
[52]  Ngakou A, Ngo Nkot L, Doloum G, Adamou S (2012). Mycorrhiza-Rhizobium-Vigna subterranea dual symbiosis: impact of microbial symbionts for growth and sustainable yield improvement. Int. J. Agric. & biol. 14 (6): 915-921.
 
[53]  Ngo Nkot L, Nwaga D, Ngakou A, Fankem H, Etoa FX (2011). Variation in nodulation and growth of groundnut (Arachis hypogaea L.) on oxisols from land use systems of the humid forest zone in southern Cameroon. African Journal of Biotechnology 10 (20): 3996-4004.
 
[54]  Nyemba RC, Dakora FD (2010). Evaluating N2 fixation by food grain legumes in farmers’ fields in the three agro-ecological zones of Zambia, using 15N natural abundance. Biol. Fertil. Soils 46:461-470.
 
[55]  Padulosi S, Hodgkin T, Williams JT, Haq N (2002). Underutilized crops: trends, challenges and opportunities in the 21st Century. In: JMM Engels, VR Rao, AHD Brown, MT Jackson (eds) Managing plant genetic diversity. Wallingford, UK: CAB International Publishing; Rome: International Plant Genetic Resources Institute (IPGRI), pp 323-338.
 
[56]  Pule-Meulenberg F, Dakora FD (2009) Assessing the symbiotic dependency of grain and tree legumes on N2 fixation for their N nutrition in five agro-ecological zones of Botswana. Symbiosis 48: 68-77.
 
[57]  Rai R, , , (2012). Phenotypic and molecular characterization of indigenous rhizobia nodulating chickpea in India. Indian J. Exp. Biol. 50: 340-350.
 
[58]  Rodrigues CS, Laranjo M, Oliveira S (2006). Effect of heat and pH stress in the growth of chickpea mesorhizobia. Curr. Microbiol. 53 (1): 1-7.
 
[59]  Shetta ND, Al-Shaharani TS, Abdel-Aal M (2011). Identification and characterization of Rhizobium associated with woody legume trees grown under Saudi Arabia condition. Am. Eurasian J. Agric. Environ. Sci. 10 (3): 410-418.
 
[60]  Singh SK, Jaiswal, SK, Akhouri Vaishampayan, Dhar B (2013). Physiological behavior and antibiotic response of soybean (Glycine max L.) nodulating rhizobia isolated from Indian soils. Afr. J. Microbiol. Res. 7 (19): 2093-2102.
 
[61]  Somasegaran P, Hoben HJ (1994) Handbook for Rhizobia. Methods in Legume-Rhizobium Technology. New York: Springer-Verlag, pp 240-58.
 
[62]  Swift MJ, Bignell DE, Huang SP, Cares JE, Moreira F, Pereira EG, Nwaga D. Holt JA, Hauser S (2001). Standard methods for assessment of soil biodiversity and land use practice. In The ASA Review Meeting 1999, ASB Project, Bogor, Indonesia, ICRAF, Vol 1, 40 p.
 
[63]  The C (2000). Identification of heterotic groups for acids soil on some maize varieties in Cameroon. INCO 1 and 2 Meeting, June 2000. Yaoundé, Cameroon.
 
[64]  Torres-Júnior CV, Leite J, Santos CERS, Fernandes-Júnior PI, Zilli JE, Rumjanek NG, Xavier GR (2014). Diversity and symbiotic performance of peanut rhizobia from Southeast region of Brazil. Afr. J. Microbiol. Res. 8 (6): 566-577.
 
[65]  van Rossum D, Schuurmans FP, Gillis M, Muyotcha A, van Verseveld HW, Stotthamer AH, Boogerd FC (1995). Genetic and phenotypic analysis of Bradyrhizobium strains nodulating Peanut (Arachis hypogae L.) roots. Appl. Environ. Microbiol. 61: 1599-1609.
 
[66]  Vincent, JM (1970). A manual for practical study of root nodule bacteria. IBP Handbook No. 15, Blackwell Scientific Publishers, Oxford, 164p.
 
[67]  Vishal KD, Abhishek C (2014). Isolation and characterization of Rhizobium leguminosarum from root nodule of Pisum sativum L. J. Acad. Indus. Res. 2: 464-467.
 
[68]  Vriezen JAC, de Bruijn JF, Nusslein K (2007). Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl. Environ. Microbiol. 73: 3451-3459.
 
[69]  Wolde-Meskel, E., Berg T., Peters N.K. and Frostegard, A. 2004. Nodulation status of native woody legumes and phenotypic characteristics of associated Rhizobia in soils of southern Ethiopia. Biol. Fert. Soils. 40: 55-66.
 
[70]  Yakubu H, Kwari JD, Ngala AL (2010). N2 fixation by grain legume varieties as affected by rhizobia inoculation in the sandy loam soil of sudano-sahelian zone of North Eastern Nigeria. Nig. J. Basic Appl. Sci. 18 (2): 229-236. Yang JK, Xie FI, Zhou Q, Zhou JC (2005). Polyphasic characteristics of bradyrhizobia isolated from nodules of peanut (Arachis hypogaea) in China. Soil Biol. Biochem. 37: 141-153.
 
[71]  Zabaloy MC, Gómez MA (2005). Diversity of rhizobia isolated from an agricultural soil in Argentina based on carbon utilization and effects of herbicides on growth. Biol. Fert Soils 42: 83-88.
 
[72]  Zahran HH (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63 (4): 968-989.
 
[73]  Zahran HH, Abdel-Fattah M, Yasser MM, Mahmoud AM, Bedmar EJ (2012). Diversity and environmental stress responses of rhizobial bacteria from Egyptian grain legumes. Aust. J. Bas. Appl. Sci. 6 (10): 571-583.
 
Show Less References

Article

Prevalence and Resistance Profile of Acinetobacter baumannii Clinical Isolates from a Private Hospital in Khartoum, Sudan

1Department of Medical Microbiology Laboratory at RCIH

2Professor of Microbiology, Head of Microbiology Department at Royal Care International Hospital (RCIH) Khartoum, Sudan

3Department of Medical Microbiology Laboratory at Royal Care International Hospital (RCIH), Khartoum, Sudan


American Journal of Microbiological Research. 2015, 3(2), 76-79
DOI: 10.12691/ajmr-3-2-6
Copyright © 2015 Science and Education Publishing

Cite this paper:
Muntasir I. Omer, Samia A. Gumaa, Abdullatif A. Hassan, Khaled H. Idris, Osama A. Ali, Mustafa M. Osman, Mahmmoud S. Saleh, Nagla A. Mohamed, Mustafa M. Khaled. Prevalence and Resistance Profile of Acinetobacter baumannii Clinical Isolates from a Private Hospital in Khartoum, Sudan. American Journal of Microbiological Research. 2015; 3(2):76-79. doi: 10.12691/ajmr-3-2-6.

Correspondence to: Muntasir  I. Omer, Department of Medical Microbiology Laboratory at RCIH. Email: muns_sust@hotmail.com

Abstract

Introduction: Acinetobacter baumannii is an important cause of nosocomial infections worldwide. It is difficult to control, and the infections caused by it are difficult to treat, because it is multidrug resistant. Objectives: This retrospective study was conducted to determine the prevalence and antibiotic resistance pattern of A. baumannii at Royal Care International Hospital, Khartoum, Sudan over a 37 month period. Methodology: Antimicrobial susceptibility testing of the isolates was performed by the disk diffusion method as recommended by Clinical Laboratory and Standards Institute CLSI [1]. Result: Non duplicate 275 A. baumannii were isolated out of a total 2899 pathogenic Gram negative isolates (9.5% prevalence). The most frequently isolated A. baumannii was from ICU patients (72%) followed by inpatients (24%) and outpatients (4%). The greatest number of isolates were recovered from sputum (61%) followed by wound (19%). The Resistance rates were higher than most of the internationally reported levels. Cephalosporins, aminoglycoside, aztreonam, fluoroquinolones and carbapenems are becoming practically ineffective, where the colistin elicited the highest susceptibility levels. Conclusion: This report shows for the first time (to our knowledge) the prevalence and resistance profile of A. baumannii in Sudan. The prevalence will help to conduct better infection control policy, and an update the local antibiogram will improve the knowledge of antimicrobial resistance patterns in our region.

Keywords

References

[1]  Wayne, PA: Clinical and Laboratory Standards Institute; 2011. CLSI. Performance standards for antimicrobial susceptibility testing. 20th Informational Supplement. CLSI document M100-S21. Schreckenberger PC, Daneshvar MI, Weyant RS, Hollis DG. Acinetobacter, Achromobacter, Chryseobacterium, Moraxella, and other nonfermentative gram-negative rods. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH, editors. Manual of Clinical Microbiology. Washington, DC: ASM Press, 2007; 8: 770-779.
 
[2]  Fournier, P. E., D. Vallenet, V. Barbe, S. Audic, H. Ogata, L. Poirelet al., Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLOS Genet. 2006; 10: 2-7.
 
[3]  Eveillard M, Soltner C, Kempf M, Saint-Andre J P, Lemarie C, Randrianarivelo C. et al,.The virulence variability of different Acinetobacter baumannii strains in experimental pneumonia. J Infect. 2010; 60 (2): 154-61.
 
[4]  Howard A, O'Donoghue M, Feeney A, Sleator RD. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence, 2012; 1: 3 (3): 243-50.
 
[5]  Kraniotaki E, Manganelli R, Platsouka E, Grossato A, Paniara O, Palù G. Molecular investigation of an outbreak of multidrug-resistant Acinetobacter baumannii, with char-acterisation of class 1 integrons. Int J Antimicrob Agents. 2006; 28: 193-9.
 
Show More References
[6]  Song JY, Kee SY, Hwang IS, Seo YB, Jeong HW, Kim WJ. et al., In vitro activities of carbapenem/sulbactam combination, colistin, colistin/rifampicin combination and tigecycline against carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother. 2007; 60 (2): 317-22.
 
[7]  Rello J. Acinetobacter baumannii infections in the ICU: customization is the key. Chest1999; 115: 1226-1229.
 
[8]  Rice, LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008; 197 (8): 1079-81.
 
[9]  Drummond, Katie. Pentagon to Troop-Killing Superbugs: Resistance Is Futile. Wired.com. Condé Nast. Retrieved 8 April 2013.
 
[10]  Manchanda V, Sanchaita S, and Singh NP. Multidrug Resistant Acinetobacter. J Glob Infect Dis.: 2010; 2 (3): 291-304.
 
[11]  Cisneros JM, Rodriguez-Bano J. Nosocomial bacteremia due to Acinetobacter baumannii: epidemiology, clinical features and treatment. Clin. Microbiol. Infect: 2002; 8: 687-69.
 
[12]  Shakibaie MR, Adeli S, Salehi MH. Antibiotic resistance patterns and extended-spectrum β-lactamase production among Acinetobacter spp. isolated from an intensive care Unit of a hospital in Kerman, Iran. Antimicrob Resist Infect Control: 2012; 1: 1-8.
 
[13]  Patwardhan RB, Dhakephalkar PK, Niphadkar KB, Chopade BA.A study on nosocomial pathogens in ICU with special reference to multiresistant Acinetobacter baumannii harboring multiple plasmids. Indian J Med Res: 2008; 128: 178-187.
 
[14]  AbdAllah S et al., Nosocomial infections and their risk factors at Mubarak Al-Kabeer hospital, Kuwait. Medical Journal of Cairo University, 2009, 78: 123-131.
 
[15]  Al Johani SM1, Akhter J, Balkhy H, El-Saed A, Younan M, Memish Z. Prevalence of antimicrobial resistance among gram-negative isolates in an adult intensive care unit at a tertiary care center in Saudi Arabia. Ann Saudi Med.: 2010; 30: 364-369.
 
[16]  Forbes BA, Sahm DF, Weissfeld AS. Bloodstream infections. In: Wilson L, editor. Bailey and Scott's Diagnostic Microbiology, 12 th ed. St Louis: The Mosby Company; 2007; 778-97.
 
[17]  Jaggi, Namita; Sissodia, Pushpa; Sharma, Lalit, Acinetobacter baumannii isolates in a tertiary care hospital: J Microbiol Infect Dis: 2012; 2 (2) p 57.
 
[18]  H. Siau, KY Yuen, SSY Wong. The epidemiology of Acinetobacter infections in Hongkong, J Med Microbiol 1996; 44: 340-347.
 
[19]  Endo S., Yano H., Hirakata Y., Arai K., Kanamori H., Ogawa M.,et al. Molecular epidemiology of carbapenem-non-susceptible Acinetobacter baumannii in Japan. J. Antimicrob. Chemother: 2012; 67 (7): 1623-1626.
 
[20]  Villers D, Espaze E, Coste-Burel M, Giauffret F, Ninin E, Nicolas F. et al,. Nosocomial Acinetobacter baumannii infections: Microbiological and clinical epidemiology. Ann Intern Med 1998; 129: 182-189.
 
[21]  Dijkshoorn, L, Nemec, A, Seifert, H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol.: 2007; 12: 939-51.
 
[22]  Seifert H, Dolzani L, Bressan R, Van Der RT, van Strijen B, Stefanik D, Heersma H, et al,. Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii. J ClinMicrobiol 2005; 43 (43) 28-35.
 
[23]  Wilks M, Wilson A, Warwick S, Price E, Kennedy D, Ely A, et al,. Control of an outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus colonization and infection in an intensive care unit (ICU) without closing the ICU or placing patients in isolation. Inf Control HospEpidemiol, 2006; 27: 654-8.
 
[24]  Munoz-Price LS, Weinstein RA. Current concept: Acinetobacter Infection. N EnglJ Med 2008; 358: 1271-81.
 
[25]  Glow RH.,Moellering RC, Kunz LJ. Infections with Acinetobacter calcoaceticus (Herelleavaginicola): Medicine (Baltimore): 1977; 56: 79-97.
 
[26]  Evans BA, Hamoud, A, Towner S.A, Khan S.A, Amyes S.G. High prevalence of unrelated multidrug-resistant Acinetobacter baumannii isolates in Pakistani military hospitals. Int J Antimicrob Agents: 2011; 37: 580-581.
 
[27]  Dent L, Dana R M, Siddharth P. Multi-drug resistant Acinetobacter baumannii: a descriptive study in a city hospital. BMC Infectious Diseases: 2010; 10: 196-204.
 
[28]  Rit K, Saha R. Multidrug-resistant Acinetobacter infection and their susceptibility patterns in a tertiary care hospital. Niger Med J.: 2012; 53: 126-8.
 
[29]  Marchaim D, Chopra T, Pogue JM, Perez F, Hujer AM, Rudin S, et al,. Outbreak of colistin-resistant, carbapenem-resistant Klebsiella pneumoniae in metropolitan Detroit, Michigan. Antimicrob. Agents Chemother: 2011; 55 (2): 593-599.
 
[30]  Mammina C, Bonura C, Di Bernardo F, Aleo A, Fasciana T, Sodano C.et al,. Ongoing spread of colistin-resistant Klebsiella pneumoniae in different wards of an acute general hospital, Italy, Euro Surveill: 2011; 17 (33): 20-48.
 
[31]  Lesho E, Yoon EJ, McGann P, Snesrud E, Kwak Y, Milillo M, et al. Emergence of colistin-resistance in extremely drug-resistant Acinetobacter baumannii containing a novel pmrCAB operon during colistin therapy of wound infections. J. Infect. Dis.: 2013; 208 (7): 1142-1151.
 
[32]  Lean SS, Suhaili Z, Ismail S, Rahman NI, Othman N, Abdullah FH, et al,. Prevalence and Genetic Characterization of Carbapenem-and Polymyxin-Resistant Acinetobacter baumannii Isolated from a Tertiary Hospital in Terengganu, Malaysia. ISRN Microbiology Vol 2014 (2014), Article ID 953417, 9.
 
Show Less References

Article

Fermentation of Pods of Cocoa (Theobroma cacao L) Using Palm Wine Yeasts for the Production of Alcohol and Biomass

1Department of Microbiology, College of Natural Sciences, Michael Okpara University of Agriculture Umudike, Abia State, Nigeria


American Journal of Microbiological Research. 2015, 3(2), 80-84
DOI: 10.12691/ajmr-3-2-7
Copyright © 2015 Science and Education Publishing

Cite this paper:
Mbajiuka, Chinedu S, Ifediora A.C, Onwuakor C.E, Nwokoji L.I. Fermentation of Pods of Cocoa (Theobroma cacao L) Using Palm Wine Yeasts for the Production of Alcohol and Biomass. American Journal of Microbiological Research. 2015; 3(2):80-84. doi: 10.12691/ajmr-3-2-7.

Correspondence to: Chinedu  S, Department of Microbiology, College of Natural Sciences, Michael Okpara University of Agriculture Umudike, Abia State, Nigeria. Email: chijiokeonwuakor@gmail.com

Abstract

Ripe cocoa pods whose seeds have been extracted were examined for production of ethanol and biomass as one of the measures of converting waste into useful products. The cocoa pods were grinded to fine powder and hydrolyzed using 1M HCl for 4 hours at 75°C to digest the cellulose to glucose. The hydrolysate was filtered, neutralized with 2% NaOH and the salt disposed. Determination of reducing sugar by Fehling’s reagent confirmed presence of glucose in the medium. 15°Brix sugar (1.0625SG) produced from the hydrolysis was optimized to 24°Brix (1.104 SG) with 65g of sucrose and fermented to ethanol, using yeasts from Nigerian local palm wine by batch fermentation at room temperature. The pH range was between 4.03-3.91 at temperature of 28°C and 30°C, producing biomass of 0.7-1.489 with fall in the sugar content from 24°Brix to 2°Brix, after 7 days of fermentation. 10.3% ethanol was obtained after distillation. Further distillation of the sample under controlled fermentation could produce a higher percentage of ethanol.

Keywords

References

[1]  Kumar, N., Abdul-Klaader, J.B.M., Rangswani P and Irulappan, I. Introduction to species, Plantation Crops, Medicinal and Aromatic Plants. Oxford and IBH Publishers New Dehli, 2004, Pp 12.
 
[2]  Adomaki, D (1975). Cocoa products and by-products. Cocoa Research Institute, Press Ghana, pp 60.
 
[3]  Agyema, K.O.G and Oldham, J.H. Utilization of Cocoa By-products as an Alternative Source of Energy. Biomass, 1986 10(4): 311-318.
 
[4]  Werner, B (1991). How to convert to food: wine and Jam from cocoa. GTZ gate, pp 44.
 
[5]  Awan, J.A and Okaka, J.C. Elements of Food Spoilage and Preservation. 2nd edition. Institute of Management and Technology Press, Enugu, Nigeria, 1992, Pp 123-205.
 
Show More References
[6]  Willey, J.M., Sherwood, L.M and Woolverton, J.C. Prescott’s Microbiology. McGrawHill, Singapore, 2011, Pp 1009-1051.
 
[7]  Anupama, P.R. Value-Added Food. Single Cell Protein. Biotechnology Advances, 2002, 18: 459-479.
 
[8]  Ezeronye, O.U. Nutrient utilization profiles of Saccharomyces cerevisiae. In Antomie Van Leeuwenhoek Ingentaconnect, 2007, 86 (3): 235-238.
 
[9]  Nwachukwu, I.N., Ibekwe, V.I., Nwabueze, R.N and Anyanwu, B.N. Characterization of Palm wine Yeast Isolates for Industrial Utilization. African Journal of Biotechnology, 2006, 3(6): 1726-1733.
 
[10]  Wikipedia: The Free Encyclopedia. Retrieved 14/8/2011.
 
[11]  Golueke, C.G. Principles of alcoholic production from wastes. In: Biogas and Alcohol Fuels Production. National Academy Press, Washington DC., 1979, Pp 43-49.
 
[12]  Reed, G Prescott and Dunn’s Industrial Microbiology 4th Edition. CBS Press, New Dehli, 2004, Pp 568-849.
 
[13]  Okonkwo, I. O., Adeola, T.O., Aloysius, F.E., Damilita, O and Adewale, O.A. Utilization of Food Wastes for Sustainable Development. Electronic Journal of Environment, Agriculture and Food Chemistry, 2006, 8 (4):263-268.
 
[14]  Atkins, P.W and Beran, J.A. General Chemistry. 2nd Edition, 1992, WH Freeman. Pp: 7 -9.
 
[15]  Onwuka, G.I. Food Analysis and Instrumentation: Theory and Practice. Naphthalein Prints, Lagos, 2005, pp: 200
 
[16]  Nielson, S. S. Introduction to Chemical Analysis of Foods. CBS, New Dehli, 2002, Pp 1-160.
 
[17]  Mbajiuka, C.S., Omeh, S.F and Ezeja, M.I. Fermentation of Sorghum Using Yeast (Saccharomyces cerevsiae) as starter culture for Burukutu production. Continental Journal of Biological Sciences, 2010, 3: 63-74.
 
[18]  Chilaka, C.A., Uchechukwu, N., Obidiegwu, J.E and Akpo, O.B. Evaluation of Yeast Isolates from Palm wine in Fruit Wine Production. African Journal of Food Science, 2010, 4(12): 764-774.
 
[19]  Hough, J.S., Briggs, D.E., Steven, R and Young, T.W. Malting and Brewing Science vol 2. Hopped Wort and Beer. Chapman and Hall, 1997, Pp: 580-785.
 
[20]  James, C.S. Analytical chemistry of Foods. Chapman and Hall, New York, 1995, Pp: 163-168.
 
[21]  Chin, H.F. and Robert, H.E. Germination in Recalcitrant Crop Seed. Tropical Press, Sidney, 1980 Pp 48-52.
 
[22]  Roukes, T. Continuous Ethanol production from Carob Pods Extract by Immobilized S. cerevisiae in a Packed Bed Reactor. Journal of chemical Technology and Biotechnology, 2004, 59 (4): 387-399.
 
[23]  Sanya, J.K (2009). Utilization of Some Waste Materials from Cocoa. Biochemical Studies on Ripe Cocoa Pod and the Production of Alcohol from the Cocoa Pod. DSpace at KNUST, 2009. http://: hdl. handle.net/ 123456789/ 110. Retrieved 10/6/2011.
 
Show Less References

Article

Statistical Optimization of Medium Composition for Xylanase Production by Solid State Fermentation Using Agroresidues

1Amity Institute of Biotechnology, Amity University Haryana Manesar, 122413, India

2Amity Institute of Microbiology, Amity University Noida, Uttar Pradesh, India


American Journal of Microbiological Research. 2015, 3(2), 85-92
DOI: 10.12691/ajmr-3-2-8
Copyright © 2015 Science and Education Publishing

Cite this paper:
Chaturvedi S, Kohli K U, Rajni S, Khurana SMP. Statistical Optimization of Medium Composition for Xylanase Production by Solid State Fermentation Using Agroresidues. American Journal of Microbiological Research. 2015; 3(2):85-92. doi: 10.12691/ajmr-3-2-8.

Correspondence to: Chaturvedi  S, Amity Institute of Biotechnology, Amity University Haryana Manesar, 122413, India. Email: sarikachaturvedi@gmail.com

Abstract

Two stage statistical designs were used to optimize xylanase production from a newly isolate Bacillus licheniformis under solid state fermentation. Plackett burmann and central composite design in response surface methodology were used to build statistical models to screen out the significant variables and then study the effect of three significant variables on xylanase production. Twelve variables screened initially with Plackett burmann design were substrate concentration, glucose, ammonium sulphate, KH2PO4, K2HPO4, FeSO4, MgSO4, MnSO4, yeast extract peptone, CaCl2 & NaCl. Further three variables ammonium sulphate, glucose and peptone were selected via central composite design for xylanase production. The maximum xylanase production after optimization was increased 2.38 fold yield over conventional strategy. For glucose, ammonium sulphate and peptone were significantly showing that these were the most significant factors affecting the enzyme production. 99% of total variation was explained by the model elaborated. The determination coefficient (R2) as shown by analysis of variance(ANOVA) was 0.9974 showing adequate credibility of the model. The properties of the isolated enzyme are adequate for its use industries as pulp and paper industry, textile industry, food processing & wine industry.

Keywords

References

[1]  Ghanem, N.B., Yusef, H.H. and Mahrouse, H.K, “Production of Aspergillus terreus xylanase in solid-state cultures: application of the Plackett-Burman experimental design to evaluate nutritional requirement,” Bioresour Technol, 73 (2). 113-121. June 2000.
 
[2]  Li, Y., Liu, Z.Q., Cui, F.J., Xu, Y.Y. and Zhao, H, “Application of Plackett-Burman experimental design and Doehlert design to evaluate nutritional requirements for xylanase production by Alternaria mali ND-16,” Appl Microbiol Biotechnol, 77 (2). 285-291. Nov 2007.
 
[3]  Yang, S.Q., Yan, Q.J., Jiang, Z.Q., Li, L.T., Tian, H.M. and Wang, Y.Z, “High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation,” Bioresour Technol, 97 (15). 1794-1800. Oct 2006.
 
[4]  Narang, S, Sahai, V. and Bisaria, V.S, “Optimization of xylanase production by Melanocarpus albomyces IIS-68 in solid state fermentation using response surface methodology” J Biosci Bioengg, 91 (4). 425-427. Oct 2001.
 
[5]  Park, Y.S., Kang, S.W., Lee, J.S., Hong, S.I. and Kim, S.W, “Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs,” Appl Microbiol Biotechnol, 58 (6). 761-766. Mar 2002.
 
Show More References
[6]  Bakri, Y., Jacques, P. and Thonart, P, “Xylanase production by Penicillium canescens 10-10c in solid-state fermentation,” Appl Biochem Biotechnol, 108 (1-3). 737-774. Spring 2003.
 
[7]  Wu, M., Li, S.C., Yao, J.M., Pan, R.R. and Yu, Z.L, “Mutant of a xylanase-producing strain of Aspergillus niger in solid state fermentation by low energy ion implantation” World J of Microbiol. Biotechnol, 21 (6-7). 1045-1049. Oct 2005.
 
[8]  Hang, Y.D. and Woodams, E.E, “Xylanolytic activity of commercial juice processing enzyme preparation” Lett Appl Microbiol, 24. 389-392. May 1997.
 
[9]  Csiszar, E., Losonczi, A., Koczka, B., Szakacs, G. and Pomlenyi, A, “Degradation of lignin-containing materials by xylanase in biopreparation of cotton,” Biotechnol Lett 28. 749-753. May 2006.
 
[10]  Battan, B., Sharma, J., Dhiman, S.S and Kuhad, R.C, “Enhanced production of cellulose-free thermostable xylanase by Bacillus pumilus ASH and its potential application in paper industry,” Enzy Microb Technol, 41. 733-739. Nov 2007.
 
[11]  Dhiman, S.S., Sharma, J. and Battan, B, “Industrial applications and future prospects of microbial xylanases: a review,” Bioresour, 3. 1377-1402. Nov 2008.
 
[12]  Dhiman, S.S., Garg, G., Mahajan, R., Garg, N. and Sharma, J, “Single lay out and mixed lay out enzymatic processes for biobleaching of kraft pulp,” Bioresour. Technol, 100. 4736-4741. Oct 2009.
 
[13]  Dekker, R.F.H. and Richards, G.N., Hemicellulases: their occurrence, purification, properties and mode of action, Adv Carbohydrate Chem Biochem, 32. 277-352. Feb 1976.
 
[14]  Sunna, A., Moracci, M., Rossi, M. and Antranikian, G, “Glycosyl hydrolases from hyperthermophiles,” Extremophiles, 1. 2-13. Feb 1997.
 
[15]  Dekker, R.F.H. “Biodegradation of hemicelluloses, In Biosynthesis and biodegradation of wood components,” Higuchi T. (ed) Academic Press, Tokyo. 1985, 505-533.
 
[16]  Kuhad, R.C., Manchanda, M. and Singh, A, “Optimization of xylanase production by a hyperxylanolytic mutant strain of Fusarium oxysporum,” Process Biochem, 33. 641-647. Aug 1998.
 
[17]  Hrmova, M., Biely, P., Vrsanska, M. and Petrakova, E, “Induction of cellulose and xylanase-degrading enzyme complex in the yeast of Trichosporon cutaneum,” J Arch Microbiol, 138. 371-376. Aug 1984.
 
[18]  Beg, Q.K., Kapoor, M., Mahajan, L. and Hoondal, G.S, “Microbial xylanases and their industrial applications; a review” J Appl Microbial Biotechnol, 56. 326-338. June 2001.
 
[19]  Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A. and Amorim, D.S, “Xylanases from fungi: Properties and industrial applications,” Appl Microbiol and Biotechnol, 67 (5): 577-591. 2005.
 
[20]  Garapati, S.L., Chaganti, S.R., Ravella, S.R., Phil, J.H. and Reddy, S.P, “Enhanced production of xylanase by a newly isolated Aspergillus terreus under solid state fermentation using palm industrial waste: A statistical optimization,” Biochem Engg J, 48. 51-57. Dec 2009.
 
[21]  Miller, G., Blum, L.R. and Burton, A.I, “Use of dinitosalisalic acid reagent for determination of reducing sugars,” Anal Chem, 31. 426-428. 1959.
 
[22]  Mandels, M., Andreotti, R. and Roche, C. “Measurement of saccharifying cellulose,” Biotechnol Bioengg Symp, 6. 21-31. 1976.
 
[23]  Gawande, P.V. and Kamat, M.Y, “Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application,” J of Appl Microbiol, 87 (4): 511-519. Oct 1999.
 
[24]  Heck, J.X., Soares, L.H.D.B., Hertz, P.F. and Ayub, M.A.Z. “Purification and properties of a xylanase produced by Bacillus circulans BL53 on solid-state cultivation,” Biochem Engg J, 32 (3). 179-184. Dec 2006.
 
[25]  Rajashri, D.K. and Anandrao, R.J, “Isolation, Purification, and Characterization of Xylanase Produced by a New Species of Bacillus in Solid State Fermentation,” Intl J of Microbiol, 2012. 1-9. Oct 2012.
 
[26]  Garg, G., Kaur, R.M.A. and Sharma, J. Xylanase production using agroresidue in solid state fermentation from Bacillus pumulis ASH for biodelignification of wheat straw pulp. Biodegradation, 22. 1143-1154. 2011.
 
[27]  Liu, C., Sun, Z.T., Du, J.H. and Wang, J, “Response surface optimization of fermentation conditions for producing xylanase by Aspergillus niger SL-05” J Ind Microbiol Biotechnol, 35. 703-711. July 2008.
 
[28]  Fang, T.J., Liao, B.C. and Lewe, S.C, “Enhanced production of Xylanase by Aspergillus carneus M34 in solid state fermentation with agricultural waste using statistical approach,” New Biotechnol, 27 (1). 25-32. Feb 2010.
 
[29]  Nagar, S., Gupta, V.K., Kumar, D., Kumar, L. and Kuhad, R.C. “Production and optimization of cellulase free alkali stable xylanase by Bacillus pumilus SV-85S in submerged fermentation” J Ind Microbiol Biotechnol, 37. 71-83. Jan 2010.
 
Show Less References

Article

Removal of Heavy Metals from Aqueous Solutions Using Multi-Metals and Antibiotics Resistant Bacterium Isolated from the Red Sea, Egypt

1Botany Department, Faculty of Science, Menoufia University, Egypt

2Marine Microbiology Laboratory, National Institute of Oceanography and Fisheries, Egypt

3Marine Pollution Laboratory, National Institute of Oceanography and Fisheries, Egypt


American Journal of Microbiological Research. 2015, 3(3), 93-106
DOI: 10.12691/ajmr-3-3-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Mohamed T. Shaaban, Hassan A.H. Ibrahim, Ahmed S. Abouhend, Khalid M. El-Moselhy. Removal of Heavy Metals from Aqueous Solutions Using Multi-Metals and Antibiotics Resistant Bacterium Isolated from the Red Sea, Egypt. American Journal of Microbiological Research. 2015; 3(3):93-106. doi: 10.12691/ajmr-3-3-1.

Correspondence to: Ahmed  S. Abouhend, Marine Pollution Laboratory, National Institute of Oceanography and Fisheries, Egypt. Email: aabouhend@umass.edu, ahmed_salah7257@yahoo.com

Abstract

This investigation was incorporate screening for the highest multiple metal and antibiotics resistant marine bacteria at the Northern Red Sea. The two selected bacterial isolates were identified on the basis of phenotypic and genotypic characterization through 16S rDNA gene technique as Alteromonas macleodii and Nitratireductor basaltis. A. macleodii revealed high efficiency in the removal of heavy metals from aqueous solution. Different factors influenced the removal of heavy metals from aqueous solution by A. macleodii such salinity, pH, temperature, biomass and contact time were optimized. The metal removal was greater at the lowest initial metal concentration (50 mg l-1) and decreased with increase in the metal concentration. A. macleodii showed high efficiency in biosorption of different metals in single and multiple metal solution systems. Removal percentage of different metals by A. macleadii in a single metal system at the highest tested metal concentrations (200 mg l-1) reached Pb, 73.8%; Mn, 66%; Fe, 65%; Cu, 64%; Zn, 62%; Ni, 54%; and Cd, 53%. In multiple metal systems containing 30 mg l-1 of different metals, biosorption percentage was Pb, 93%; Fe, 89%; Zn, 55%; Cd, 50%; Cu, 44.5%; Mn, 40% and Ni, 36%. These findings suggest the possibility of using these bacterial isolates for bioremediation of heavy metals from heavy metal contaminated ecosystem.

Keywords

References

[1]  Schindler, P. W. (1991): The regulation of heavy metals in natural aquatic systems. In: Vernet, J. P. (Ed.) Heavy Metals in the Environment. Elsevier, Amsterdam, pp. 95-123.
 
[2]  Ansari, M. I.; Masood, F. and Malik, A. (2011): Bacterial Biosorption: a technique for remediation of heavy metals. In Microbes and microbial technologies (eds, I. Ahmad et al.), Springer Science+Business Media.
 
[3]  McKay, G.; Otterburn M. S. and Sweeny, A. G. (1980): Thr removal of colour from effluents using various adsorbents IV. Silica: equilibria and column Studies. Water Res., 14(1): 21-27.
 
[4]  Miyaji, F.; Masuda, S. and Suyama, Y. J. (2010): Adsorption of Lead and Cadmium Ions from Aqueous Solution with Coal Fly Ash-Derived Zeolite/Sepiolite Composite. The ceramic society of Japan, 118(11): 1062-1066.
 
[5]  Ajmal, M.; Rao, R. A. K. and Ahmad, R. (2011): Adsorption studies of heavy metals on Tectona grandis: Removal and recovery of Zn (II) from electroplating wastes. J. Disper. Sci. and Tech., 32(6): 851-856.
 
Show More References
[6]  Crist, R. H.; Martin, J. R.; Guptill, P. W.; Eslinger, J. M. and Crist, D. R. (1990): Interaction of metals and protons with algae. 2. Ion exchange in adsorption and metal displacement by protons. Envi. Sci. Tech., 24: 337-342.
 
[7]  Morcos, S. A. (1970): Physical and chemical oceanography of the Red Sea. Oceanogr. Mar. Biol. Ann. Rev., 8: 73-202.
 
[8]  Murty, T. S. and El-Sabh, M. T. (1984): Weather system storm surges and sea state in the red sea and the Gulf of Aden. Proc. Symp. Coral Reef Envi. Red sea. Jeddah, pp 8-38.
 
[9]  Ormond, R. F. G. and Edwards, A. (1987): Red Sea Fishes, in: Edwards, A.J. and Head S.M. (eds), Red Sea. Pergamon Press, Oxford, U.K. pp 252-287.
 
[10]  Strickland, J. D. H. and Parsons, T. R. (1972): A Practical Hand Book of Sea Water Analysis. Fisheries Res. Board Canada Bull., 167, 2nd ed., p. 310.
 
[11]  APHA (1992): Standard methods for the examination of water and wastewater. 18th ed. American Public Health Association, Washington, DC.
 
[12]  Grasshoff, K, Kremling, K. and Ehrhardt, M. (1999): Methods of Seawater Analysis, 3 rd edition,Weinheim; New York, Wiley-VCH, p. 600.
 
[13]  Koroleff, F. (1969): Determination of ammonia as indophenol blue. International Council for the Exploration of the sea (ICES), p8.
 
[14]  Brown B. E. and Holley M. C. (1982): Metal levels associated with tin dredging and smelting, and their effect upon intertidal reef flats at Ko Phuket, Thailand. Coral Reefs, 1: 131-137.
 
[15]  Amini, G. H. R. (1998): Heavy metal concentration in surficial sediments from Anzali Wetland, Iran. Water, Air and Soil Poll., 104: 305-312.
 
[16]  Boniforti, R.; Ferraroli, I. R.; Frigileri, P.; Heltai, D. and Queirazza, G. (1984): Intercomparison of five methods for the determination of trace metals in sea water, Anal. Chim. Acta. 16: 233-46.
 
[17]  Oregioni, B. and Aston, S.R. (1984): The determination of selected trace metals in marine sediments by flameless/flame atomic absorption spectrophotometry. IAEA Manaco laboratory, Internal Report. Cited from Reference Method in pollution studies N. 38, UNEP. 1986.
 
[18]  Raja, E. C.; Selvam, S. G. and Omine, K. A. (2009): Isolation, identification and characterization of heavy metals resistant bacteria from sewage. International joint symposium on geodisaster prevention and geoenvironment in asia, 205-211.
 
[19]  Summers, Α. Ο. and Silver, S. (1972): Mercury resistance in a plasmid-bearing strain of Escherichia coli. J. Bacteriol., 112: 1228-1236.
 
[20]  Esposito, A.; Pagnanelli, F. and Vegli, F. (2002): PH-related equilibria models for biosorption in single metal systems. Chem. Eng. Sci., 5: 307-313.
 
[21]  Volesky, B. and Holan, Z. R. (1995): Biosorption of heavy metals. Biotech. Prog., 11: 235-250.
 
[22]  Bauer, A. W.; Kirby, W. M. M.; Sherris, J. C. and Turck. M. (1966): Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 36: 493-496.
 
[23]  Garrity, G. M.;Brenner, D. J; Krieg, N. R and Staley, J. T (2005): Bergey’s manual of systematic bacteriology. 2nd edition, Vol. 2.
 
[24]  Hentschel, U.; Schmid, M.; Wagner, M.; Fieseler, L.; Ger- nert, C. and Hacker, J. (2001): Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS J. Micro. Eco., 35: 305-312.
 
[25]  Pekey, H. (2006): The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Mar. Poll. Bull., 52(10): 1197-1208.
 
[26]  De Rore, H.; Top, E.; Houwen, F.; Mergcay, M. and Verstraete, W. (1994): Evolution of heavy metal-resistant transconjugants in a soil environment with a concomitant selective pressure. FEMS Microbiol. Ecol., 14: 263-273.
 
[27]  Filali, B. K.; Taoufik, J.; Zeroual, Y.; Dzairi, F. Z.; Talbi, M. and Blaghen, M. (2000): Waste water bacteria resistant to heavy metals and antibiotics. Current Microbiology, 41: 151-156.
 
[28]  Nair, S.; Chandramohan, D. and Bharathi, L. P. A. (1992): Differential sensetivity of pigmented and non-pigmented marine bacteria to metals and antibiotics. Water. Res., 26(4): 431-434.
 
[29]  Loaic, M.; Olier, R. and Guezennec, J. (1997): Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. War. Res., 31: 1171-1179.
 
[30]  Takeuchi, M.; Kawahata, H.; Gupta, L. P.; Kita, N.; Morishita, Y.; Ono, Y. and Komai, T (2007): Arsenic resistance and removal by marine and non-marine bacteria. J. Biotech., 127: 434-442.
 
[31]  Kim, K.; Roh, W. S.; Chang, H.; Nam, Y.; Yoon, J.; Jeon, O. C.; Oh, H. and Bae, J. (2009): Nitratireductor basaltis sp. nov., isolated from black beach sand. International J. Sys. Evolu. Microbio., 59: 135-138.
 
[32]  Bridge,T. A. M.; White, C. and Gadd, G. M. (1999): Extracellular metal binding activity of the sulphate reducing bacterium Desulfococcus multivorans. Microbiol., 145: 2987-2995.
 
[33]  Ahmed, N.; Nawaz, A. and Badar, U. (2005): Screening of copper tolerant bacterial species and their potential to remove copper from the environment. Bull. Envi. Contam. Toxi., 74: 219-226.
 
[34]  Rajkumar, M. and Freitas, H. (2008): Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals, Chemosphere, 71: 834-842.
 
[35]  Abskharon, R. N. N.; Hassan, S. H. A.; Kabir, M. H.; Qadir, S. A.; El-Rab, S. M. F. G. and Wang, M. H. (2010): The role of antioxidants enzymes of E. coli ASU3, a tolerant strain to heavy metals toxicity, in combating oxidative stress of copper. World J. Microb. Biotech., 26: 241-247.
 
[36]  Ansari, M. I. and Malik, A. (2007): Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Biores. Tech., 98(3)149-153.
 
[37]  Wei, G. H.; Fan, L. M.; Zhu, W. F.; Fu, Y. Y.; Yu, J. F. and Tang, M. (2009): Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China, J. Haz. Mater., 162: 50-56.
 
[38]  Verma, T.; Srinath, T.; Gadpayle, R. U.; Ramtake, P. W.; Hans, R. K. and Garg, S. K. (2001): Chromate tolerant bacteria isolated from tannery effluent. Biores. Tech., 78: 31-35.
 
[39]  Pickett, A. W. and Dean, A. C. R. (1976): Antibiotic resistance of cadmium- and zinc-tolerant strains of Klebsiella (Aerobacter) aerogenes growing in glucose-limited chemostat. FEMS Microbio. Letters., 1:165-167.
 
[40]  Calomiris, J. J.; Armstrong, L. J. and Seidlier, J. R. (1984): Association of Metal Tolerance with Multiple Antibiotic Resistance of Bacteria Isolated from Drinking Water. Appli. Envi. Micro., 47(6): 1238-1242.
 
[41]  Long, F.; Su, C. C.; Zimmermann, M. T.; Boyken, S. E.; Rajashankar, K. R.; Jernigan, R. L. and Yu, E. W. (2010): Crystal structures of the CusA efflux pump suggest methioninemediated metal transport. Nature, 467: 484-488.
 
[42]  Volesky, B. (1990): Biosorption of Heavy Metals. CRC Press, Boca Raton, USA.
 
[43]  Gutnick, D. L. and Bach, H. (2005): Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulation. Appl. Microbial. Biotech., 54: 45l-460.
 
[44]  Ruiz, G. C.; Tirado, R. V. and Gil, G. B. (2008): Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects. Biores. Tech., 99: 3864-3870.
 
[45]  Schiewer, S. and Volesky, B. (1997): Ionic strength and electrostatic effects in biosorption of divalent metal ions and protons. Envi. Sci. Tech. j., 31: 2478-2485.
 
[46]  Pivovarov, S. (2003): Physico-chemical modeling of heavy metals (Cd, Zn, Cu) in natural environments. Encyclopedia of Surface and Colloid Science, 1-26.
 
[47]  Schiewer, S. and Wong, M. H., (2000): Ionic strength effects in biosorption of metals by marine algae. Chemosphere, 41: 271-282.
 
[48]  Masoudzadeh, N.; Zakeri, F.; Lotfabad, T. B.; Sharafi, H.; Masoomi, F.; Zahiri, H. S.; Ahmadian, G. and Noghabi, K. A. (2011): Biosorption of cadmium by Brevundimonas sp. ZF12 strain, a novel biosorbent isolated from hot-spring waters in high background radiation areas. J. Haz. Mater., 197: 190-198.
 
[49]  Gadd, G. M.; White, C. and DeRome, L. (1998): Heavy metal and radionuclide uptake by fungi and yeasts, in: Norri, P. R. and Kelly D. P. (Eds.), Biohydrometallurgy, Chippenham, Wilts, UK.
 
[50]  Aksu, Z. and Cagatay, S. S. (2006): Investigation of biosorption of Gemazol Turquise Blue-G reactive dye by dried Rhizopus arrhizus in batch and continuous systems. Sep. Purif. Tech., 48: 24-35.
 
[51]  Vijayaraghavan, K.; Jegan, J. R.; Palanivelu, K. and Velan, M. (2004): Copper removal from aqueous solution by marine green alga Ulva Reticulate. Elec. J. Biotech., 7(1): 61-71.
 
[52]  Guibal, E.; Sancedo, I.; Roussy, J. and Le Cloiree, P. (1994): Uptake of uranyl ions by new sorbing polymers: discussion of adsorption isotherms and pH effect. React. Polym., 23: 147-156.
 
[53]  Selatnia, A.; Boukazoula, A.; Kechid, N.; Bakhti, M. Z.; Chergui, A. and Kerchich, Y. (2004): Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem. Eng. J., 19: 127-135.
 
[54]  Ozdemir, S.; Kilinc, E.; Poli, A.; Nicolaus, B. and Guven, K. (2009): Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. decanicus and Geobacillus thermoleovorans sub.sp. stromboliensis: equilibrium, kinetic and thermodynamic studies. Chem. Eng. J., 152: 195-206.
 
[55]  Vijayaraghavan, V. and Yun, Y.S. (2008): Bacterial biosorbents and biosorption. Biotech. Adv., 26: 266-291.
 
[56]  Leung, W. C.; Wong, M. F.; Chua, H.; Lo, W.; Yu, P. H. F. and Leung, C. K. (2000): Removal and recovery of heavy metals by bacteria isolated from activated sludge treating industrial effluents and municipal wastewater, Water Sci. Tech., 41: 233-240.
 
[57]  Al-Garn, S. M. (2005): Biosorption of lead by Gram -ve capsulated and non-capsulated bacteria.Water SA., 31: 789-796.
 
[58]  Ianis, M.; Sekova, K. and Vasıleva, S. (2006): Copper biosorption by Penicillium cyclopium: equilibrium and modelling study. Biotech. Eq., 20: 195-201.
 
[59]  Suriya, J.; Bharathiraja, S. and Rajasekaran, R. (2013): Biosorption of heavy metals by biomass of Enterobacter Cloacae isolated from metal-polluted soils. Inter. J. Chem.Tech. Res., 5(3): 1329-1338.
 
[60]  Malkoc, E. and Nuhoglu, Y. (2005): Investigations of Ni (II) removal from aqueous solutions using tea factory waste. J. Haz. Mater., 127: 120-128.
 
[61]  Zakeri, F.; Noghabi, K. A.; Sadeghizadeh, M.; Kardan, M.; Masoomi, F.; Farshidpour, M. R. and Atarilar, A. (2010): Serratia sp. ZF03: an efficient radium biosorbent isolated from hot-spring waters in high background radiation areas. Biores. Tech., 101: 9163-9170.
 
[62]  Weber, W. J. (1985): Adsorption theory, concepts and models, In: Schijko FL (ed) Adsorption Technology: A Step-by-step Approach to process Evaluation and Application. Marcel Dekkar, NY, 1-35.
 
[63]  Singh, N. and Gadi, R. (2012): Bioremediation of Ni (II) and Cu (II) from wastewater by the nonliving biomass of Brevundimonas vesicularis. J. Envi. Chem. Ecotoxi., 4(8): 137-142.
 
[64]  Pardo, R.; Herguedas, M.; Barrado E. and Vega, M. (2003): Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal. Bioanal. Chem., 376: 26-32.
 
[65]  Mashitah, M. D.; Yus Azila, Y. and Bhatia, S. (2008): Biosorption of cadmium (II) ions by immobilized cells of Pycnoporus sanguineus from aqueous solution. Biores. Tech., 99: 4742-4748.
 
[66]  Premuzic, E. T.; Lin, M.; Zhe, L. L. and Gremme, A. M. (1991): Selectivity in metal uptake by stationary phase microbial populations. Arch. Envi. Contam. Toxicol., 20: 234-240.
 
[67]  Chang, J. S. and Hong, J. (1994): Biosorption of mercury by the inactivated cells of Pseudomonas aeruginosa PU21. Biotech. Bioeng., 44(8): 999-1006.
 
[68]  Figueira, M. M.; Volesky, B. and Ciminelli, V. S. T. (1997): Assessment of Interference in biosorption of heavy metal. Biotech. Bioeng., 54(4) 344-350.
 
[69]  Utigikar, V.; Chen, B. Y.; Tabak, H. H.; Bishop, D. F. and Govind, R. (2000): Treatment of acid mine drainage. I. equilibrium biosorption of zinc and copper on non-viable activated sludge. Inter. Biodeteri. Biodeg., 46: 19-28.
 
[70]  Puranik, P. R. and Paknikar, K. M. (1999): Biosorption of lead, cadmium and zinc by Citrobacter strain MCM B-181: characterization studies. Biotechnol. Prog., 15: 228-237.
 
[71]  Prashar, S. O.; Beaugeard, M.; Hawari, J.; Bera, P.; Patel, R. M. and Kim, S. H. (2004): Biosorption of heavy metals by red algae (Palmaria palmata). Envi. Tech., 25: 1097-1106.
 
[72]  Parungao M. M.;Tacata, P. S.;Tanayan, C. R. G and Trinidad, L. C. (2007): Biosorption of copper, cadmium and lead by copper-resistant bacteria isolated from Mogpog River, Marinduque Philip. J. Sci., 136(2): 155-165.
 
Show Less References

Article

Molecular Study of Panton-Valentine Leukocidin Genes among Staphylococcus aureus Clinical Isolates in Khartoum State, Sudan

1Department of Biotechnology, Faculty of Science and Technology, Omdurman Islamic University, Sudan

2College of Applied Medical Science, Shaqra University, KSA

3Department of Microbiology, Tropical Medicine Research Institute, National Center for Research, Sudan

4Department of Microbiology, Faculty of Medicine, King Khalid University, KSA

5Department of Biotechnology, Biotechnology Park, Africa City of Technology, Sudan


American Journal of Microbiological Research. 2015, 3(3), 107-111
DOI: 10.12691/ajmr-3-3-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Najem Aldin M. Osman, Intisar E. Alrayah, Yassir Mahgoub Mohamed, Ali M El-Eragi, Muataz M. Eldirdery, Mohamed Ahmed Salih. Molecular Study of Panton-Valentine Leukocidin Genes among Staphylococcus aureus Clinical Isolates in Khartoum State, Sudan. American Journal of Microbiological Research. 2015; 3(3):107-111. doi: 10.12691/ajmr-3-3-2.

Correspondence to: Najem  Aldin M. Osman, Department of Biotechnology, Faculty of Science and Technology, Omdurman Islamic University, Sudan. Email: najemosman@hotmail.com

Abstract

Staphylococcus aureus strains carrying Panton- Valentine Leukocidin genes (PVL) are an emerging threat worldwide, causing variety of infections even in healthy individuals. Intensive efforts through the last years have been carried out towards the detection and analysis of PVL genes. The prevalence and characterization of such genes has not been done in Sudan. In this study we investigated the prevalence and the molecular characteristics of PVL genes among S. aureus clinical isolates, comparing their PVL allelic variant with that of PVL positive strains from different countries. Standard microbiological procedures were used for the identification of isolates, polymerase chain reaction for determination of PVL genes and standard sequencing for mapping of lukS/F-PV genes. In Silico tools were used for sequence analysis. Among 210 S. aureus isolates, PVL genes were detected in 122 (58%). Sequence analysis for lukS/F-PV genes from 12 representative isolates detected a new point mutation in lukS PV region. Collectively, our findings showed a high frequency of PVL genes among S. aureus isolates and revealed a novel nonsynonymous mutation. Phylogenetic analysis revealed that Sudanese isolates were closely related to each other.

Keywords

References

[1]  Holmes A, Ganner M, McGuane S, Pitt TL, Cookson BD, Kearns AM: Staphylococcus aureus isolates carrying Panton-Valentine leucocidin genes in England and Wales: frequency, characterization, and association with clinical disease. Journal of clinical microbiology 2005, 43(5):2384-2390.
 
[2]  Prevost G, Mourey L, Colin DA, Menestrina G: Staphylococcal pore-forming toxins. Current topics in microbiology and immunology 2001, 257:53-83.
 
[3]  Ward PD, Turner WH: Identification of staphylococcal Panton-Valentine leukocidin as a potent dermonecrotic toxin. Infection and immunity 1980, 28(2):393-397.
 
[4]  Prevost G, Cribier B, Couppie P, Petiau P, Supersac G, Finck-Barbancon V, Monteil H, Piemont Y: Panton-Valentine leucocidin and gamma-hemolysin from Staphylococcus aureus ATCC 49775 are encoded by distinct genetic loci and have different biological activities. Infection and immunity 1995, 63(10):4121-4129.
 
[5]  Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, Vandenesch F, Etienne J: Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 1999, 29(5):1128-1132.
 
Show More References
[6]  Diep BA, Sensabaugh GF, Somboonna N, Carleton HA, Perdreau-Remington F: Widespread skin and soft-tissue infections due to two methicillin-resistant Staphylococcus aureus strains harboring the genes for Panton-Valentine leucocidin. Journal of clinical microbiology 2004, 42(5):2080-2084.
 
[7]  McClure J, Conly JM, Lau V, Elsayed S, Louie T, Hutchins W, and Zhang K: Novel multiplex PCR assay for detection of Staphylococcus virulence marker Panton-Valentine Leukocidin genes and simultaneous discrimination of Methicillin-susceptible from resistant staphylococci. Novel multiplex PCR assay for detection of Staphylococcus virulence marker Panton-Valentine Leukocidin genes and simultaneous discrimination of Methicillin-susceptible from resistant staphylococci 2006, 44(3):1141-1144.
 
[8]  Naas T, Fortineau N, Spicq C, Robert J, Jarlier V, and Nordman P: Three years survey of community acquired methicillin-resistant staphylococcus aureus producing Panton-Valentine Leukocidin in French university hospital. . J Hosp Infect 2005 61:321-329.
 
[9]  Steward CD, Raney PM, Morrell AK, Williams PP, McDougal LK, Jevitt L, McGowan JE, Jr., Tenover FC: Testing for induction of clindamycin resistance in erythromycin-resistant isolates of Staphylococcus aureus. Journal of clinical microbiology 2005, 43(4):1716-1721.
 
[10]  Etienne J: Panton-Valentine leukocidin: a marker of severity for Staphylococcus aureus infection? Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2005, 41(5):591-593.
 
[11]  O'Hara FP, Guex N, Word JM, Miller LA, Becker JA, Walsh SL, Scangarella NE, West JM, Shawar RM, Amrine-Madsen H: A geographic variant of the Staphylococcus aureus Panton-Valentine leukocidin toxin and the origin of community-associated methicillin-resistant S. aureus USA300. The Journal of infectious diseases 2008, 197(2):187-194.
 
[12]  Otokunefor K, Sloan T, Kearns AM, James R: Molecular characterization and panton-valentine leucocidin typing of community-acquired methicillin-sensitive Staphylococcus aureus clinical isolates. Journal of clinical microbiology 2012, 50(9):3069-3072.
 
[13]  Nakagawa S, Taneike I, Mimura D, Iwakura N, Nakayama T, Emura T, Kitatsuji M, Fujimoto A, Yamamoto T: Gene sequences and specific detection for Panton-Valentine leukocidin. Biochemical and biophysical research communications 2005, 328(4):995-1002.
 
[14]  Berglund C, Prevost G, Laventie BJ, Keller D, Soderquist B: The genes for Panton Valentine leukocidin (PVL) are conserved in diverse lines of methicillin-resistant and methicillin-susceptible Staphylococcus aureus. Microbes and infection / Institut Pasteur 2008, 10(8):878-884.
 
[15]  Dumitrescu O, Tristan A, Meugnier H, Bes M, Gouy M, Etienne J, Lina G, Vandenesch F: Polymorphism of the Staphylococcus aureus Panton-Valentine leukocidin genes and its possible link with the fitness of community-associated methicillin-resistant S. aureus. The Journal of infectious diseases 2008, 198(5):792-794.
 
[16]  Cowan ST, Steel KJ, Barrow GI, Feltham RKA: Cowan and Steel's manual for the identification of medical bacteria, 3rd edn. Cambridge ; New York: Cambridge University Press; 1993.
 
[17]  Collee JG, Duguid JP, Fraser AG, and Marmion BP: Mackie & MacCarteny practical medical microbiology., 13 edn. London: Churchill Livingstone; 1989.
 
[18]  Atschul S, Madden TL, al SAe: Gapped BLAST and PSI-BLAST. A new generation of protein database search programmes. NucleicAcid Res 1997, 25:3389-3402.
 
[19]  Hall T: BioEdit: a user-friendly biologicalsequence alignment editor and analysis programfor Windows 95/98/NT. Nucl Acids Symp Ser 1999, 41:95-98.
 
[20]  Besemer J, Lomsadze A, Borodovsky M: GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic acids research 2001, 29(12):2607-2618.
 
[21]  Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M et al: Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic acids research 2008, 36(Web Server issue):W465-469.
 
[22]  Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular biology and evolution 2013, 30(12):2725-2729.
 
[23]  Ramdani-Bouguessa N, Bes M, Meugnier H, Forey F, Reverdy ME, Lina G, Vandenesch F, Tazir M, Etienne J: Detection of methicillin-resistant Staphylococcus aureus strains resistant to multiple antibiotics and carrying the Panton-Valentine leukocidin genes in an Algiers hospital. Antimicrobial agents and chemotherapy 2006, 50(3):1083-1085.
 
[24]  Steward CD RP, Morrell AK, Williams PP, McDougal LK, and Jevitt, L.: Testing for Induction of Clindamycin Resistance in Erythromycin-Resistant Isolates of Staphylococcus aureus. Journal of clinical microbiology 2005, 43:1716-1721.
 
[25]  Bocchini CE, Hulten KG, Mason EO, Jr., Gonzalez BE, Hammerman WA, Kaplan SL: Panton-Valentine leukocidin genes are associated with enhanced inflammatory response and local disease in acute hematogenous Staphylococcus aureus osteomyelitis in children. Pediatrics 2006, 117(2):433-440.
 
[26]  Labandeira-Rey M, Couzon F, Boisset S, Brown EL, Bes M, Benito Y, Barbu EM, Vazquez V, Hook M, Etienne J et al: Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 2007, 315(5815):1130-1133.
 
[27]  Enany S, Yaoita E, Yoshida Y, Enany M, Yamamoto T: Molecular characterization of Panton-Valentine leukocidin-positive community-acquired methicillin-resistant Staphylococcus aureus isolates in Egypt. Microbiological research 2010, 165(2):152-162.
 
Show Less References