American Journal of Mathematical Analysis

ISSN (Print): 2333-8490

ISSN (Online): 2333-8431

Website: http://www.sciepub.com/journal/AJMA

Current Issue» Volume 3, Number 1 (2015)

Article

Inequalities for the Sth Derivative of Polynomials Not Vanishing inside A Circle

1Govt. Department of Education Jammu and Kashmir, India


American Journal of Mathematical Analysis. 2015, 3(1), 1-4
DOI: 10.12691/ajma-3-1-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
GULSHAN SINGH. Inequalities for the Sth Derivative of Polynomials Not Vanishing inside A Circle. American Journal of Mathematical Analysis. 2015; 3(1):1-4. doi: 10.12691/ajma-3-1-1.

Correspondence to: GULSHAN  SINGH, Govt. Department of Education Jammu and Kashmir, India. Email: gulshansingh1@rediffmail.com

Abstract

Let P(z) be a polynomial of degree n having all its zeros in , then for , Bidkham and Dewan [J. Math. Anal. Appl. 166(1992), 191-193] proved max In this paper, we prove an interesting generalization as well as an improvement of this result by considering the sth derivative of lacunary type of polynomials P(z) of degree n > 3.

Keywords

References

[[[[[
[1]  A. Aziz and Q.M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory, 54 (1988), No. 3, 306-313.
 
[2]  M. Bidkham and K. K. Dewan, Inequalities for a polynomial and its derivative, J. Math. Anal. Appl., Vol. 166 (1992), 319-324.
 
[3]  T. N. Chan and M. A. Malik, On Erdos-Lax Theorem, Proc. Indian Acad. Sci. (Math. Sci.), 92 (3) (1983), 191-193.
 
[4]  K. K. Dewan, Jagjeet Kaur and Abdullah Mir, Inequalities for the derivative of a polynomial, J. Math. Anal. Appl., 269 (2002), 489-499.
 
[5]  N. K. Govil, Some inequalities for derivatives of polynomials, J. Approx. Theory, 66 (1) (1991), 29-35.
 
Show More References
6]  P. D. Lax, Proof of a conjecture of P. Erdos on the derivative of a polynomial, Amer. Math. Soc., Bulletin, 50 (1944), 509-513.
 
7]  M. A. Malik, On the derivative of a polynomial, J. London Math. Soc., 2 (1) (1969), 57-60.
 
8]  M. S. Pukhta Extremal Problems for Polynomials and on Location of Zeros of Polynomials, Ph. D Thesis, Jamia Millia Islamia, New Delhi (1995).
 
9]  M. A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115(1992), 337-343.
 
10]  P. Turán, Uber die Ableitung von Polynomen, Compositio Mathematica, 7 (1939), 89-95 (German).
 
Show Less References