You are here:

World Journal Control Science and Engineering

ISSN (Print): ISSN Pending

ISSN (Online): ISSN Pending

Website: http://www.sciepub.com/journal/WJCSE

Current Issue» Volume 3, Number 1 (2015)

Article

Technique for Continuation Power Flow Using the “Flat Start” and for Ill-Conditioned Systems

1Department of Biosystems Engineering, UNESP- São Paulo State University, Tupã, Brazil

2Votuporanga University Center - UNIFEV, Votuporanga, SP, Brazil

3Department of Electrical Engineering, UNESP- São Paulo State University, Ilha Solteira, Brazil


World Journal Control Science and Engineering. 2015, 3(1), 1-7
DOI: 10.12691/wjcse-3-1-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Bonini Neto A., Matarucco R. R., Alves D. A.. Technique for Continuation Power Flow Using the “Flat Start” and for Ill-Conditioned Systems. World Journal Control Science and Engineering. 2015; 3(1):1-7. doi: 10.12691/wjcse-3-1-1.

Correspondence to: Bonini  Neto A., Department of Biosystems Engineering, UNESP- São Paulo State University, Tupã, Brazil. Email: bonini@tupa.unesp.br

Abstract

This paper presents a geometric parameterization technique for the continuation power flow that allows the complete tracing of P-V curves and the calculation of the maximum loading point of power systems, without singularity problems of Jacobian matrix (J). The technique will be started from the “flat start”, i.e., the voltage magnitude of all the buses PQ are placed in 1.0 p.u. and the angle bus voltage of all the buses are placed at 0º (zero degree). To eliminate the singularity has been added to the equation of a line passing through a point in the plane determined by the variable load factor and the sum of all the bus voltage magnitudes. The results obtained with the technique to ill-conditioned systems (11 buses), IEEE test systems (300 buses) and the 638-bus system corresponding to part of South-Southeast Brazilian system, improve the characteristics of the conventional method and extend the convergence region around the singularity.

Keywords

References

[[[[[[[[[[[[[[[[
[1]  National System Operator (NSO). Plano Anual da Operação Energética – PEN 2011: relatório executivo. Rio de Janeiro, 2012. Disponível em: <www.ons.com.br>. Acesso em: 13 jun. 2014.
 
[2]  Taylor, C. W. Power system voltage stability. New York: McGraw-Hill, 1994.
 
[3]  Matarucco R. R., Bonini Neto A., Alves D. A. Assessment of branch outage contingencies using the continuation method. International Journal of Electrical Power & Energy Systems, v. 55, p. 74-81, 2014.
 
[4]  Bonini Neto A., Alves D. A.. Improved Geometric Parameterization Techniques for Continuation Power Flow. IET Generation, Transmission & Distribution, v. 4, p. 1349-1359, 2010.
 
[5]  Braz L. M. C., Castro C. A., Murari C. A. F. A critical evaluation of step size optimization based load flow methods. IEEE Transactions on Power Systems, 15(1): 202-207, 2000.
 
Show More References
6]  Iwamoto S., Tamura Y.. A load flow calculation method for ill-conditioned power systems. IEEE Transactions on Power Apparatus and Systems, PAS-100 (4): 1736-1743, 1981.
 
7]  Meireles E. D. Uma contribuição ao estudo do problema de mal condicionamento de redes elétricas de potência sob o ponto de vista de estabilidade de tensão. Dissertação de Mestrado, FEEC/UNICAMP, Maio., 2005.
 
8]  Wang Y., da Silva L.C.P., Xu W., Zhang Y. Analysis of ill-conditioned power flow problems using voltage stability methodology. IEE Proceedings on Generation, Transmission and Distribution, 148(5): 384-390, 2001
 
9]  Golub, G.H. and Van Loan, C.F.: Matrix Computations (Johns Hopkins University Press, 1983), 1st edn.
 
10]  WSCC, Final Report, Voltage Stability Criteria, Undervoltage Load Shedding Strategy, and Reactive Power Reserve Monitoring Methodology, Reactive Power Reserve Work Group (RRWG), 1998, 154p.
 
11]  Chiang, H. D.; Li, H.; Yoshida, H.; Fukuyama, Y., Nakanishi, Y. The generation of ZIP-V Curves for Tracing Power System Steady State Stationary Behavior Due to Load and Generation Variations. IEEE PES Summer Meeting, Edmonton, Alberta, Canada, 1999, p. 647-651.
 
12]  R. Seydel, “From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis”, 2ª ed., New York: Springer-Verlag, 1994, p. 407.
 
13]  Bonini Neto A., and Alves D. A. “Studies of Contingencies in Power Systems through a Geometric Parameterization Technique, Part I: Mathematical Modeling.” World Journal Control Science and Engineering 2.1 (2014): 18-24.
 
14]  Bonini Neto A., and Alves D. A. “Studies of Contingencies in Power Systems through a Geometric Parameterization Technique, Part II: Performance Evaluation.” World Journal Control Science and Engineering 2.1 (2014): 25-34.
 
15]  Ajjarapu V. and Christy C., “The continuation power flow: A tool for steady state voltage stability analysis,” IEEE Trans. on Power Systems, vol. 7, pp. 416-423, Feb. 1992.
 
16]  Iba, K.; Suzuki, H.; Egawa, M.; Watanabe, T. Calculation of Critical Loading Condition with Nose Curve Using Homotopy Continuation Method. IEEE Trans. on Power Systems, v.6, n.2, 1991, p. 585-593.
 
17]  Chiang H. D., Flueck A. J., Shah K. S., and Balu N., “CPFLOW: A practical tool for tracing power systems steady-state stationary behavior due to load and generation variations,” IEEE Trans. Power Systems, vol. 10, pp. 623-633, May 1995.
 
18]  Garbelini E., Alves D. A., Bonini Neto A., Righeto E., Silva L. C. P., Castro C. A. An Efficient Geometric Parameterization Technique for the Continuation Power Flow. Electric Power Systems Research, v. 77, p. 71-82, EUA, 2007.
 
19]  Alves D. A., da Silva L. C. P., Castro C. A., and da Costa V. F. “Continuation load flow method parameterized by power losses,” in Proceedings of the IEEE Power Engineering Society Winter Meeting (PES ’00), pp. 1123-1128, Singapore, January, 2000.
 
20]  Zhao J. and Zhang B. “Reasons and countermeasures for computation failures of continuation power flow,” in Proceedings of the IEEE Power Engineering Society General Meeting (PES ’06), June 2006.
 
21]  Tripathy S. C., Prasad G. D., Malik O. P. and Hope G. S.: Load-Flow solutions for ill-conditioned power systems by a Newton-like method, IEEE Trans. Power Appar. Syst., 1982, 101, (10), pp. 3648-3657.
 
Show Less References