Welcome to World Journal of Agricultural Research

World Journal of Agricultural Research is a peer-reviewed, open access journal that provides rapid publication of articles in all areas of agriculture. The goal of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of agriculture.

ISSN (Print): 2333-0643

ISSN (Online): 2333-0678

Editor-in-Chief: Apply for this position

Website: http://www.sciepub.com/journal/WJAR



Decline in Milkweed (Asclepias syriaca) Populations in Central New Jersey over a One Year Period

1The Lawrenceville School, Lawrenceville, New Jersey, USA

2Science Department, Montgomery Township Schools, Skillman, New Jersey, USA

World Journal of Agricultural Research. 2015, 3(4), 119-122
doi: 10.12691/wjar-3-4-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Nikhil Gopal, Jamie Witsen. Decline in Milkweed (Asclepias syriaca) Populations in Central New Jersey over a One Year Period. World Journal of Agricultural Research. 2015; 3(4):119-122. doi: 10.12691/wjar-3-4-1.

Correspondence to: Nikhil  Gopal, The Lawrenceville School, Lawrenceville, New Jersey, USA. Email: nikhil2@gmail.com


Milkweed (Asclepias syriaca) is the primary food source of the eastern North American Monarch butterfly (Danaus plexippus), and numbers have been steadily declining. Between 2012 to 2013 we conducted a survey measure to milkweed numbers in Montgomery Township New Jersey. The purpose of this survey was to examine and measure the change in milkweed numbers after a 1 year period. In October 2012, publicly accessible areas of Montgomery Township were surveyed. This same survey was repeated in 2013, and the change in mean number of milkweed plants per plot recorded. Global positioning satellite data were collected using GPS tracker 1.0 for iPhone. All plots from publicly accessible areas were measured except one plot that was intentionally cultivated. Apart from the single intentionally cultivated plot, only 2 plots remained from the original 30 in the 2012 survey (6%). From the original 302 stalks, only 87 remained one year later (a decrease of 71.9 %). A total of 3 new plots were found, indicating new growth. There was a notable decrease in the mean number of milkweed stalks per plot from 2012 (10.4 ± 2.3) to 2013 (4.3 ± 2.4). This decrease was statistically significant at the 5% level (P = 0.03958). Over a one year period, a statistically significant decline in milkweed plants was observed in central New Jersey. More should be done to conserve milkweed populations.



[1]  Brower, L.P., Taylor, O.R., Williams, E.H., Slayback, D.A., Zubieta, R.R., and Ramirez, M.I., “Decline of monarch butterflies overwintering in mexico: Is the migratory phenomenon at risk?,” Insect Conservation and Diversity, 5 (2): 95-100, 2012.
[2]  Flockhart, D., Pichancourt, J.B., Norris, D.R., and Martin, T.G., “Unravelling the annual cycle in a migratory animal: Breeding‐season habitat loss drives population declines of monarch butterflies,” Journal of Animal Ecology, 84 (1): 155-165, 2015.
[3]  Hartzler, R.G., and Buhler, D.D., “Occurrence of common milkweed (Asclepias syriaca) in cropland and adjacent areas,” Crop Protection, 19 (5): 363-366, 2000.
[4]  Pleasants, J.M., and Oberhauser, K.S., “Milkweed loss in agricultural fields because of herbicide use: Effect on the monarch butterfly population,” Insect Conservation and Diversity, 6 (2): 135-144, 2013.
[5]  Hartzler, R.G., “Reduction in common milkweed (asclepias syriaca) occurrence in iowa cropland from 1999 to 2009,” Crop Protection, 29 (12): 1542-1544, 2010.
Show More References
[6]  Howard, E., and Davis, A.K., “The fall migration flyways of monarch butterflies in eastern north america revealed by citizen scientists,” Journal of Insect Conservation, 13 (3): 279-286, 2009.
[7]  Gopal, N.S., and Witsen, J., "Data from: Field survey results 2012 to 2013 - milkweed populations," Dryad Data Repository.
[8]  Persson, T.S., “Management of roadside verges: Vegetation changes and species diversity,” Sveriges lantbruksuniversitet, institutionen foer ekologi och miljoevaard (82), 1995.
[9]  Flockhart, D.T., Wassenaar, L.I., Martin, T.G., Hobson, K.A., Wunder, M.B., and Norris, D.R., “Tracking multi-generational colonization of the breeding grounds by monarch butterflies in eastern north america,” Proceedings of the Royal Society B: Biological Sciences, 280 (1768): 20131087, 2013.
[10]  Davis, A.K., “Are migratory monarchs really declining in eastern north america? Examining evidence from two fall census programs,” Insect Conservation and Diversity, 5 (2): 101-105, 2012.
[11]  Brower, L.P., Taylor, O.R., and Williams, E.H., “Response to davis: Choosing relevant evidence to assess monarch population trends,” Insect Conservation and Diversity, 5 (4): 327-329, 2012.
Show Less References


Use of Vermicompost as Supplement to Pine Bark for Seedling Production in Nurseries

1Department of Crop Production, Faculty of Agriculture and Natural Resources, Africa University, Box 1320, Old Mutare, Zimbabwe

World Journal of Agricultural Research. 2015, 3(4), 123-128
doi: 10.12691/wjar-3-4-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Murimba Ngaatendwe, Muzorewa Ernest, Mutetwa Moses, Mtaita Tuarira, Musimbo Ngenzile, Zimba Linah Tanyaradzwa. Use of Vermicompost as Supplement to Pine Bark for Seedling Production in Nurseries. World Journal of Agricultural Research. 2015; 3(4):123-128. doi: 10.12691/wjar-3-4-2.

Correspondence to: Muzorewa  Ernest, Department of Crop Production, Faculty of Agriculture and Natural Resources, Africa University, Box 1320, Old Mutare, Zimbabwe. Email: mosleymute@gmail.com


Vermicompost, used as soil additives or as components of greenhouse bedding plant container media, have been found to improve seed germination, enhanced seedling growth and development, and increased overall plant productivity. As a result, small scale farmers can improve their capacity to produce vegetable seedlings using vermicompost amended potting mixes as it is more available to them than pine bark. The present experiment was undertaken to evaluate the possible effects of different substitutions of vermicompost potting mixes for seedling nursery production as an alternative and supplement to pine bark. The experiment was laid out in a Randomized Complete Block Design (RCBD) with three replications. Cabbage (Brassica oleracea var. capitata) seeds were planted in six treatment groups including vermicompost of 20%, vermicompost of 50%, vermicompost of 75% and vermicompost of 100%. Pine bark, sand and vlei soils were incorporated into the experiment making up the different supplements. Results revealed that the tallest plants were recorded from pine bark amended mixtures with vermicompost substitution of 20% and 50%. Fresh weight of roots of plants from 100% vermicompost media revealed nonsignificant (P>0.05) difference when compared to treatment with 100% pine bark. However, the same treatment of 100% pine bark gave a significantly (P<0.05) lower fresh weight of leaves in comparison to 100% vermicompost. Seedlings from 100% vermicompost treatment had the highest stem thickness. There were no significant differences for the planting media treatments applied with respect to dry weight of both the leaves and roots. A ratio of 1:1 vermicompost and pine bark gave the best results. These finding indicate that vermicompost at suitable levels may promote plant growth and development probably via the modified nutrition. Instead of using vermicompost alone, its use in mixtures with pine bark, or vlei or sand may give the same effect.



[1]  Aalok, A., A.K. Tripathi, and P. Soni. 2008. Vermicomposting: A Better Option for Organic Solid Waste Management. J. Hum. Ecol. 24, 59-64.
[2]  Alvarez, R., and S. Grigera. 2005. Analysis of soil fertility and management effects on yields of wheat and corn in the rolling Pampa of Argentina. J Agron Crop Sci. 191: 321-329.
[3]  Ansari, A.A., and K. Sukhraj. 2010. Effect of vermiwash and vermicompost on soil parameters and productivity of okra (Abelmoschus esculentus) in Guyana. Afr J Agric Res. 5(14): 1794-1798.
[4]  Anwar, M., D.D. Patra, S. Chand, K. Alpesh, A.A. Naqvi, and S.P.S Khanuja. 2005. Effect of organic manures and inorganic fertilizer on growth, herb and oil yield, nutrient accumulation, and basil. Commun. Soil Sci Plan. 36: 1737-1746.
[5]  Arancon, N.Q., C.A. Edwards, R. Atiyeh, and J.D. Metzger. 2004. Effects of vermicomposts produced from wood waste on the growth and yields of greenhouse peppers. Bioresource Technology. 93(2): 139-44.
Show More References
[6]  Atiyeh, R.M., M. Edwards, S. Subler, and J.D. Metzger. 2001. Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth. Bioresource Technology 78, 11-20.
[7]  Atiyeh, R.M., S. Lee, C.A. Edwards, N.Q. Arancon, and J.D. Metzger. 2002. The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technol. 84:7-14.
[8]  Atiyeh, R.M., S. Subler, C.A. Edwards, and J. Metzger. 1999. Growth of tomato plants in horticultural potting media amended with vermicompost. Pedobiologia 43: 724-728.
[9]  Atiyeh, R.M., S. Subler, C.A. Edwards, and J.D. Metzger. 2000. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresource Technol 75, 175-180.
[10]  Campitelli, P., and S. Ceppi. 2008. Chemical, physical and biological compost and vermicompost characterization: A chemometric study. Chemometrics and Intelligent Laboratory Systems, 90, 64-71.
[11]  Contreras-Ramos, S.M., E.M. Escamilla-Silva, and L. Dendooven. 2004. Vermicomposting of biosolids with cow manure and oat straw. Biol. Fertil. Soil. 41: 190-198.
[12]  Dominguez, J., C.A. Edwards, and S. Subler. 1997. A comparison of vermicomposting and composting. BioCycle 38: 57-59.
[13]  Garcia-Gil, J.C., C. Plaza, P. Soler-Rovira, and A. Polo. 2000. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biology and Biochemistry 32 (13), 1907-1913.
[14]  Goswami, B., M.C. Kalita, and S. Talukdar. 2001. Bioconversion of municipal solid waste through vermicomposting. Asian J. Microbiol. Biotechnol. Environ. Sci.3:205-207.
[15]  Gutiérrez-Miceli, F.A., R.C. García-Romero, R. Rincón-Rosales, M. Abud-Archila, M.A. Oliva-Llaven, M.J. Guillen-Cruz, and L. Dendooven. 2008. Formulation of a liquid fertilizer for sorghum (Sorghum bicolor (L.) Moench) using vermicompost leachate. Bioresource Technology.
[16]  Hopkins, W.G., and N.P.A. Huner. 2004. Introduction to Plant Physiology, John Wily and Sons, Inc., New Jersey, 2004 (560).
[17]  Ievinsh G. 2011. Vermicompost treatment differentially affects seed germination, seedling growth and physiological status of vegetable crop species. Plant Growth Regul. 65(1): 169-181.
[18]  Khan, A., and F. Ishaq. 2011. Chemical Nutrient Analysis of different Composts (Vermicompost and Pit Compost) and their Effect on Growth of a Vegetative Crop (Pisum sativum). Asian Journal of Plant Science Research, 1 (1), 116-130.
[19]  Knapp, Brigitte A., M. Ros, and H. Insam. 2010. Do Composts Affect the Soil Microbial Community? In: H. Insam, I. Franke-Whittle and M. Goberna, (Eds.), Microbes at Work: From Wastes to Resources. (pp 93-114). Springer, Berlin Heidelberg.
[20]  Ladan Moghadam, A.R., Z. Oraghi Ardebili, and F. Saidi. 2012. Vermicompost induced changes in growth and development of Lilium Asiatic hybrid var.Navona. Afr J Agric Res. 7(17): 2609-2621.
[21]  Lazcano, C. and J. Domínguez, J. 2010. Effects of Vermicompost as a Potting Amendment of two Comercially Grown Ornamental Plant Species. Spanish Journal of Agricultural Research, 8 (4), 1260-1270.
[22]  McGinnis, M.S. 2007. Sustainable use of vermicomposted hog waste: The use of worm castings as nursery growing substrates amendment to increase water and nutrient efficiency in containerized nursery plant production. North Carolina State Univ., Raleigh, PhD Diss.
[23]  Mugwendere, T., T. Mtaita, M. Mutetwa, and J. Tabarira. 2015. Use of vermicompost assoil supplement on growth and yield of Rape (Brassica napus). J. Glob. Innov. Agric. Soc. Sci., 2015, 3(1): xxx. ISSN (Online): 2311-3839; ISSN (Print): 2312-5225.
[24]  Ndegwa, P.M., and S.A. Thompson. 2001. Integrating composting and vermicomposting in the treatment and bioconversion of biosolids. Bioresource Technology 76:107-112.
[25]  Ndegwa, P.M., S.A. Thompson, and K.C. Das. 2000. Effects of stocking density and feeding rate on vermicomposting of biosolids. Bioresource Technology 71:5-12.
[26]  Paszt, L.S., B. Sumorok, E. Malusa, S. Gluszek, and E. Derkowska. 2011. The influence of bioproducts on root growth and mycorrhizal ccurrence in the rhizosphere of strawberry plants ‘elsanta.’ J. Fruit Ornam. Plant Res. vol. 19(1) 2011:13-34.
[27]  Pour, A.A., A.R. Ladan Moghadam, and Z. Oraghi Ardebili. 2013. The effects of different levels of vermicompost on the growth and physiology of cabbage seedlings. International Research Journal of Applied and Basic Sciences. ISSN 2251-838X / Vol, 4 (9): 2726-2729.
[28]  Roberts, P., D.L. Jones, and G. Edwards-Jones. 2007. Yield and vitamin C content of tomatoes grown in vermicomposted wastes. Journal of the Science of Food and Agriculture 87:1957-1963.
[29]  Rodda, M.R.C., L.P. Canellas, A.R. Façanha, D.B. Zandonadi, J.G.M. Guerra, D.L. De Almeida, and G.A. De Santos. 2006. Improving lettuce seedling root growth and ATP hydrolysis with humates from Vermicompost. II- Effect of Vermicompost source. Revista Brasileira de Ciencia do Solo, 30, 657-664.
[30]  Ros, M., J.A. Pascual, C. García, M.T. Hernández, and H. Insam. 2006. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biology and Biochemistry, 38, 3443-3452.
[31]  Reddy, M.V. and K. Ohkura. 2004. Vermicomposting of rice-straw and its effects on sorghum growth. Tropical Ecology 45, (2), 327-331.
[32]  Sahni, S, B.K. Sarma, D.P. Singh, H.B. Singh, and K.P. Singh. 2008. Vermicompost enhances performance of plant growth-promoting rhizobacteria in Cicer arietinum rhizosphere against Sclerotium rolfsii and quality of strawberry (Fragaria x ananassaDuch.). Crop Prot. 27: 369-376.
[33]  Sharma, S., K. Pradhan, S. Satya, and P. Vasudevan. 2005. Potentiality of Earthworms for Waste Management and in Other Uses – A Review. J. Am. Sci. 1, 1-16.
[34]  Srivastava, P.K., M. Gupta, R. Kumar Upadhyay, S. Sharma, S. Shikha, N. Singh, S. Tewari, and B. Singh. 2012. Effects of combined application of vermicompost and mineral fertilizer on the growth of Allium cepa L. and soil fertility. J Plant Nutr Soil Sci. 175: 101-107.
[35]  Tognetti, C., F. Laos, M.J. Mazzarino, and M.T. Hernández. 2005. Composting vs. vermicomposting: A comparison of end product quality. Compost Science and Utilization, 13, 6-13.
[36]  Warman, P.R., and M.J. AngLopez. 2010. Vermicompost derived from different feedstocks as a plant growth medium. Bioresource Technology, 101, 4479-4483.
[37]  Zimbabwe, Ministry of Agriculture Mechanisation and Irrigation development. 2011. Farm Management Handbook, Ministry of Agriculture Mechanisation and Irrigation development, Harare 485pp.
Show Less References


Effect of Biochar from Different Origin onPhysio-Chemical Properties of Soil and Yield of Garden Pea (Pisum sativum L.) at Paklihawa, Rupandehi, Nepal

1Paklihawa Campus, Institute of agriculture and animal Sciences, Tribhuvan University, Rupandehi District, Lumbini Zone, Nepal

World Journal of Agricultural Research. 2015, 3(4), 129-138
doi: 10.12691/wjar-3-4-3
Copyright © 2015 Science and Education Publishing

Cite this paper:
Bishwoyog Bhattarai, Jasmine Neupane, Surya Prasad Dhakal, Jaya Nepal, Barsha Gnyawali, Ramsharan Timalsina, Ashmita Poudel. Effect of Biochar from Different Origin onPhysio-Chemical Properties of Soil and Yield of Garden Pea (Pisum sativum L.) at Paklihawa, Rupandehi, Nepal. World Journal of Agricultural Research. 2015; 3(4):129-138. doi: 10.12691/wjar-3-4-3.

Correspondence to: Bishwoyog  Bhattarai, Paklihawa Campus, Institute of agriculture and animal Sciences, Tribhuvan University, Rupandehi District, Lumbini Zone, Nepal. Email: bishwoyog12@gmail.com


A field experiment was conducted at the Horticulture farm of Paklihawa Campus, Institute of Agriculture and Animal Science, Rupandehi district to observe the effect of biochar from different origin on physio-chemical properties of soil and yield of garden pea (Pisum sativum L.) and evaluate them. The experiment was laid out in a Randomized Complete Block Design with four replications. A set up constituted of various treatments viz. rice husk biochar, poultry manure biochar, sheep manure biochar, farm yard manure biochar and wood biochar along with the control group. Results showed that number of pod/plant, number of seed/pod and biomass (ton/ha) were significantly affected by application of biochar of different origin. Application of rice husk biochar had higher effect on number of pod/plant, no of seed/pod, biomass (ton/ha) and green pod yield (ton/ha). Biochar of Poultry manure and of sheep manure had almost similar effect on soil nitrogen as of other types of biochar, while higher effect on soil phosphorus and potassium as compared to other biochar. Biochar of sheep manure had higher organic matter content and carbon percentage in soil than all other application of biochar. Application of all types of biochar showed highly significant results on bulk density and particle density. It was found that biochar of rice husk had greater particle density 2.61 g/cc and all the application had decreased bulk density except that of biochar prepared from wood. Thus, the soil where biochar was applied was found to be of better quality than that of the controlled one where no biochar was used. These results suggest that biochar could be one of the best options in poor quality soil and where burning practices are mostly adopted for cleaning the field.



[1]  Anderson, P. (2007). A review of micronutrient problem in cultivated soil of Nepal. Mountaion Research and Development, 27(4), 331-335.
[2]  Blackwell, P., Collins, M., & Reithmuller, G. (2009). Biochar application to soil. In J. Lehmann, & S. Josepsh, Biochar for environmental management: Scuence and Technology (pp. 207-226). London: Earthscan.
[3]  Brady, N. C., & Weil, R. C. (2013). The nature and properties of soils (14th revised ed.). Noida, India: Dorling Kindersley Pvt. Ltd.
[4]  Burges, J. (2009). The Biochar Debate: Charcoal’s potential to reverse climate change and build soil fertility. Vermont: Chelsea Green Publishing.
[5]  Carter, S., Shackley, S., Sohi, S., Suy, T. B., & Haefele, S. (2013). The Impact of Biochar Application on Soil Properties and Plant Growth of Pot Grown Lettuce (Lactuca sativa) and Cabbage (Brassica chinensis). Agronomy, 3, 404-418.
Show More References
[6]  CBS. (2011). Population census-2011. Kathmandu, Nepal: National Planning Commission Secretariats.
[7]  Chan, K. Y., Zwieten, L. V., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochar as soil amendments. Australian Journal of Soil Research, 46, 437-444.
[8]  Cheng, C. H., Lehmann, J., Thies, J. E., & Burton, S. D. (2008). Stability of black carbon in soils across a climatic gradient. Journal of Geophysical Research, 113, 20-27.
[9]  Cheng, C. H., Lehmann, J., Thies, J. E., Burton, S. D., & Engelhard, M. H. (2008). Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 37(11), 1477-1488.
[10]  Demirbas, A. (2002). An overview of biomass pyrolysis. Energy Source, 25, 471-482.
[11]  Demirbas, A. (2004). Determination of calorific values of bio-chars and pyrolysis of beech trunkbarks. Journal of Analytical & Applied Pyrolysis, 72, 215-219.
[12]  Dias, K. C. (2010). Steam Pyrolysis and Catalytic Steam Reforming of Biomass for Hydrogen and Biochar Production. Applied Engineering in Agriculture, 26, 137-146.
[13]  Franklin, R. E. (1951). Crystallite growth in graphitizing and non- graphitizing Carbons. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 209, 196-218.
[14]  Gaunt, J., & Lehmann, L. (2008). Energy Balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environment Science and Technology, 42, 4152-4158.
[15]  Glaser, B., Haumaier, L., Guggenberger, G., & Zech, W. (2001). The Terra Preta Phenomenon: A model for Sustainable agriculture in the humid tropics. Naturwissenschaften, 88, 37-41.
[16]  Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-A review. Biol. Fertil. Soils, 35, 219-230.
[17]  Karaosmanoglu, F., Isigigur-Ergundenler, A., & Sever, A. (2000). Biochar from the straw-stalk of rapeseed plant. Energy and Fuels, 14, 336-339.
[18]  Lehmann, J. (2007a). Bioenergy in the black. Frontiers in Ecology and the environment, 5, 381-387.
[19]  Lehmann, J. (2007b). A Handful of Carbon. Nature, 447, 143-154.
[20]  Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: Science and Technology. London: Earthscan.
[21]  Lehmann, J., Gaunt, J., & Rondon, M. (2006). Biochar sequestration in terrestrial ecosystems- a review. Mitigation and Adaption Strategies for global change, 11, 403-427.
[22]  Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Neill, B. O., & Grossman, J. (2006). Black Carbon increases Cation Exchange capacity in Soils. Soil Science Society of America Journal, 70, 1719-1730.
[23]  LRMP. (1986). Land capability report and maps. Kathmandu: Land Resources Mapping Project/ HMG and Ottawa, Canada: Kenting Earth Science.
[24]  Major, J. (2013). Practical aspects of biochar application to tree crops. IBI Technical Bulletin.
[25]  Masulili, A., Utomo, W. H., & Syechfani, M. (2010). Rice Husk Biochar for Rice Based Cropping System in Acid Soil: The Characteristics of Rice Husk Biochar and Its Influence on the Properties of Acid Sulfate Soils and Rice Growth in West Kalimantan, Indonesia. Journal of Agricultural Science, 2(1), 39-47.
[26]  Mayhead, G. J. (2010). Pyrolysis of Biomass. Berkeley: University of California.
[27]  Mekuria, W., & Noble, A. (2013). The Role of Biochar in Ameliorating Disturbed Soils and Sequestering Soil Carbon in Tropical Agricultural Production Systems. Applied and Environmental Soil Science, 1-10.
[28]  Novak, J., Busscher, W., Laird, D., Ahmedna, M., Watts, D., & Niandou, M. (2009). Impact of biochar amendment on fertility of a Southeastern Coastal Plain Soil. Soil Science, 174, 105-112.
[29]  Ogawa, M. (Undated). Introduction to the pioneer works of charcoal uses in agriculture, forestry and others in Japan. Unpublished manuscript.
[30]  Roberts, K. G. (2010). Life cycle Assesment of Biochar Systems: Estimatibg the Energetic, Economic and Climate Change Potential. Environment Science and Technology, 827-833.
[31]  Schahczenski, J. (2010). Biochar and Sustainable Agriculture. National Sustainable Agriculture Information Service . United States: A Publication of ATTRA.
[32]  Schmidt, M. I., & Noack, A. G. (2000). Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles, 14, 777-794.
[33]  Schulz, H., Dunst, G., & Glaser, B. (2014). No Effect Level of Co-Composted Biochar on Plant Growth and Soil Properties in a Greenhouse Experiment. Agronomy, 4, 34-51.
[34]  Skjemstad, J. O., Clarke, P., Taylor, J. A., Oades, J. M., & McClure, S. G. (1996). The chemistry and nature of protected carbon in soil. Australian Journal of Soil Research, 34, 251-271.
[35]  Sohi, S., Lopez-capel, E., Krull, E., & Bol, R. (2009). Biochar, Climate Change and Soil: A review to guide future research. CSIRO Land Water Science Report.
[36]  Spokas, K. A., Koskinen, W. C., Baker, J. M., & Reicosky, D. C. (2009). Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere, 77, 574-581.
[37]  Srinivassarao, C., Singh, A. K., Sumanata, K., Vittal, G., Babu, V. S., Chary, R. G., & Reddy, T. (2012). Soil Carbon sequestration and agronomic productivity of an Alfasol for a groundnut-based system in a semiarid environment in Southern India. European Journal of Agronomy, 43, 40-48.
[38]  Tilman, D. (2009). The greening of the green revolution. Nature, 396, 211-212.
[39]  Tryon, E. H. (1948). Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecological Monographs, 18, 81-115.
[40]  Verheijen, F., Jeffery, S., Bastos, A., Velde, M. V., & Diafas, I. (2010). Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. Italy: Institute for Environment and Sustainability, Joint Research Centre, European Commission.
[41]  Warnock, D. D., Lehmann, J., Kuyper, T., & Rillig, M. (2007). Mycorhizal responses to biochar in soil- Concepts and mechanisms. Plant and Soil, 3, 9-20.
[42]  Woolf, D. (2008). Biochar as soil amendment: A review of the environmental implications. Nature, 1-10.
[43]  Yamato, M., Okimori., Y., Wibowo, I. F., Anshori, S., & Ogawa, M. (2006). Effect of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science and Plant Nutrition, 52, 489-495.
Show Less References