**Turkish Journal of Analysis and Number Theory:**Latest Articles More >>

## Article

# Generalizations of Hermite-Hadamard-Fejer Type Inequalities for Functions Whose Derivatives are s-Convex Via Fractional Integrals

^{1}Department of Mathematics, Faculty of Arts and Sciences, Ordu University, Ordu, Turkey

^{2}Department of Mathematics, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey

*Turkish Journal of Analysis and Number Theory*.

**2014**, 2(5), 183-188

**DOI:**10.12691/tjant-2-5-5

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

ERHAN SET, IMDAT ISCAN, ILKER MUMCU. Generalizations of Hermite-Hadamard-Fejer Type Inequalities for Functions Whose Derivatives are s-Convex Via Fractional Integrals.

*Turkish Journal of Analysis and Number Theory*. 2014; 2(5):183-188. doi: 10.12691/tjant-2-5-5.

Correspondence to: ERHAN SET, Department of Mathematics, Faculty of Arts and Sciences, Ordu University, Ordu, Turkey. Email: erhanset@yahoo.com

## Abstract

## Keywords

## References

[1] | G. Anastassiou, M.R. Hooshmandasl, A. Ghasemi and F. Moftakharzadeh, Montogomery identities for fractional integrals and related fractional inequalities, J. Ineq. Pure and Appl. Math., 10 (4) (2009), Art. 97. | ||

[2] | S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, J. Ineq. Pure and Appl. Math., 10 (3) (2009), Art. 86. | ||

[3] | Z. Dahmani, New inequalities in fractional integrals, International Journal of Nonlinear Scinece, 9 (4) (2010), 493-497. | ||

[4] | Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1 (1) (2010), 51-58. | ||

[5] | Z. Dahmani, L. Tabharit, S. Taf, Some fractional integral inequalities, Nonl. Sci. Lett. A, 1 (2) (2010), 155-160. | ||

[6] | Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Gruss inequality usin Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (3) (2010), 93-99. | ||

[7] | R. Goren.o, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien (1997), 223-276. | ||

[8] | I. Işcan, Generalization of different type integral inequalitiesfor s -convex functions via fractional integrals, Applicable Analysis: An Int. J., 93 (9) (2014), 1846.1862. | ||

[9] | I. Işcan, New general integral inequalities for quasi-geometrically convex functions via fractional integrals, J. Inequal. Appl., 2013 (491) (2013), 15 pages. | ||

[10] | I. I¸scan, On generalization of different type integral inequalities for s -convex functions via fractional integrals, Mathematical Sciences and Applications E-Notes, 2 (1) (2014), 55-67. | ||

[11] | S. Miller and B. Ross, An introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, USA, 1993, p. 2. | ||

[12] | I. Podlubni, Fractional Differential Equations, Academic Press, San Diego, 1999. | ||

[13] | M.Z. Sarkaya, E. Set, H. Yaldz and N. Başak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, 57 (9) (2013), 2403-2407. | ||

[14] | M.Z. Sarikaya and H. Ogunmez, On new inequalities via Riemann-Liouville fractional integration, Abstract an Applied Analysis, 2012 (2012) 10 pages, Article ID 428983. | ||

[15] | E. Set, New inequalities of Ostrowski type for mapping whose derivatives are s -convex in the second sense via fractional integrals, Computers and Math. with Appl. 63 (2012), 1147-1154. | ||

[16] | M. Bombardelli and S. Varosanec, Properties of h-convex functions related to the Hermite Hadamard Fejer inequalities, Comp. Math. Appl., 58 (2009), 1869-1877. | ||

[17] | I. I¸scan, Hermite-Hadamrd-Fejer type inequalities for convex function via fractional integrals, 2014, arXiv: 1404. 7722v1. | ||

[18] | M.Z. Sarkaya, On new Hermite Hadamard Fejer type integral inequalities, Stud. Univ. Babe¸ s-Bolyai Math. 57 (3) (2012), 377-386. | ||

[19] | M.Z. Sarikaya and S. Erden, On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function, Turkish Journal of Analysis and Number Theory, 2014, Vol. 2, No. 3, 85-89. | ||

[20] | M.Z. Sarikaya and S. Erden, On the Weighted Integral Inequalities for Convex Functions, RGMIA Research Report Collection, 17 (2014), Article 70, 12 pp. | ||

[21] | E. Set, I. I¸scan, M.E. Özdemir and M.Z. Sarkaya, Hermite-Hadamard-Fejer type inequalities for s-Convex functions in the second sense via fractional integrals, submited. | ||

[22] | L. Fejér, Über die Fourierreihen, II, Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24 (1906), 369.390. (In Hungarian). | ||

[23] | H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994) 100.111. | ||

[24] | S.S. Dragomir, S. Fitzpatrick, The Hadamard.s inequality for s-convex functions in the second sense, Demonstratio Math. 32 (4) (1999) 687.696. | ||

## Article

# Fibonacci Polynomials and Determinant Identities

^{1}Department of Mathematics, Mandsaur Institute of Technology, Mandsaur (M. P.), India

^{2}Department of Mathematics, Shri Harak Chand Chordia College, Bhanpura (M. P.), India

*Turkish Journal of Analysis and Number Theory*.

**2014**, 2(5), 189-192

**DOI:**10.12691/tjant-2-5-6

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Omprakash Sikhwal, Yashwant Vyas. Fibonacci Polynomials and Determinant Identities.

*Turkish Journal of Analysis and Number Theory*. 2014; 2(5):189-192. doi: 10.12691/tjant-2-5-6.

Correspondence to: Omprakash Sikhwal, Department of Mathematics, Mandsaur Institute of Technology, Mandsaur (M. P.), India. Email: opbhsikhwal@rediffmail.com

## Abstract

## Keywords

## References

[1] | A. Lupas, “A Guide of Fibonacci and Lucas Polynomials,” Octagon Math. Mag., 7 (1), 2-12, 1999. | ||

[2] | A. Benjamin, N. Cameron and J. Quinn, “Fibonacci Determinants- A Combinatorial Approach,” Fibonacci Quarterly, 45 (1), 39-55, 2007. | ||

[3] | B. Singh, O. Sikhwal and S. Bhatnagar, “Fibonacci-Like Sequence,” International Journal of Advanced Mathematical Sciences, 1 (3), 145-151, 2013. | ||

[4] | B. Singh, O. Sikhwal and S. Bhatnagar, “Generalized Fibonacci Sequence and its Properties,” Open Journal of Mathematical Modeling, 1 (6), 194-202, 2013. | ||

[5] | B. Singh, O. Sikhwal and Y. K. Panwar, “Generalized Determinantal Identities Involving Lucas Polynomials,” Applied Mathematical Sciences, 3 (8), 377-388, 2009. | ||

[6] | Beverage David, “A Polynomial Representation of Fibonacci Numbers,” Fibonacci Quarterly, 9, 541-544, 1971. | ||

[7] | Krattenthaler, “Advanced determinant calculus,” Seminaire Lotharingien Combin, Article, b42q, 67, 1999. | ||

[8] | C. Krattenthaler, “Advanced determinant calculus: A Complement,” Liner Algebra Appl., 411, 68-166, 2005. | ||

[9] | E. Weisstein et al., “Fibonacci number from MathWorld- A Wolfram Web Resource,” http://mathworld.wolfram.com/FibonacciNumber.html | ||

[10] | J.M. Patel, “Problem H-635,” Fibonacci Quarterly, 44 (1), 91, 2006. | ||

[11] | M. Bicknell-Johnson and C. Spears, “Classes of Identities for the Generalized Fibonacci number G_{n}=G_{n-1}+G_{n-2} from Matrices with Constant valued Determinants,” Fibonacci Quarterly, 34, 121-128, 1996. | ||

[12] | N. Cahill and D. Narayan, “Fibonacci and Lucas numbers Tridigonal Matrix Determinants,” Fibonacci Quarterly, 42, 216-221, 2004. | ||

[13] | O. Sikhwal, Generalization of Fibonacci Sequence: An Intriguing Sequence, Lap Lambert Academic Publishing GmbH & Co. KG, Germany, 2012. | ||

[14] | S. Basir and V. Hoggatt, Jr., “A Primer on the Fibonacci Sequence Part II,” Fibonacci Quarterly, 1, 61-68, 1963. | ||

[15] | S. L. Basin, “The appearance of Fibonacci Numbers and the Q Matrix in Electrical Network Theory,” Mathematics Magazine, 36 (2), 84-97, 1963. | ||

[16] | T. Koshy, Fibonacci and Lucas Numbers With Applications, John Wiley and Sons, New York, 2001. | ||

[17] | V.N. Mishra, H.H. Khan, K. Khatri and L. N. Mishra, “Hypergeometric Representation for Baskakov-Durrmeyer-Stancu Type Operators,” Bulletin of Mathematical Analysis and Applications, 5 (3), 18-26, 2013. | ||

## Article

# Generalized Fibonacci-Lucas Sequence

^{1}School of Studies in Mathematics, Vikram University, Ujjain-456010 (M. P.), India

^{2}Department of Mathematics, Mandsaur Institute of Technology, Mandsaur (M. P.), India

^{3}School of Studies in Mathematics, Vikram University, Ujjain, (M. P.), India

*Turkish Journal of Analysis and Number Theory*.

**2014**, 2(6), 193-197

**DOI:**10.12691/tjant-2-6-1

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Bijendra Singh, Omprakash Sikhwal, Yogesh Kumar Gupta. Generalized Fibonacci-Lucas Sequence.

*Turkish Journal of Analysis and Number Theory*. 2014; 2(6):193-197. doi: 10.12691/tjant-2-6-1.

Correspondence to: Omprakash Sikhwal, Department of Mathematics, Mandsaur Institute of Technology, Mandsaur (M. P.), India. Email: opbhsikhwal@rediffmail.com

## Abstract

_{0}=0, F

_{1}=1, where F

_{n}is a n

^{th }number of sequence. The Lucas Sequence is defined by the recurrence formula and L

_{0}=2, L

_{1}=1, where L

_{n}is a n

^{th }number of sequence. In this paper, Generalized Fibonacci-Lucas sequence is introduced and defined by the recurrence relation with B

_{0}= 2b, B

_{1}= s, where b and s are integers. We present some standard identities and determinant identities of generalized Fibonacci-Lucas sequences by Binet’s formula and other simple methods.

## Keywords

## References

[1] | A. F. Horadam: A Generalized Fibonacci Sequence, American Mathematical Monthly, Vol. 68. (5), 1961, 455-459. | ||

[2] | A. F. Horadam: Basic Properties of a Certain Generalized Sequence of Numbers, The Fibonacci Quarterly, Vol. 3 (3), 1965, 161-176. | ||

[3] | A.T. Benjamin and D. Walton: Counting on Chebyshev polynomials, Math. Mag. 82, 2009, 117-126. | ||

[4] | B. Singh, O. Sikhwal and S. Bhatnagar: Fibonacci-Like Sequence and its Properties, Int. J. Contemp. Math. Sciences, Vol. 5 (18), 2010, 859-868. | ||

[5] | B. Singh, S. Bhatnagar and O. Sikhwal: Fibonacci-Like Polynomials and some Identities, International Journal of Advanced Mathematical Sciences, 1 (3), (2013) 152-157. | ||

[6] | B. Singh, S. Bhatnagar and O. Sikhwal: Fibonacci-Like Sequence, International Journal of Advanced Mathematical Sciences, 1 (3) (2013) 145-151. | ||

[7] | B. Singh, S. Bhatnagar and O. Sikhwal: Generalized Identties of Companion Fibonacci-Like Sequences, Global Journal of Mathematical Analysis, 1 (3), 2013, 104-109. | ||

[8] | D. V. Jaiswal: On a Generalized Fibonacci Sequence, Labdev J. Sci. Tech. Part A 7, 1969, 67-71. | ||

[9] | M. Edson and O. Yayenie: A New Generalization of Fibonacci sequence and Extended Binet’s Formula, Integers Vol. 9, 2009, 639-654. | ||

[10] | M. E. Waddill and L. Sacks: Another Generalized Fibonacci Sequence, The Fibonacci Quarterly, Vol. 5 (3), 1967, 209-222. | ||

[11] | S. Falcon and A. Plaza: On the Fibonacci K- Numbers, Chaos, Solutions & Fractals, Vol. 32 (5), 2007, 1615-1624, | ||

[12] | S. Vajda, Fibonacci & Lucas Numbers, and the Golden Section, Theory and Applications, Ellis Horwood Ltd., Chichester, 1989. | ||

[13] | T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience Publication, New York (2001). | ||

## Article

# Using the Matrix Summability Method to Approximate the Lip (ξ(t), p) Class Functions

^{1}Central Department of Education (Mathematics), Tribhuvan University, Nepal

*Turkish Journal of Analysis and Number Theory*.

**2014**, 2(6), 198-201

**DOI:**10.12691/tjant-2-6-2

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Binod Prasad Dhakal. Using the Matrix Summability Method to Approximate the Lip (ξ(t), p) Class Functions.

*Turkish Journal of Analysis and Number Theory*. 2014; 2(6):198-201. doi: 10.12691/tjant-2-6-2.

Correspondence to: Binod Prasad Dhakal, Central Department of Education (Mathematics), Tribhuvan University, Nepal. Email: binod_dhakal2004@yahoo.com

## Abstract

## Keywords

## References

[1] | A. Zygmund, Trigonometric series, Cambridge University Press, 1959. | ||

[2] | E. C. Titchmarsh, Theory of functions, Oxford University Press, 1939. | ||

[3] | M. L Mittal, B. E. Rhoades, V. N. Mishra and U. Shing, Using infinite matrices to functions of class Lip (α,p) using trigonometric polynomials, J. Math. Anal. Appl, 326(2007), 667-676. | ||

[4] | O.Töeplitz, Über allgemeine lineare Mittelbildungen, Prace mat. - fiz., 22(1913), 113-119. | ||

[5] | P. Chanrda, Trigonometric approximation of function in L_{p}-norm, J. Math. Anal. Appl, 275(2002), 13-676. | ||

[6] | S. Lal and B. P. Dhakal, On Approximation of functions belonging to Lipschitz class by triangular matrix method of Fourier series, Int. Journal of Math. Analysis, 4(21), 2010, 1041-1047. | ||

## Article

# Hermite-Hadamard Type Inequalities for *s*-Convex Stochastic Processes in the Second Sense

^{1}Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey

*Turkish Journal of Analysis and Number Theory*.

**2014**, 2(6), 202-207

**DOI:**10.12691/tjant-2-6-3

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

ERHAN SET, MUHARREM TOMAR, SELAHATTIN MADEN. Hermite-Hadamard Type Inequalities for

*s*-Convex Stochastic Processes in the Second Sense.

*Turkish Journal of Analysis and Number Theory*. 2014; 2(6):202-207. doi: 10.12691/tjant-2-6-3.

Correspondence to: MUHARREM TOMAR, Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey. Email: muharremtomar@odu.edu.tr

## Abstract

## Keywords

## References

[1] | K. Nikodem, on convex stochastic processes, Aequationes Mathematicae 20 (1980) 184-197. | ||

[2] | A. Skowronski, On some properties of J-convex stochastic processes, Aequationes Mathematicae 44 (1992) 249-258. | ||

[3] | A. Skowronski, On wright-convex stochastic processes, Annales Mathematicae Silesianne 9(1995) 29-32. | ||

[4] | D. Kotrys, Hermite-hadamart inequality for convex stochastic processes, Aequationes Mathematicae 83 (2012) 143-151. | ||

[5] | S.S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math., 32 (4) (1999), 687-696. | ||

[6] | H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Mathematicae, 48 (1994), 100-111. | ||

[7] | S. Maden, M. Tomar and E. Set, s-convex stochastic processes in the first sense, Pure and Applied Mathematics Letters, in press. | ||

[8] | D. Kotrys, Hermite-hadamart inequality for convex stochastic processes, Aequationes Mathematicae 83 (2012) 143-151. | ||

## Article

# Birth of Compound Numbers

^{1}Department of Computer Science, Jamia Hamdard University, Hamdard Nagar, New Delhi, INDIA

*Turkish Journal of Analysis and Number Theory*.

**2014**, 2(6), 208-219

**DOI:**10.12691/tjant-2-6-4

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Ranjit Biswas. Birth of Compound Numbers.

*Turkish Journal of Analysis and Number Theory*. 2014; 2(6):208-219. doi: 10.12691/tjant-2-6-4.

Correspondence to: Ranjit Biswas, Department of Computer Science, Jamia Hamdard University, Hamdard Nagar, New Delhi, INDIA. Email: ranjitbiswas@yahoo.com

## Abstract

## Keywords

## References

[1] | Alperin, J. L., with R. B. Bell, Groups and Representations, Graduate Texts in Mathematics, Vol. 162, Springer-Verlag, New York, 1995. | ||

[2] | Artin, Michael, Algebra, Prentice Hall, New York, 1991. | ||

[3] | Beachy, J. A., and W. D. Blair, Abstract Algebra, 2nd Ed., Waveland Press, Prospect Heights, Ill., 1996. | ||

[4] | Bourbaki, Nicolas, Elements of Mathematics: Algebra I, New York: , 1998. | ||

[5] | Dixon, G.M., Division Algebras: Octonions Quaternions Complex Numbers and the Algebraic Design of Physics, December 2010, Kluwer Academic Publishers, Dordrecht. | ||

[6] | Ellis, G., Rings and Fields, Oxford University Press, 1993. | ||

[7] | Hideyuki Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1986 | ||

[8] | Hungerford, T., Algebra, Graduate Texts in Mathematics, Vol. 73, Springer-Verlag, New York, 1974. | ||

[9] | I. N. Herstein, Topics in Algebra, Wiley Eastern Limited, New Delhi, 2001. | ||

[10] | Jacobson, N., Basic Algebra I, 2nd Ed., W. H. Freeman & Company Publishers, San Francisco, 1985. | ||

[11] | Jacobson, N., Basic Algebra II, 2nd Ed., W. H. Freeman & Company Publishers, San Francisco, 1989. | ||

[12] | Lam, T. Y., Exercises in Classical Ring Theory, Problem Books in Mathematics, Springer-Verlag, New York, 1995. | ||

[13] | Lang, Serge, Undergraduate Algebra (3rd ed.), Berlin, New York: , 2005. | ||

[14] | Nathan Jacobson, The Theory of Rings. American Mathematical Society Mathematical Surveys, Vol. I. American Mathematical Society, New York, 1943. | ||

[15] | Pierce, Richard S., Associative algebras. Graduate Texts in Mathematics, 88. Studies in the History of Modern Science, 9. Springer-Verlag, New York-Berlin, 1982. | ||

[16] | Ranjit Biswas, Region Algebra, Theory of Objects & Theory of Numbers, International Journal of Algebra, Vol. 6 (28) 2012 page 1371-1417. | ||

[17] | Ranjit Biswas, Calculus Space, International Journal of Algebra, Vol. 7, 2013, No.16, 791-801. | ||

[18] | Van der Waerden, B. L., Algebra, Springer-Verlag, New York, 1991. | ||

[19] | Van der Waerden, Bartel Leendert, Algebra, Berlin, New York: , 1993, ISBN 978-3-540-56799-8. | ||

[20] | Walter Rudin, Real and Complex Analysis, McGraw Hills Education, India, August’ 2006. | ||

## Article

# Note on a Partition Function Which Assumes All Integral Values

^{1}Department of Mathematics, Goa University, Taleigao Plateau, Goa, India

*Turkish Journal of Analysis and Number Theory*.

**2014**, 2(6), 220-222

**DOI:**10.12691/tjant-2-6-5

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Manvendra Tamba. Note on a Partition Function Which Assumes All Integral Values.

*Turkish Journal of Analysis and Number Theory*. 2014; 2(6):220-222. doi: 10.12691/tjant-2-6-5.

Correspondence to: Manvendra Tamba, Department of Mathematics, Goa University, Taleigao Plateau, Goa, India. Email: tamba@unigoa.ac.in

## Abstract

*G*(

*n*) denote the number of partitions of

*n*into distinct parts which are of the form 2

*m*, 3

*m*, 5

*m*, 6

*m*-3, 8

*m*-3, 9

*m*-3 or 11

*m*-3 with parts of the form 2

*m*, 3

*m*, 6

*m*-3, or 11

*m*-3 being even in number minus the number of them with parts of the form 2

*m*, 3

*m*, 6

*m*-3, or 11

*m*-3 being odd in number. In this paper, we prove that

*G*(

*n*) assumes all integral values and does so infinitely often.

## Keywords

## References

[1] | G.E. Andrews, The Theory of Partitions, (G.-C. Rota, Ed.), Encyclopedia of Math. And its Applications, Vol. 2, Addison-Wesley, Reading, MA, 1976. | ||

[2] | G.E. Andrews, Questions and conjectures in partition theory, Amer. Math. Monthly, 93 (1986) 708-711. | ||

[3] | G.E. Andrews, F.J. Dyson and D. Hickerson, Partitions and indefinitequadratic forms, Invent. math., 91 (1988) 391-407. | ||

[4] | J. Lovejoy, Lacunary Partition Functions, Math. Research Letters, 9 (2002) 191-198. | ||

[5] | M.Tamba, On a partition function which assumes all integral values, J.Number Theory 41 (1992) 77-86. | ||

## Article

# A Double Inequality for the Harmonic Number in Terms of the Hyperbolic Cosine

^{1}College of Information and Business, Zhongyuan University of Technology, Zhengzhou City, Henan Province, China

^{2}College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, China

^{3}Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, China;Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, China

*Turkish Journal of Analysis and Number Theory*.

**2014**, 2(6), 223-225

**DOI:**10.12691/tjant-2-6-6

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Da-Wei Niu, Yue-Jin Zhang, Feng Qi. A Double Inequality for the Harmonic Number in Terms of the Hyperbolic Cosine.

*Turkish Journal of Analysis and Number Theory*. 2014; 2(6):223-225. doi: 10.12691/tjant-2-6-6.

Correspondence to: Da-Wei Niu, College of Information and Business, Zhongyuan University of Technology, Zhengzhou City, Henan Province, China. Email: nnddww@163.com

## Abstract

## Keywords

## References

[1] | M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington, 1972. | ||

[2] | H. Alzer, Inequalities for the harmonic numbers, Math. Z. 267 (2011), no. 1-2, 367-384. | ||

[3] | H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), no. 217, 373-389. | ||

[4] | H. Alzer, Sharp inequalities for the harmonic numbers, Expo. Math. 24 (2006), no. 4, 385-388. | ||

[5] | N. Batir, Some new inequalities for gamma and polygamma functions, J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Art. 103. | ||

[6] | C.-P. Chen, Inequalities for the Euler-Mascheroni costant, Appl. Math. Lett. 23 (2010), no. 2, 161-164. | ||

[7] | C.-P. Chen, Sharpness of Negoi's inequality for the Euler-Mascheroni constant, Bull. Math. Anal. Appl. 3 (2011), no. 1, 134-141. | ||

[8] | C.-P. Chen and C. Mortici, New sequence converging towards the Euler-Mascheroni constant, Comp. Math. Appl. 64 (2012), no. 2, 391-398. | ||

[9] | D. W. DeTemple, A quicker convergence to Euler's constant, Amer. Math. Monthly 100 (1993), no. 5, 468-470. | ||

[10] | B.-N. Guo and F. Qi, Two new proofs of the complete monotonicity of a function involving the psi function, Bull. Korean Math. Soc. 47 (2010), no. 1, 103-111. | ||

[11] | B.-N. Guo and F. Qi, Sharp bounds for harmonic numbers, Appl. Math. Comput. 218 (2011), no. 3, 991-995. | ||

[12] | B.-N. Guo and F. Qi, Sharp inequalities for the psi function and harmonic numbers, Analysis (Berlin) 34 (2014), no. 2, 201-208. | ||

[13] | E. A. Karatsuba, On the computation of the Euler constant, Numer. Algor. 24 (2000), no. 1-2, 83-97. | ||

[14] | W.-H. Li, F. Qi, and B.-N. Guo, On proofs for monotonicity of a function involving the psi and exponential functions, Analysis (Munich) 33 (2013), no. 1, 45-50. | ||

[15] | C. Mortici, A quicker convergence toward the constant with the logarithm term involving the constant e, Carpathian J. Math. 26 (2010), no. 1, 86-91. | ||

[16] | C. Mortici, Improved convergence towards generalized Euler-Mascheroni constant, Appl. Math. Comput. 215 (2010), no. 9, 3443-3448. | ||

[17] | C. Mortici, New approximations of the gamma function in terms of the digamma function, Appl. Math. Lett. 59 (2010), no. 1, 97-100. | ||

[18] | C. Mortici, On new sequences converging towards the Euler-Mascheroni constant, Comput. Math. Appl. 59 (2010), no. 8, 2610-2614. | ||

[19] | T. Negoi, A faster convergence to Euler's constant, Math. Gaz. 83 (1999), no. 498, 487-489. | ||

[20] | P. Paule and C. Schneider, Computer proofs of a new family of harmonic number identities, Adv. Appl. Math. 31 (2003), no. 2, 359-378. | ||

[21] | F. Qi, Complete monotonicity of functions involving the q-trigamma and q-tetragamma functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM. 109 (2015), in press. | ||

[22] | F. Qi, R.-Q. Cui, C.-P. Chen and B.-N. Guo, Some completely monotonic functions involving polygamma functions and an application, J. Math. Anal. Appl. 310 (2005), no. 1, 303-308. | ||

[23] | F. Qi and Q.-M. Luo, Complete monotonicity of a function involving the gamma function and applications, Period. Math. Hungar. 69 (2014), no. 2, 159-169. | ||

[24] | A. Sîntǎmǎrian A generalization of Euler's constant, Numer. Algor. 46 (2007) no. 2, 141-151. | ||

[25] | M. B. Villarino, Ramanujan's harmonic number expansion into negative powers of a triangular num- ber, J. Inequal. Pure Appl. Math. 9 (2008), no. 3, Art. 89. | ||

[26] | R. M. Young, Euler's constant, Math. Gaz. 75 (1991), 187-190. | ||

## Article

# Generalized Inequalities Related to the Classical Euler’s Gamma Function

^{1}Department of Mathematics, University for Development Studies, Navrongo Campus, Navrongo UE/R, Ghana

*Turkish Journal of Analysis and Number Theory*.

**2014**, 2(6), 226-229

**DOI:**10.12691/tjant-2-6-7

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Kwara Nantomah. Generalized Inequalities Related to the Classical Euler’s Gamma Function.

*Turkish Journal of Analysis and Number Theory*. 2014; 2(6):226-229. doi: 10.12691/tjant-2-6-7.

Correspondence to: Kwara Nantomah, Department of Mathematics, University for Development Studies, Navrongo Campus, Navrongo UE/R, Ghana. Email: mykwarasoft@yahoo.com, knantomah@uds.edu.gh

## Abstract

## Keywords

## References

[1] | R. Diaz and E. Pariguan, On hypergeometric functions and Pachhammer k-symbol, Divulgaciones Matematicas 15(2)(2007), 179-192. | ||

[2] | T. Mansour, Some inequalities for the q-Gamma Function, J. Ineq. Pure Appl. Math. 9(1)(2008), Art. 18. | ||

[3] | F. Merovci, Power Product Inequalities for the Γ_{k} Function, Int. Journal of Math. Analysis, 4(21)(2010), 1007-1012. | ||

[4] | V. Krasniqi and F. Merovci, Some Completely Monotonic Properties for the (p, q)-Gamma Function, Mathematica Balkanica, New Series 26(2012), 1-2. | ||

[5] | R. Diaz and C. Teruel, q,k-generalized gamma and beta functions, J. Nonlin. Math. Phys. 12(2005), 118-134. | ||

[6] | V. Krasniqi, T. Mansour and A. Sh. Shabani, Some Monotonicity Properties and Inequalities for Γ and ζ Functions, Mathematical Communications 15(2)(2010), 365-376. | ||

[7] | K. Nantomah, On Certain Inequalities Concerning the Classical Euler's Gamma Function, Advances in Inequalities and Applications, Vol. 2014 (2014) Art ID 42. | ||

[8] | K. Nantomah and M. M. Iddrisu, Some Inequalities Involving the Ratio of Gamma Functions, Int. Journal of Math. Analysis 8(12)(2014), 555-560. | ||

[9] | K. Nantomah, M. M. Iddrisu and E. Prempeh, Generalization of Some Inequalities for theRatio of Gamma Functions, Int. Journal of Math. Analysis, 8(18)(2014), 895-900. | ||

[10] | K. Nantomah and E. Prempeh, Generalizations of Some Inequalities for the p-Gamma, q-Gamma and k-Gamma Functions, Electron. J. Math. Anal. Appl. 3(1)(2015),158-163. | ||

[11] | K. Nantomah and E. Prempeh, Some Sharp Inequalities for the Ratio of Gamma Functions, Math. Aeterna, 4(5)(2014), 501-507. | ||

[12] | K. Nantomah and E. Prempeh, Generalizations of Some Sharp Inequalities for the Ratio of Gamma Functions, Math. Aeterna, 4(5)(2014), 539-544. | ||

## Article

# On the Error Term for the Number of Integral Ideals in Galois Extensions

^{1}School of Mathematics, Hefei University of Technology, Hefei, China

*Turkish Journal of Analysis and Number Theory*.

**2014**, 2(6), 230-232

**DOI:**10.12691/tjant-2-6-8

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Sanying Shi. On the Error Term for the Number of Integral Ideals in Galois Extensions.

*Turkish Journal of Analysis and Number Theory*. 2014; 2(6):230-232. doi: 10.12691/tjant-2-6-8.

Correspondence to: Sanying Shi, School of Mathematics, Hefei University of Technology, Hefei, China. Email: vera123_99@hotmail.com

## Abstract

## Keywords

## References

[1] | Chandraseknaran K., Good A., On the number of integral ideals in Galois extensions, Monatsh. Math., 95. 99-109. 1983. | ||

[2] | Heath-Brown D. R., The number of Abelian groups of order at most x, Journtes Arithmttiques, Luminy 1989. | ||

[3] | Huxley M. N., Watt N., The number of ideals in a quadratic field II, Israel J. Math. Part A, 120, 125-153. 2000, | ||

[4] | Ivic A., The number of finite non-isomorphic Abelian groups in mean square, Hardy-Ramanujan J., 9, 17-23. 1986. | ||

[5] | Ivic A., On the Error Term for the Counting Functions of Finite Abelian Groups, Monatsh. Math. 114, 115-124. 1992. | ||

[6] | Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, 204-216. 2004. | ||

[7] | Landau E., Einführung in die elementare and analytische Theorie der algebraischen Zahlen und der Ideale, Teubner, 1927. | ||

[8] | Lü G., Wang Y., Note on the number of integral ideals in Galois extension, Sci. China Ser. A, 53, 2417-2424. 2010. | ||

[9] | Müller W., On the distribution of ideals in cubic number fields, Monatsh. Math., 106, 211-219. 1988. | ||

[10] | Nowak W.G., On the distribution of integral ideals in algebraic number theory fields, Math. Nachr., 161, 59-74. 1993. | ||