You are here

Turkish Journal of Analysis and Number Theory

**ISSN (Print):**
2333-1100

**ISSN (Online):**
2333-1232

**Frequency:**
bimonthly

**Editor-in-Chief:**
Mehmet Acikgoz, Feng Qi, Cenap ozel

**Website:**
http://www.sciepub.com/journal/TJANT

### Article

**An Extended Coupled Coincidence Point Theorem**

^{1}Republic of Turkey Ministry of National Education, Mathematics Teacher, 60000 Tokat, Turkey

^{2}Department of Civil Engineering, Faculty of Engineering, Şırnak University, 73000, Turkey

^{3}Department of Mathematics, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey

*Turkish Journal of Analysis and Number Theory*. 2016, 4(1), 23-30

doi: 10.12691/tjant-4-1-5

Copyright © 2016 Science and Education Publishing

**Cite this paper:**

Esra Yolacan, Mehmet Kir, Hukmi Kiziltunc. An Extended Coupled Coincidence Point Theorem.

*Turkish Journal of Analysis and Number Theory*. 2016; 4(1):23-30. doi: 10.12691/tjant-4-1-5.

Correspondence to: Mehmet Kir, Department of Civil Engineering, Faculty of Engineering, Şırnak University, 73000, Turkey. Email: mehmetkir@sirnak.edu.tr

### Abstract

^{2}→C without mixed G-monotone property of F. Our results improve and generalize results given by Karapinar et al. (Arab J Math (2012) 1: 329-339) and Jachymski (Nonlinear Anal. 74, 768-774 (2011)). The theoretic results are also accompanied with suitable example.

### Keywords

### References

[1] | Bhaskar, TG, Lakshmikantham, V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65, 1379-1393 (2006). | ||

[2] | Lakshmikantham, V, Ćirić, LB: Coupled .xed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70, 4341-4349 (2009). | ||

[3] | Hussain et al.: Coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory and Applications 2014, 2014: 62. | ||

[4] | Choudhury, B, Kundu, A: A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 73, 2524-2531 (2010). | ||

[5] | Karapinar, E, Luong, NV, Thuan, NX: Coupled coincidence point for mixed monotone operators in partially ordered metric spaces. Arab J Math (2012) 1: 329-339. | ||

[6] | Jachymski, J: Equivalent conditions for generalized contractions on (ordered) metric spaces. Nonlinear Anal. 74, 768-774 (2011). | ||

### Article

**On Fixed Points for Chatterjea’s Maps in b-Metric Spaces**

^{1}Department of Mathematics and Physics, University of Food Technologies, Plovdiv, Bulgaria

^{2}Faculty of Mathematics and Informatics, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria

*Turkish Journal of Analysis and Number Theory*. 2016, 4(2), 31-34

doi: 10.12691/tjant-4-2-1

Copyright © 2016 Science and Education Publishing

**Cite this paper:**

Radka Koleva, Boyan Zlatanov. On Fixed Points for Chatterjea’s Maps in b-Metric Spaces.

*Turkish Journal of Analysis and Number Theory*. 2016; 4(2):31-34. doi: 10.12691/tjant-4-2-1.

Correspondence to: Radka Koleva, Department of Mathematics and Physics, University of Food Technologies, Plovdiv, Bulgaria. Email: r.p.koleva@gmail.com

### Abstract

### Keywords

### References

[1] | Allahyari, R., Arab, R., Haghighi A.S., “A generalization on weak contractions in partially ordered b-metric spaces and its application to quadratic integral equations”, Journal of Inequalities and Applications, 2014 (355), 2014. | ||

[2] | Bakhtin, I.A., “The contraction mapping principle in almost metric spaces”, Funct. Anal., Gos. Ped. Inst., Unianowsk, 30, 26-37, 1989. | ||

[3] | Banach, S., “Sur les opérations dans les ensembles abstraits et leur application aux équations integrals”, Fund. Math., 3, 133-181, 1922. | ||

[4] | Berinde, V., Iterative approximation on fixed points, Springer, Berlin, 2007. | ||

[5] | Bota, M., Molnár, A., Varga, C., “On Ekeland’s variationals principle in b-metric spaces”, Fixed point theory, 12 (2), 21-28, 2011. | ||

[6] | Chatterjea, S., “Fixed point theorems”, C. R. Acad. Bulgare Sci. 25, 727-730, 1972. | ||

[7] | Czrezvik, S., “Contraction mappings in b-metric spaces”, Acta Mathematica et Informatica Universitatis Ostravlensis, 1 (1), 5-11, 1993. | ||

[8] | Dubey, A.K., Shukla, R., Dubey, R.P., “Some fixed point results in b-metric spaces”, Asian journal of mathematics and applications, 2014, Article ID ama0147, 6 pages, 2014. | ||

[9] | George, R., Fisher, B., “Some generalized results of fixed points in cone b-metric spaces”, Mathematica Moravica, 17 (2), 39-50, 2013. | ||

[10] | Farkas, C., Molnár, A.E., Nagy, S., “A generalized variational principle in b-metric spaces”, Le Matematiche, LXIX, 205-221, 2014. | ||

[11] | Isufati, A., “Rational Contractions in b-Metric Spaces”, Journal of Advances in Mathematics, 5 (3), 803-811, Jan, 2014. | ||

[12] | Mehmet K., Hükmi K., “On Some Well Known Fixed Point Theorems in b-Metric Spaces”, Turkish Journal of Analysis and Number Theory, 1 (1), 13-16, 2013. | ||

[13] | Mishra, P.K., Sachdeva, S., Banerjee, S.K., “Some fixed point theorems in b-metric space”,Turkish Journal of Analysus and Number Theory, 2 (1), 19-22, 2014. | ||

[14] | Rhoades, B.E., “A comparison of various definitions of contractive mappings”, Transactions of the American Mathematical Society, 226, 257-290, 1977. | ||

[15] | Rhoades, B.E., Sessa, S., Khan, M.S., Khan, M.D., “Some fixed point theorems for Hardy-Rogers type mappings, Internat. J. Math. & Math. Sci., 7(1), 75-87, 1984. | ||

[16] | Sintunavarat, W., Plubtieng, S., Katchang, P., “Fixed point result and applications on b-metric space endowed with an arbitrary binary relation”, Fixed Point Theory Appl., Article ID 296, 2013. | ||

### Article

**On Irresolute Topological Vector Spaces-II**

^{1}Mathematics COMSATS Institute of Information Technology, Park Road, Chak Shahzad, 45550 Islamabad, PAKISTAN

^{2}Mathematics, G.C. University, Lahore, Pakistan

*Turkish Journal of Analysis and Number Theory*. 2016, 4(2), 35-38

doi: 10.12691/tjant-4-2-2

Copyright © 2016 Science and Education Publishing

**Cite this paper:**

Muhammad Asad Iqbal, Muhammad Maroof Gohar, Moiz ud Din Khan. On Irresolute Topological Vector Spaces-II.

*Turkish Journal of Analysis and Number Theory*. 2016; 4(2):35-38. doi: 10.12691/tjant-4-2-2.

Correspondence to: Moiz ud Din Khan, Mathematics COMSATS Institute of Information Technology, Park Road, Chak Shahzad, 45550 Islamabad, PAKISTAN. Email: moiz@comsats.edu.pk

### Abstract

### Keywords

### References

[1] | Moiz ud Din Khan, Muhammad Asad Iqbal, On Irresolute topological vector space, Adv. Pure Math. 6(2016), 105-112. | ||

[2] | Muhammad Saddique Bosan, s-Topological groups, 2015, (Ph.D Thesis). | ||

[3] | N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. math. month., 70(1) (1963), 37-41. | ||

[4] | Crossley, S.G. and Hildebrand, S.K. Semi-Topological Properties. Fundamental Mathematicae, 74(1972), 233-254. | ||

[5] | Crossley, S.G. and Hildebrand, S.K. Semi-Closure, Texas J. Sci., 22(1971), 99-112. | ||