ISSN (Print): 2373-3403

ISSN (Online): 2373-3411


Editor-in-chief: Martin Alberto Masuelli

Currrent Issue: Volume 4, Number 1, 2016


Synthesis and Characterization of Branched Polyester: Thermal and Microbial Degradation Studies

1Laboratory Chemistry of Applied and Environmental, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco

2Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco

3Faculty of Sciences and Techniques of Al Hoceima, BP 34, 32003 Ajdir, Mohammed Premier University, Morocco

4Laboratory of Physical Chemistry of Natural Resources and Environment - Department of Chemistry, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco

Journal of Polymer and Biopolymer Physics Chemistry. 2016, 4(1), 16-27
doi: 10.12691/jpbpc-4-1-3
Copyright © 2016 Science and Education Publishing

Cite this paper:
Benarbia Abderrahim, Elidrissi Abderrahman, Aqil Mohamed, Amyay Aicha, Bellaouchi Reda, Asehraou Abdeslam, Jalal Isaad, Tahani abdesselam. Synthesis and Characterization of Branched Polyester: Thermal and Microbial Degradation Studies. Journal of Polymer and Biopolymer Physics Chemistry. 2016; 4(1):16-27. doi: 10.12691/jpbpc-4-1-3.

Correspondence to: Benarbia  Abderrahim, Laboratory Chemistry of Applied and Environmental, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco. Email:


A branched polyesters was synthesized using ethylene glycol, adipic acid and glycerol. It was characterized by FTIR, 1H and 13C-NMR, GPC, TGA/DTA. According to TGA analysis it was found that the mass loss is accomplished in two stages, the lower one was slightly distinguished in TGA. The Flynn-Ozawa-Wall method was applied for the principal reaction and the activation energies for all values of α were determined. The biodegradation process was also investigated in liquid culture media using two strains of Penicillium sp S1 and Aspergillus sp S2 which were isolated from the discharge of Oujda city (Morocco). According to the growth curves, it was found that the Penicillium sp S1 and Aspergillus sp S2 used the polyester as source of carbon. We have noted using FTIR spectra a decrease of the band intensity at δ =1170 cm-1 characteristic of the stretching vibration of C–O–C and also a decrease of the ester band group. The results obtained were compared with those of polyesters biodegradation reported in our previous work [27,28,29]. We have also proposed an enzyme degradation mechanism and hypothesis for an empirical mathematical formula giving the relationship between the thermal degradation and the biodegradation rate constant of the polyester.



[1]  Ankur, S., Kulshrestha, Gao,W., Fu, H. and Richard, A.G, “Synthesis and characterization of branched polymers from lipase-catalyzed trimethylolpropane copolymerizations”, Biomacromolecules, 8(6). 1794-1801. May 2007.
[2]  Mickaël, A., Stéphanie, D., Sinisa, M., Boris, E. and Véronique, N.R,“Characterization, stability and ecotoxic properties of readily biodegradable branched oligoesters based on bio-sourced succinic acid and glycerol”, Polymer Degradation and Stability. 97(10). 1956-1963. March 2012.
[3]  Bruggeman, J.P., Bettinger, C.J., Nijst, C.L.E., Kohane, D.S. and Langer, R,“Biodegradable Xylitol Based Polymers”, Advanced Materials. 20(7). 1922-1927. 2008.
[4]  Barret, D.G., Luo, W. and Yousaf, M.N, “Aliphatic polyester elastomers derived from erythritol and alpha, omega-diacids”, Polymer Chemistry. 1(3).296-302.January 2010.
[5]  Cao, H., Zheng, Y., Zhou, J., Wang, W. and Pandit, A, “A novel hyperbranched polyester made from aconitic acid (B3) and di(ethylene glycol) (A2)”. Polymer International. 60(4). 630-634. April 2011.
Show More References
[6]  Yang, Y., Lu, W., Cai, J., Hou, Y., Ouyang, S., Xie, W. and Gross, R, “Poly(oleic diacid-co-glycerol): Comparison of Polymer Structure Resulting from Chemical and Lipase Catalysis”. Macromolecules. 44(7).1977-1985. March 2011.
[7]  Kulshrestha , S., Bishwabhusan , S., Wei , G., Hongyong , F. and Gross, A, “Lipase Catalysis. A Direct Route to Linear Aliphatic Copolyesters of Bis(hydroxymethyl)butyric Acid with Pendant Carboxylic Acid Groups”. Macromolecules.38(8). 3205-3213. March 2005.
[8]  Carnahan, M.A. and Grinstaff, M.W, “Synthesis and characterization of poly(glycerol-succinic acid) dendrimers”. Macromolecules .34(22). 7648-7655. September 2001.
[9]  Stumbe, J.F. and Bruchmann, B, “Hyperbranched Polyesters Based on Adipic Acid and Glycerol”. Macromolar Rapid Communications .25(9).921-924 .March2004.
[10]  Wyatt, VT. and Strahan GD, “Degree of Branching in Hyperbranched Poly(glycerol-co-diacid)s Synthesized in Toluene”. Polymers . 4(1). 396-407.February 2012.
[11]  Carnahan, MA. and Grinstaff, M.W, “Synthesis and characterization of polyether-ester dendrimers from glycerol and lactic acid”. Journal of American Chemical Society. 123 (12). 2905-2906. March 2001.
[12]  Li, Y., Cook, WD., Moorhoff, C., Huang, W.C. and Chen, Q.Z, “Synthesis, characterization and proprieties of biocompatible poly(glycerol sebacate)”. Polymer International.62(4).534-547. April 2013.
[13]  Jena, K.K., Raju, K.V.S.M., Prathab, B. and Aminabhavi, T.M, “Hyperbranched Polyesters:  Synthesis, Characterization, and Molecular Simulations”.J.Phys. Chem B. 111 (30). 8801-8811. June 2007.
[14]  Kiyotsukuri, T., Kanaboshi, M. and Tsutsumi, N, “Network polyester films from glycerol and dicarboxylic acids”. Polymer International. 33(1).1-8. January 1994.
[15]  Tracy, Z., Bob, A., Adina, D., Steven, J. and Patrick, B, “Synthesis and Characterization of Glycerol-Adipic Acid Hyperbranched Polyesters”. Polymer. 55(20). 5065-5072. September 2014.
[16]  Tang, J., Zhang, Z., Song, Z., Chen, L., Hou, X. and Yao, K, “Synthesis and characterization of elastic aliphatic polyesters from sebacic acid, glycol and glycerol”. European polymer journal. 42(12). 3360-3366. December 2006.
[17]  Coneski, PN., Rao, KS. and Schoenfisch, M.H, “Degradable nitric oxide-releasing biomaterials via post-polymerization functionalization of cross-linked polyesters”. Biomacromolecules. 11 (11). 3208-3215. October 2010.
[18]  Cao, W., Zhou, J., Mann, A., Wang, Y., Zhu, L,“Folate-functionalized unimolecular micelles based on a degradable amphiphilic dendrimer-like star polymer for cancer cell-targeted drug delivery”. Biomacromolecules. 12(7).2697-26707. Jun 2011.
[19]  Ifran, M. and Seiler, M, “Encapsulation using hyperbranched polymers: from research and technologies to emerging applications”. Ind.Eng.Chem.Res. 49(3).1169-1196. January 2010.
[20]  Lin, C. and Gitsov I “Synthesis and Physical Properties of Reactive Amphiphilic Hydrogels Based on Poly(pchloromethylstyrene) and Poly(ethylene glycol): Effects of Composition and Molecular”. Macromolecules . 43 (7). 3256-3267. March 2010.
[21]  Shi, X., Wang, SH., Lee, I., Shen, M. and Baker, J.R, “Comparison of the internalization of targeted dendrimers and dendrimer-entrapped gold nanoparticles into cancer cells”. Biopolymers . 91(11).936-942. November 2009.
[22]  Ye, L., Letchford, K., Heller, M., Liggins, R., Guan, D. and Kizhakkedathu, J.N, “Synthesis and characterization of carboxylic acid conjugated, hydrophobically derivatized, hyperbranched polyglycerols as nanoparticulate drug carriers for cisplatin”. Biomacromolecules. 12(1).145-55. January (2011).
[23]  Chatterjee, S. and Ramakrishnan, S, “Understanding Self-Segregation of Immiscible Peripheral Segments in Pseudodendritic Hyperbranched Polydithioacetals: Formation of Improved Janus Structures”. Macro Letter. 3(9).953-957. September 2014.
[24]  Gao, C. and Yan, D, “Hyperbranched polymers: from synthesis to applications”. Progress in Polymer Science .29(3).183-275. March 2004.
[25]  Lea, A., Matthias, W. and Thomas, K,“The role of branched polyesters and their modifications in the development of modern drug delivery vehicles. role of branched polyesters and their modifications in the development of modern drug delivery vehicles”. Journal controlled release. 101(1-3).137-149. January 2005.
[26]  Coullerez, G., Lundmark, S., Malmstrom, E., Hult, A. and Mathieu, H.J, “ToF-SIMS for the characterization of hyperbranched aliphatic polyesters: probing their molecular weight on surfaces based on principal component analysis (PCA)”. Surface and Interface Analysis. 35(8). 693–708.August 2003.
[27]  Benarbia, A., Elidrissi A., Bellaouchi, R. and Asehraou, A, “Polybutylene succinate preparation and Biodegradation study of cellulose and cellulose blends”. International Journal Engineering Technical Research. 3(3),348-354. March (2015).
[28]  Benarbia, A., Elidrissi, A., Aqil, M., Tabaght, F., Tahani, A. and Ouassini, K, “Kinetic Thermal Degradation of Cellulose, Polybutylene Succinate and a Green Composite: Comparative Study”. World Journal of Environmental Engineering.3(4). 95-110.September 2015.
[29]  Benarbia, A., Elidrissi, A., Ganetri, I., Touzani, R,“Synthesis, characterization and thermal degradation kinetics of Copolyesters. J. Mater. Environ. Sci. 5(4).1262-1279. March 2014.
[30]  Ozawa, T., “A new method of analyzing thermogravimetric data”.Chem. Soc. Jpn. 38(11).1881-1886. 1965.
[31]  Flynn, J.H. and Wall, L.A, “Thermal Methods in Polymer Analysis”.Phys. Chem. 70A(6) 487-523.December 1966.
[32]  Zoubida SAADI. Université du Maine - U.F.R. Sciences et Techniques. 154.2008.
[33]  Trinh, T., Cooper, D., Marié, M. and Nicell, A, “Biodegradation of a Synthetic Co-Polyester by Aerobic Mesophilic Microorganisms”. Polymer Degradation Stability. 93(8). 1479-1485. August 2008.
[34]  Warscheid, T. and Braams, J, “Biodeterioration of stone: a review.International Biodeterioration”. Biodegradation. 46(4).343-368. December 2000.
[35]  Hakkarainen, M., Karlsson, S. and Albertsson, A, “Rapid (bio)degradation of polylactide by mixed culture of compost microorganisms-low molecular weight products and matrix changes”. Polymer. 41(7). 2331-2338.March 2000.
[36]  Pepic, D., Zagar, E., Zigon, M., Krzan, A., Kunaver, M. and Djonlagic, J, “Synthesis and characterization of biodegradable aliphatic copolyesters with poly(ethylene oxide) soft segments”. European Polymer Journal. 44(3). 904-917. March 2008.
[37]  Soni, R., Soam, S. and Dutt, K, “Studies on biodegradability of copolymers of lactic acid, terephthalic acid and ethylene glycol”. Polymer Degradation Stability. 94(3). 432-437. March 2009.
[38]  Wing-Hung LO,B.eng,“biodegradation of PHA and blends with synthetic polymer by soil microorganisms” thesis, Hong Kong university of science and technology.2000.
[39]  Marten, E., Joachim, R., Dieter, W, “Studies on the enzymatic hydrolysis of polyesters. II. Aliphaticearomatic copolyesters”. Polymer Degradation and Stability. 88(3). 371-381. June 2005.
Show Less References


Selective Adsorption of 2-nitrophenol, Phenol, Hydroquinone on Poly (Vinyl Alcohol) Crosslinked Glutaraldehyde-β-cyclodextrin Polymer Membrane

1Laboratory of Polymers Treatment and Forming, F.S.I, M’Hamed Bougara University, Boumerdes, Algeria

Journal of Polymer and Biopolymer Physics Chemistry. 2016, 4(1), 7-15
doi: 10.12691/jpbpc-4-1-2
Copyright © 2016 Science and Education Publishing

Cite this paper:
Ghemati Djamila, Aliouche Djamel, Amri Nedjla. Selective Adsorption of 2-nitrophenol, Phenol, Hydroquinone on Poly (Vinyl Alcohol) Crosslinked Glutaraldehyde-β-cyclodextrin Polymer Membrane. Journal of Polymer and Biopolymer Physics Chemistry. 2016; 4(1):7-15. doi: 10.12691/jpbpc-4-1-2.

Correspondence to: Ghemati  Djamila, Laboratory of Polymers Treatment and Forming, F.S.I, M’Hamed Bougara University, Boumerdes, Algeria. Email:


The aim of this paper is to use poly (vinylalcohol) polymer membrane as an adsorbent for the removal of 2-nitrophenol, phenol, hydroquinone from aqueous solutions through the batch experiments. In order to obtain efficient adsorbent, cross-linked poly(vinyl alcohol)/glutaraldehyde-β-cyclodextrin membranes were prepared. Synthesized membranes were characterized by infrared spectroscopy and swelling measurements. Then, influence of pH, temperature on the adsorption process was investigated. As results, β-cyclodextrin is completely mixed into the PVA polymer without covalent bond formation. And absorption level of PVA/GA membranes is significantly improved by the presence of β-cyclodextrin. Adsorption capacity increases with increasing amount of cyclodextrin, and it reached the highest value at Ph < pKa; the change in adsorption capacities may be due to the structure effect, weight molecular of phenolic compounds. Therefore, results of adsorption isotherms indicated that the Freundlich isotherm model was more appropriate, the low temperature is favourable for adsorption and the negative value of free energy indicated the spontaneous nature process and easy regeneration of polymeric materials.



[1]  S.Ilknur, B.Hanife, B. Ekologi., 22, 88 (2013).
[2]  N.S. Kumar, K. Min, Chem. Eng. J., 168, (2011).
[3]  R.Z. Chen, Y. Du, W.H. Xing, N.P. Xu, Chinese. J. Chem. Eng., 15, 6 (2007).
[4]  M.H. Priya, G. Madras, J. Photochem. Photobiol. A., 179, (2006).
[5]  R. Allabashi, M. Arkas, G. Hormann, Water. Res., 41, 2 (2007).
Show More References
[6]  F. Peng, Z. Jiang, C.Hu, Y.Wang, L. Lu, Desalination., 193, 2 (2006).
[7]  L. F .Gudeman, N. A. Peppas, J. Appl. Polym. Sci., 55, 3 (1995).
[8]  S. J.Kim, S. J.Park, T. D. Chung, S. I. Kim, J. Appl. Polym. Sci., 89, 2 (2003).
[9]  X.LI, B.Zhao, K.Zhu, X.Hao, Chinese. J. Chem. Eng., 19, 6 (2011).
[10]  W. Jongok, Y. Ji.Young, K.Moon-Sung, K. Yong Soo, Macromol. Res., 14, 4 (2006).
[11]  C. Kang, Y. Wang, R. Li, Microchem. J., 64, 2 (2000).
[12]  L.Wang, J.Zhang, R. Zhao, Bioresource. Technol., 101, 15 (2010).
[13]  P. SenthilKmar, K. Ramakrishnan, S. Dinesh Kirupha, S. Sivanesan, Can. J. Chem Eng., 89, 2 (2011).
[14]  R. Chlinga, J. L.Rao, B.C.Vreddy, K. Veera brahmam, Bull. Mater. Sci., 30, 3 (2007).
[15]  B.George, M. Govindaraj, H.Ujie, H. Freeman, S. Hudson, Processes, National Textile Center Research Briefs., 2004, Chemistry Competency, USA.
[16]  J.T. Zhang, S.W.Huang, R .Xizhuo, Macromol. Chem. Phys., 205, (2004).
[17]  F. Peng, Z.Jiang, C.Hu, Y.Wang, L.Lu, H. Wu, Desalination., 193, (2006).
[18]  K.A.Connors, Chem. Rev., 97 (1997).
[19]  D.Y. Tang, Z. Zheng, K. Lin, J.F. Luan, J. Hazard. Mater., 143, (2007).
[20]  A. Gholizadeh, M. Kermani, M. Gholami, M. Farzadkia, J. Environ. Health .Sci. Eng., 11, 1 (2013).
[21]  B. Hameed, A. Ahmad, J. Hazard. Mater., 164, (2009).
[22]  E. Schneiderman, A.M. Stalcup, J. Chromatographia. B., 745, (2000).
[23]  Li. Jian-Mei, G. M. Xiang, Bioresource. Technol., 100, (2009).
[24]  Z. Aksu, E. Kabasakal, Sep. Purif. Technol., 35, (2003).
[25]  N.S. Kumar, M. Venkata Subbaiah, A. Subba Reddy, A.Krishnaiah, J. Chem. Tech. Biotech., 84, (2009).
[26]  O.A. Ekpete, A.I. Spiff, M. HorsfallJnr, P. Adowei, Innov. Sci. Eng., 2 (2012).
[27]  G. Crini, Y.Lekchiri, M.Morcellet, Chromatographia., 40 (1995).
Show Less References


Exopolysaccharides Produced by Rhizobium: Production, Composition and Rheological Properties

1Federal University of Rio Grande, School of Chemistry and Food, Rio Grande, RS, Brazil

Journal of Polymer and Biopolymer Physics Chemistry. 2016, 4(1), 1-6
doi: 10.12691/jpbpc-4-1-1
Copyright © 2016 Science and Education Publishing

Cite this paper:
Ribeiro V.A., Burkert C.A.V.. Exopolysaccharides Produced by Rhizobium: Production, Composition and Rheological Properties. Journal of Polymer and Biopolymer Physics Chemistry. 2016; 4(1):1-6. doi: 10.12691/jpbpc-4-1-1.

Correspondence to: Ribeiro  V.A., Federal University of Rio Grande, School of Chemistry and Food, Rio Grande, RS, Brazil. Email:


The use of exopolysaccharides (EPS) in industrial product formulations has increased in recent years due to their ability to increase the viscosity of solutions or cause the formation of gels, affecting the texture of products. In industry, EPS can be added as gelling, thickening and stabilizing agents in foods, pharmaceuticals and cosmetics. In this context, EPS from nitrogen-fixing rhizobial bacteria are emerging as potential biopolymers for industrial applications. However, the establishment of cultivation conditions, their chemical structure and physicochemical characteristics, such as rheological behavior, are essential to enable their use on a large scale. Furthermore, the possibility of using byproducts and agroindustrial wastes as substrates can contribute to the economic feasiability of the process. In this context, this article aims to present a review of EPS synthesized by different strains of Rhizobium in relation to their production, composition and rheological properties.



[1]  Aranda-Selverio, G., Penna, A.L.B., Campos-Sás, L.F., Santos Junior, O., Vasconcelos, A.F.D., Silva, M.L.C., Lemos, E.G.M., Campanharo, J.C., Silveira, J.L.M., “Propriedades reológicas e efeito da adição de sal na viscosidade de exopolissacarídeos produzidos por bactérias do gênero Rhizobium”, Química. Nova, 33(4). 895-899. March 2010.
[2]  Barbosa, A.M., Cunha, P.D.T., Pigatto, M.M., Silva, M.L.C., “Produção e aplicações de exopolissacarídeos fúngicos”, Semina: Ciências Exatas e Tecnológicas, 25(1). 29-42. January/June 2004.
[3]  Barreto, M.C.S., Figueiredo, M.V.B., Burity, H.A., Silva, M.L.R.B., Lima-Filho, J.L., “Produção e comportamento reológico de biopolímeros produzidos por rizóbios e caracterização genética”, Revista Brasileira de Agrociência, 17(2-4). 221-227. April/June 2011.
[4]  Becker, A., Pühler, A., Production of exopolysaccharides, Kluwer Academic Publishers, Oegstgeest, 1998, 97-118.
[5]  Breedveld, M.W., Zevenhuizen, L.P.T.M., Zehnder, A.J.B., “Osmotically induced oligo- and polysaccharide synthesis by Rhizobium meliloti SU-47”, Journal of General Microbiology, 136. 2511-2519. August 1990.
Show More References
[6]  Berrada, H., Fikri-Benbrahim, K., “Taxonomy of the Rhizobia: current perspectives”, British Microbiology Research Journal, 4(6). 616-639. June 2014.
[7]  Bomfeti, C.A., Florentino, L.A., Guimarães, A.P., Cardoso, P.G., Guerreiro, M.C., Moreira, F.M.S., “Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of leguminosae”, Revista Brasileira de Ciência do Solo, 35(3). 657-671. May/June 2011.
[8]  Castellane, T.C.L., Lemos, E.G.M., “Composição de exopolissacarídeos produzidos por estirpes de rizóbios cultivados em diferentes fontes de carbono”, Pesquisa Agropecuária Brasileira, 42(10). 1503-1506. October 2007.
[9]  Castellane, T.C.L., Lemos, M.V.F., Lemos, E.G.M., “Evaluation of the biotechnological potential of Rhizobium tropici strains for exopolysaccharide production”, Carbohydrate Polymers, 111(13). 191-197. October 2014.
[10]  Castellane, T.C.L., Persona, M.R., Campanharo, J.C., Lemos, E.G.M., “Production of exopolysaccharide from rhizobia with potential biotechnological and bioremediation applications”, International Journal of Biological Macromolecules, 74. 515-522. March 2015.
[11]  Devi, S.E, Vijayendra, S.V.N., Shamala, T.R., “Exploration of rice bran, an agroindustry residue, for the production of intra- and extra-cellular polymers by Sinorhizobium meliloti MTCC 100”, Biocatalysis and Agricultural Biotechnology, 1(1). 80-84. January 2012.
[12]  Diaz, P.S., Vendruscolo, C.T., Vendruscolo, J.L.S., “Xanthan rheological: a review about the influence of electrolytes on the viscosity of aqueous solutions of xanthan gums”, Semina: Ciências Exatas e Tecnológicas, 25(1). 15-28. June 2004.
[13]  Donot, F., Fontana, A., Baccou, J.C., Schorr-Galindo, S., “Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction”, Carbohydrate Polymers, 87(2). 951-962. January 2012.
[14]  Duta, F.P., França, F.P., Lopes, L.M.A., “Optimization of culture conditions for exopolysaccharides production in Rhizobium sp. using the response surface method”, Electronic Journal of Biotechnology, 9(4). 391-399. July 2006.
[15]  Fernandes Júnior, P.I., Almeida, J.P.S., Passos, S.R., Oliveira, P.J., Rumjanek, N.G., Xavier, G.R., “Produção e comportamento reológico de exopolissacarídeos sintetizados por rizóbios isolados de guandu”, Pesquisa Agropecuária Brasileira, 45(12). 1465-1471. December 2010.
[16]  Freitas, F., Alves, V.D, Reis M.A.M., “Advances in bacterial exopolysaccharides: from production to biotechnological applications”, Trends in Biotechnology, 29(8). 388-398. August 2011.
[17]  Ghosh, A.C., Ghosh, S., Basu, P.S., “Production of extracellular polysaccharide by a Rhizobium species from root nodules of the leguminous tree Dalbergia lanceolaria”, Engineering in Life Sciences, 5(4). 378–382. August 2005.
[18]  Guentas, L., Pheulpin, P., Michaud, P., Heyraud, A., Gey, C., Courtois, B., Courtois, J., “Structure of a polysaccharide from a Rhizobium species containing 2-deoxy--D-arabino-hexuronic acid”, Carbohydrate Research, 332 (2). 167-173. May 2001.
[19]  Janczarek, M., Rachwał, K., Cieśla, J., Ginalska, G., Bieganowski, A., “Production of exopolysaccharide by Rhizobium leguminosarum bv. trifolii and its role in bacterial attachment and surface properties”, Plant Soil, 388. 211-227. March 2015.
[20]  Kaci, Y., Heyraud, A., Barakat, M., Heulin, T., “Isolation and identification of an EPS producing Rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure”, Research in Microbiology 156(4). 522-531. May 2005.
[21]  Kayacier, A., Dogan, M., “Rheological properties of some gums-salep mixed solutions”, Journal of Food Engineering, 77(3). 261-265. February 2006.
[22]  Kumar, A.S., Mody, K., Jha, B., “Bacterial exopolysaccharides: a perception”, Journal of Basic Microbiology, 47(2). 103-117. April 2007.
[23]  Kutkowska, J., Tuska-Szewczuk, A., Janczarek, M., Paduch, R., Kaminska, T., Urbanik-Sypniewska, T., “Biological activity of (lipo)polysaccharides of the exopolysaccharide-deficient mutant Rt120 derived from Rhizobium leguminosarum bv. trifolli strain TA2”, Biochemistry (Moscow), 76(7). 840-850. July 2011.
[24]  Li, S., Huang, R., Shah, N.P., Tao, X., Xiong, Y., Wei, H., “Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315”, Journal of Dairy Science, 97(12). 7334-7343. December 2014.
[25]  Liu, Y., Gu, O., Ofosu, F.K., Yu, X., “Production, structural characterization and gel forming property of a new exopolysaccharide produced by Agrobacterium HX1126 using glycerol or D-mannitol as substrate”, Carbohydrate Polymers, 136(20). 917-922. January 2016.
[26]  Mandal, S., Ray, B., Dey, S., Pati, B., “Production and composition of extracellular polysaccharide synthesized by a Rhizobium isolate of Vigna mungo (L) Hepper”, Biotechnology Letters, 29(8). 1271-1275. August 2007.
[27]  Mesomo, M.C., Silva, M.F., Boni, G., Padilha, F.F., Mazutti, M., Mossi, A., Oliveira, D., Cansian, R.L., Luccio, M.D., Treichel, H., “Xanthan gum produced by Xanthomonas campestris from cheese whey: production optimisation and rheological characterization”, Journal of the Science of Food and Agriculture, 89(14). 2440-2445. November 2009.
[28]  Monteiro, N.K., Aranda-Selverio, G., Exposti, D.T.D., Silva, M.L.C., Lemos, E.G.M., Campanharo, J.C., Silveira, J.L.M., “Caracterização química dos géis produzidos pelas bactérias diazotróficas Rhizobium tropici e Mesorhizobium sp.”, Química Nova, 35(4). 705-708. January 2012.
[29]  Moreira, F.M.S., Siqueira, J.O., Microbiologia e bioquímica do solo, Editora da UFLA, Lavras, 2006, 729 p.
[30]  Moretto, C., Castellane, T.C.L., Lopes, E.M., Omori, W.P., Sacco, L.P., Lemos, E.G.M., “Chemical and rheological properties of exopolysaccharides produced by four isolates of rhizobia”, International Journal of Biological Macromolecules, 81. 291-298. July 2015.
[31]  Navarini, L., Stredansky, M., Matulova, M., Bertocchi, C., “Production and characterization of an exopolysaccharide from Rhizobium hedysari HCNT 1”, Biotechnology Letters, 19(12). 1231-1234. December 1997.
[32]  Pasquel, A., “Gomas: utilização e aspectos reológicos”, Boletim da Sociedade Brasileira de Ciência e Tecnologia de Alimentos, 33(1). 86-87. 1999.
[33]  Prasanna, P.H.P., Bell, A., Grandison, A.S., Charalampopoulos, D., “Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205”, Carbohydrate Polymers, 90. 533-540. September 2012.
[34]  Priyanka, P., Arun, A.B., Ashwini, P., Rekha. P.D., “Versatile properties of an exopolysaccharide R-PS18 produced by Rhizobium sp. PRIM-18”, Carbohydrate Polymers, 126. 215-221. August 2015.
[35]  Ramalingam, C., Priya, J., Mundra, S., “Applications of microbial polysaccharides in food industry”, International Journal of Pharmaceutical Sciences Review and Research, 27(1). 322-324. July/August 2014.
[36]  Ribeiro, V.A., Teixeira, M., Burkert, C.A.V., “Cultivo de bactérias utilizando glicerina residual para obtenção de exopolissacarídeos”, in XX Congresso Brasileiro de Engenharia Química (COBEQ), Associação Brasileira de Engenharia Química.
[37]  Sellami, M., Oszako, T, Miled, N., Rebah, F.B., “Industrial wastewater as raw material for exopolysaccharide production by Rhizobium leguminosarum”, Brazilian Journal of Microbiology, 46(2). 407-413. June 2015.
[38]  Skorupska, A., Janczarek, M., Marczak, M., Mazur, A., Król, J., “Rhizobial exopolysaccharides: genetic control and symbiotic functions”, Microbial Cell Factories, 5(7). 1-19. February 2006.
[39]  Staehelin, C., Forsberg, L.S., D'Haeze, W., Gao, M.Y., Carlson, R.W., Xie, Z.P., Pellock, B.J., Jones, K.M., Walker, G.C, Streit, W.R., Broughton, W.J., “Exo-oligosaccharides of Rhizobium sp. strain NGR234 are required for symbiosis with various legumes”, Journal of Bacteriology, 188(17). 6168-6178. September 2006.
[40]  Staudt, A.K., Wolfe, L.G., Shrout, J.D., “Variations in exopolysaccharide production by Rhizobium tropici”, Archives of Microbiology, 194(3). 197-206. March 2012.
[41]  Toneli, J.T.C.L., Murr, F.E.X., Park, K.J., “Estudo da reologia de polissacarídeos utilizados na indústria de alimentos”, Revista Brasileira de Produtos Agroindustriais, 7(2). 181-204. 2005.
[42]  Willems, A., “The taxonomy of rhizobia: an overview”, Plant and Soil, 287(1). 3-14. September 2006.
[43]  Zhou, R., Wu, Z., Chen, C., Han, J., Ai, L., Guo, B., “Exopolysaccharides produced by Rhizobium radiobacter S10 in whey and their rheological properties”, Food Hydrocolloids 36. 362-368. May 2014.
Show Less References