Journal of Polymer and Biopolymer Physics Chemistry

Current Issue» Volume 2, Number 4 (2014)

Article

The Determination of the Solubility Parameter (δ) and the Mark-Houwink Constants (K & α) of Food Grade Polyvinyl Acetate (PVAc)

1Department of Chemistry, Hofstra University, Hempstead, New York


Journal of Polymer and Biopolymer Physics Chemistry. 2014, 2(4), 67-72
DOI: 10.12691/jpbpc-2-4-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Ronald P. D’Amelia, Jaksha C. Tomic, William F. Nirode. The Determination of the Solubility Parameter (δ) and the Mark-Houwink Constants (K & α) of Food Grade Polyvinyl Acetate (PVAc). Journal of Polymer and Biopolymer Physics Chemistry. 2014; 2(4):67-72. doi: 10.12691/jpbpc-2-4-2.

Correspondence to: Ronald  P. D’Amelia, Department of Chemistry, Hofstra University, Hempstead, New York. Email: Ronald.P.Damelia@hofstra.edu

Abstract

Polyvinyl alkyl ester of carboxylic acids are a family of macromolecules in which the side chain esters (pendant groups) increase in molar mass and hydrophobicity and decrease in structural polarity as the number of carbons in the carboxylic acid increases. The most important polymer in this family is Polyvinyl Acetate (PVAc). The Solubility Parameter (δ) is a unique physical property of any polymeric material and can be a useful guide to understanding the miscibility or compatibility of two polymeric substances. It is therefore essential in working with polymeric blends of PVAc that the experimental solubility parameter be accurately and precisely known. We have experimentally determined the solubility parameter of food grade PVAc by measuring the intrinsic viscosity of several different molecular weight PVAc samples (ranging from 11K -75K Daltons) in four different solvents (acetone, methanol, tetrahydrofuran, toluene,) at 25°C using glass capillary viscometry. We also estimated the solubility parameter using the principles of group additivity contribution due to the atoms, groups and bonds present in PVAc based on the theories of Small, Hoy, and Van Krevelen. The Mark-Houwink constants for PVAC in the four solvents were also experimentally determined. Our experimentally determined solubility parameter was 9.35 (cal/cm3)1/2 which compared well with the computational values obtained by Hoy (9.56), Small (9.45) and Van Krevelen (9.27).

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[
[1]  Burrell, H., Off. Dig. Fed. Paint. Varn. Prod., 27, 726, 1955.
 
[2]  Gee, G., “Swelling and Solubility in Mixed Liquids”, Trans. Faraday Soc., 40, 468-480, 1944.
 
[3]  Mangaraj, D., Patra, S., Roy, P.C., “Cohesive Energy Densities of High Polymers: V- C.E.D. of Polyacrylates”, Makromol. Chem., 81, 173-175, 1965
 
[4]  Burrell, H. Solubility Parameter Values, Polymer Handbook, 2nd ed, (eds Brandrup & Immergut), J. Wiley, 1975, IV: 337-359.
 
[5]  Kurata, M., Tsunashima, Y., et. al., Viscosity – Molecular Weight Relationships & Unperturbed Dimensions of Linear Chain Molecules, Polymer Handbook 2nd ed., (eds. Brandrup & Immergut), J.Wiley, 1975, IV: 1-60.
 
Show More References
[6]  Barton, A. F. M., CRC Handbook of Polymer-Liquid Interaction Parameters and Solubility Parameters, CRC Press, Boca Raton, 1990, 297-342.
 
[7]  Hansen, C.M., CRC Handbook – Hansen Solubility Parameters: A User’s Handbook, 2nd edition, CRC Press, Boca Raton, 2007, 1-33
 
[8]  Flory P. J., Principles of Polymer Science, Wiley-Interscience,. Cornel University Press, Ithaca, N.Y 1953, chapters 12 & 13.
 
[9]  Billmeyer, F., Textbook of Polymer Science, Wiley-Interscience, New York, 1966, chapter 3E.
 
[10]  Rabek, J.F., Experimental Methods in Polymer Chemistry, J. Wiley, New York, 1980, chapter 9, 123-140.
 
[11]  Masuelli, M.A., “Mark-Houwink Parameter for Aqueous-Soluble Polymers & Biopolymers at Various Temperatures”, Journal of Polymer & Biopolymer Physics, 2, 2, 37-43, 2014.
 
[12]  Chee, K.K., “Huggins’ Constant and Unperturbed Parameter of Dilute Polymer Solutions”, J. Applied Polym. Sci., 27, 5, 1675-1680, 1982.
 
[13]  Braun, J. L., Kadia, J.F., “A Relative Simple Method for Calculating Mark-Houwink Parameters using Basic Definitions”, J. of Applied Polym. Sci., 114, 5, 3303-3309, 2009.
 
[14]  Huggins, M.L. “The Viscosity of Dilute Solutions of Long-Chain Molecules, IV- Dependence on Concentration”, J. Am. Chem. Soc. 64, 11, 2716-2718, 1942.
 
[15]  Kraemer, E.O., Ind. Eng. Chem., 30, 1200, 1938.
 
[16]  Chinai, S.N., Scherer, P.C. and Levi, D.W.,” Molecular Weight pf Polyvinyl Acetate by Light Scattering and Viscosity Techniques”, J. Polym. Sci. 17 117-124, 1955.
 
[17]  DiPaola-Baranyi, G., Guillet, J.E., Klein, J. Jeberien, H.W., “Estimation of the Solubility Parameters for Poly (vinyl acetate) by Inverse Gas Chromatography”, J. of Chromatogr. A, 166, 2, 349-356, 1978.
 
[18]  Fernandez-Berridi, M.J., Guzman, G.M., Elorza, J.M., Garijo, L., “Study by Gas-Liquid Chromatography of the Thermodynamics of the Interaction of Poly (vinyl acetate) with various Solvents”, Eur. Polym. J., 19, 5, 445-450, 1983.
 
[19]  Daoust, H, Rinfret, M.,” Solubility of Polymethymethacrylate and Polyvinylacetate”, J. Colloid Si., 7, 1, 11-19, 1952.
 
[20]  Wagner, R. H., “Intrinsic Viscosities and Molecular Weights of Polyvinylacetates”, J. Polym. Sci. 2, 1, 21-35, 1947.
 
[21]  Merk, W., Lichtenthaler, R. N., Prausnitz, J.M., “Solubilities of Fifteen Solvents in Copolymers of Poly(vinyl acetate) and Poly(vinyl Chloride) from gas Chromatography: Estimation of Polymer Solubility Parameters”, J.Phys. Chem, 84, 13, 1694-1698, 1980.
 
[22]  Lindermann, M.K. Physical Constants of Polyvinyl Acetate, Polymer Handbook 2nd ed, (eds Brandrup & Immergut), J. Wiley 1975 V51-55.
 
[23]  Small, P.A. J. Appl. Chem, 3, 71, 1953.
 
[24]  Scatchard, G. Chem Rev, 8, 821, 1931.
 
[25]  Hoy, K.L. J. Paint Technol., 42, 76, 1970.
 
[26]  Van Krevelen, D.W., Properties of Polymers:Their Estimation and Correlation with Chemical Structures, Elsevier 2nd ed, 1976.
 
[27]  CRC Handbook of Chemistry and Physics 67th ed.; Weast, R.C. Eds,: CRC Press, Boca Raton, Fl., 1986.
 
Show Less References

Article

Fabrication of Poly(Caprolactone) Nanofibers by Electrospinning

1Biomaterials and Tissue Engineering Laboratory, Department of Materials Engineering, Indian Institute of Science, Bangalore, India


Journal of Polymer and Biopolymer Physics Chemistry. 2014, 2(4), 62-66
DOI: 10.12691/jpbpc-2-4-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Athira K. S., Pallab Sanpui, Kaushik Chatterjee. Fabrication of Poly(Caprolactone) Nanofibers by Electrospinning. Journal of Polymer and Biopolymer Physics Chemistry. 2014; 2(4):62-66. doi: 10.12691/jpbpc-2-4-1.

Correspondence to: Athira  K. S., Biomaterials and Tissue Engineering Laboratory, Department of Materials Engineering, Indian Institute of Science, Bangalore, India. Email: athiraiisc@gmail.com

Abstract

Nanofibers at 466 ± 242 nm average diameter were fabricated due to phase separation caused by polarizability difference under static electric field. Fibre morphology was observed under a scanning electron microscopy. An insight into the process of electrospinning of the polymer, poly(caprolactone) was systematically evaluated and discussed the effects of the solution parameter of concentration of the polymer solution and process parameters of voltage, flow rate and drop height to fabricate poly(caprolactone) electrospun fibers with desired morphologies in this manuscript. Of all combinations, the best nanofibres with the fewest beads and finest fibers could be electrospun with a more uniform distribution in with a 15 kV applied voltage of on poly(caprolactone) solution of 12 per cent concentration at a 0.5 ml/h flow rate, from a drop height of 15 cm and the structure of nanofibres was found completely dry and stabilized.

Keywords

References

[[[[[[[[[[[[[[
[1]  Sukigara, S., Gandhi, M., Ayutsede, J., Micklus, M. and Ko, F, “Regeneration of Bombyx morisilk by electrospinning-part 1: processing parameters and geometric properties,” Polymer, 44, 5721-5727, 2003.
 
[2]  Haghi, A.K. and Akbari, M, “Trends in electrospinning of natural nanofibers,” Phys Status Solidi., 204, 1830–1834, 2007.
 
[3]  Ki, C.S., Baek, D.H., Gang, K.D., Lee, K.H., Um, I.C. and Park, Y.H, “Characterization of gelatin nanofiber prepared from gelatin-formic acid solution,” Polymer., 46, 5094-5102, 2005.
 
[4]  Jun, Z., Hou, H., Schaper, A., Wendorff, J.H. and Greiner, A, “Poly-L-lactide nanofibers by electrospinning-influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology,” e-Polym., 9, 1-9, 2003.
 
[5]  Deitzel, J.M., Kleinmeyer, J., Harris, D. and Tan, N.C.B, “The effect of processing variables on the morphology of electrospun nanofibers and textiles,” Polymer., 42, 261-272, 2001.
 
Show More References
[6]  Baumgarten, P.K, “Electrostatic spinning of acrylic microfibers,” J Colloid Interface Sci., 36, 71-79, 1971.
 
[7]  Reneker, D.H. and Chun, L, “Nanometre diameters of polymer, produced by electrospinning,” Nanotechnology, 7, 216-223, 1996.
 
[8]  Zhang, C., Yuan, X., Wu, L., Han, Y. and Sheng, J, “Study on morphology of electrospun poly(vinyl alcohol) mats,” Eur Polym J., 41, 423-432, 2005.
 
[9]  Demir, M.M., Yilgor, I., Yilgor, E. and Erman, B, “Electrospinning of polyurethanefibers,” Polymer., 43, 3303-3309, 2002.
 
[10]  Larrondo, L. and Manley, R.S.J, “Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet,” J Polym Sci Polym Phys Ed., 19, 921-932, 1981.
 
[11]  Yordem, O.S., Papila, M. and Menceloğlu, Y.Z, “Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology,” Mater Des., 29, 34-44, 2008.
 
[12]  Yuan, X.Y., Zhang, Y.Y., Dong, C.H. and Sheng, J, “Morphology of ultrafine polysulfone fibers prepared by electrospinning,” Polym Int., 53, 1704-1710, 2004.
 
[13]  Zuo, W.W., Zhu, M.F., Yang, W., Yu, H., Chen, Y.M. and Zhang, Y, “Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning,” Polym Eng Sci., 45, 704-709, 2005.
 
[14]  Bharadwaj, N. and Kundu, S.C, “Electrospinning: A fascinating fiber fabrication technique,” Biotechnology Advances., 28, 325-347, 2010.
 
[15]  Jalili, R., Hosseini, S.A. and Morshed, M, “The effects of operating parameters on the morphology of electrospun polyacrilonitrile nanofibres,” Iran Polym J., 14, 1074-1081, 2005.
 
[16]  Lee, J.S., Choi, K.H., Ghim, H.D., Kim, S.S., Chun, D.H. and Kim, H.Y, “Role of molecular weight of a tactic poly (vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning,” J Appl Polym Sci., 93, 1638-1646, 2004.
 
[17]  Buchko, C.J., Chen, L.C., Shen, Y. and Martin, D.C, “Processing and microstructural characterization of porous biocompatible protein polymer thin films,” Polymer., 40, 7397-7407, 1999.
 
[18]  Pham, Q.P., Sharma, U. and Mikos, A.G, “Electrospun poly (ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration,” Biomacromolecules., 7, 2796-2805, 2006.
 
[19]  Zhao, Z.Z., Li, J.Q., Yuan, X.Y., Li, X., Zhang, Y.Y. and Sheng, J, “Preparation and properties of electrospun poly (vinylidenefluoride) membranes,” J Appl Polym Sci., 97, 466-474, 2005.
 
Show Less References