Journal of Food and Nutrition Research

ISSN (Print): 2333-1119

ISSN (Online): 2333-1240

Editor-in-Chief: Prabhat Kumar Mandal




Fatty Acid Profile of the Amazon Caiman Protein Concentrate

1Federal University of Santa Catarina, Rod, Admar Gonzaga, 1346, 8034-001, Florianopolis, SC, Brazil

2Federal University of Amazonas, Av. Gen. Rodrigo OtávioJordão Ramos, 6200, 69067-005, Manaus, AM, Brazil

3DVISA- Health Department, Com. Paulo Lasmar, 69049-110, Manaus, AM, Brazil

Journal of Food and Nutrition Research. 2016, 4(10), 699-702
doi: 10.12691/jfnr-4-10-10
Copyright © 2016 Science and Education Publishing

Cite this paper:
Augusto Kluczkovski Júnior, Alicia de Francisco, Ariane M. Kluczkovski, Ronis Da Silveira R., Fábio Markendorf. Fatty Acid Profile of the Amazon Caiman Protein Concentrate. Journal of Food and Nutrition Research. 2016; 4(10):699-702. doi: 10.12691/jfnr-4-10-10.

Correspondence to: Augusto  Kluczkovski Júnior, Federal University of Santa Catarina, Rod, Admar Gonzaga, 1346, 8034-001, Florianopolis, SC, Brazil. Email:


Some species of fish and other aquatic organism are important sources of protein and fatty acids that are beneficial to human health and can be industrially processed. The fatty acid profile of Melanosuchus niger (native to the Brazilian Amazon flooded forest) was determined in samples of a protein concentrate (PC) there was obtained from processing residues. The PC was prepared from cooked muscle portions and NaCl (1.5%) using an adiabatic process. Saturated fatty acids such as stearic acid (0.59%) and palmitic acid (1.43%) were present. The levels of the unsaturated fatty acids omega-6 (ω-6) and omega-3 (ω-3) linolenic acids were 0.32% and 0.15%, respectively. In conclusion, Black caiman PC seems to provide essential fatty acids for human nutrition. Clinical studies are necessary to assess the influence of fatty acids from Amazon Caimans on human diet and the feasibility of obtaining new products such as nutraceuticals.



[1]  Palmeira, K.R., Marsico, E., Monteiro, M.L., Lemos, M., Junior, C.A.C. Ready-to-eat products elaborated with mechanically separated fish meat from waste processing: challenges and chemical quality. Cyta. J. Food, 14. 227-238. 2016.
[2]  Da Silveira, R., Thorbjarnanarson, J. Conservation implications of commercial hunting of black and spectacled caiman in the Mamirauá Sustainable Development Reserve, Brazil. Conservat. Biol., 88:103-109. 1999.
[3]  Rebouças, M.C., Rodrigues, M.C.P., Castro, R.J.S., Vieira, J.M.M. Characterization of fish protein concentrate obtained from the Nile tilapia filleting residues. Semina, 33. 697-704. 2012.
[4]  Goes, E., Souza, M.L.R, Michka, J., Graton, M., Kimura K. S., Lara, .J. A. F., Delbem, A. C. B., & Gasparino, E. Fresh pasta enrichment with protein concentrate of tilapia: nutritional and sensory characteristic. Food Sci. Technol. 36(1). 76-82. 2016.
[5]  Mohamed, G.F, Sulieman, A.M., Soliman, N.G., Bassiuny, S.S. Fortification of Biscuits with Fish Protein Concentrate. World Journal of Dairy & Food Sciences, 9. 242-249. 2014.
Show More References
[6]  Lourenço, L.F.H., Santos, D.C., Ribeiro, S.C.A., Almeida H., Araujo, E.A.F. Study of adsorption isotherm and microbiological quality of fish meal type “piracuí" of Acari- Bodo (Liposarcus pardalis). Procedia - Food Science, 1. 455-462. 2011.
[7]  Nunes, E.S.C.L, Bittencourt, R. H. F. P. M., Silva, M. C., Marsico, E.T., Franco, R.M. Microbiological and physico-chemical qualities of dried-salted shrimp (“aviú”) and of “piracuí” type fish meal sold in retail markets in Belém, Pará – Brazil. Rev Inst Adolfo Lutz, 72. 47-54. 2013.
[8]  Kluczkovski Júnior, A., Kluczkovski, A. M., Moroni, F. T., Markendorf, F., Inhamuns, A. Carcass Yield and composition of Melanosuchus niger. Intern. J. of Fisheries and Aquaculture, 7. 47-53. 2015.
[9]  Ross, J.P. (2000) Melanosuchus niger. The IUCN Red List of Threatened Species 2000.
[10]  Romanelli, P.F., Schmidt, J. Estudo do aproveitamento das vísceras do jacaré do Pantanal (Caiman crocodylus yacare) em farinha de carne. Ciê Alimentos, 23. 131-139. 2003.
[11]  Bourre, J.M. Where to find omega-3 fatty acids and how feeding animals with diet enriched in omega-3 fatty acids to increase nutritional value of derived products for human: what is actually useful? J Nut. Health Aging, 9. 232-42. 2005.
[12]  Scherr, C., Gagliardi, A.C. M., Miname, M.H., Santos, R.D. Fatty Acid and Cholesterol Concentrations in Usually Consumed Fish in Brazil. Arq Bras. Cardiol. 104. 152-158. 2015.
[13]  Toupchian, O., Sotoudeh, G., Mansoori, A., Nasli-Esfahani, E., Djalali, M., Keshavarz, S. A., Koohdani, F. Effects of DHA-enriched fish oil on monocyte/macrophage activation marker sCD163, asymmetric dimethyl arginine, and insulin resistance in type 2 diabetic patients. J. Clin. Lipid. 10. 798-807. 2016.
[14]  Meldrum S.J., D'Vaz, N., Casadio, Y., Dunstan, J.A., Niels Krogsgaard-Larsen, N., Simmer, K., Prescott, S.L. Determinants of DHA levels in early infancy: Differential effects of breast milk and direct fish oil supplementation. Prostaglandins, Leukotrienes and Essential Fatty Acids, 86. 233-239. 2012.
[15]  Simopoulos, A. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients, 8. 128. 2016.
[16]  Simopoulos, A. The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease. Asia Pac. J. Clin. Nutr., 17. 131-134. 2008.
[17]  Kluczkovski, A., Kluczkovski Junior, A. Aflatoxin in Fish Flour from the Amazon Region. Ariane M. Kluczkovski and Augusto Kluczkovski Junior. Aflatoxin in Fish Flour from the Amazon Region, Aflatoxins - Recent Advances and Future Prospects, Prof. Mehdi Razzaghi-Abyaneh (Ed.), InTech, 197-206. 2013.
[18]  AOCS. American Oil Chemists` Society. Official Methods and Recommended Practices of the American Oil Chemits` Society. 5th ed. Champaign, USA, (Method Ce 1F 96). 1998.
[19]  R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2015.
[20]  Selmi, S., Bouriga, N., Cherif, M;, Toujani, M., Trabelsi, M. Effects of drying process on biochemical and microbiological quality of silverside (fish) Atherina lagunae. Int. J. of food Sci. and technology. 45 (6). 1161-1168. 2010.
[21]  Kluczkovski Júnior, A., De Francisco, A., Kluczkovski, A. M., Beirão, L., Barbosa, H. Lipids of Amazon Caimans: a source of fatty acids. African J. of Biotechn. 15. 1559-1565. 2016.
[22]  Fernandes, V.R. T., Souza, M. L. R., Gasparino, E., Coutinho, M. E., Visentainer, J. V., Goes, E. S. R. Several techniques for the preparation of flour from carcasses of the Pantanal alligator (Caiman crocodilus yacare). Food Sci. Technol., 35. 487-492. 2015.
[23]  Paulino, F.O., Silva T.J.P., Franco, R. M., Marsico, E.T., Canto, A.C.V.C., Vieira, J.P., Amaral AP, Pereira AAS (). Processing and quality characteristics of hamburger of Pantanal alligator meat (Caiman crocodillus yacare). Rev. Bras. Cienc. Vet. 18. 129-132. 2011.
[24]  Petenucci, M. E., Stevanato, F. B., Morais, D. R., Santos, L. P., Souza, N. E., Visentainer, J. V. Composição e estabilidade lipídica da farinha de espinhaço de tilapia. Ciênc. Agrotecnologia, 34. 1279-1284. 2010.
[25]  Lauritzen, L., Brambilla, P., Mazzochi, A., Harslof, L.B.S., Ciapolino, V., Agostini, C. DHA Effects in Brain Development and Function. Nutrients, 8. 3-17. 2016.
[26]  FAO. Food and agriculture and Organization of the United Nations (1989). FAO: Conservation guide 22. The management of crocodiles in captivity.
[27]  Tonial, I. B., Bravo, C. E. C., Souza, N. E., Matsushita, M., Furuya, W. M., Visentainer, J. V. Qualidade nutricional dos lipídios de tilápias (Oreochromis niloticus) alimentadas com ração suplementada com óleo de soja. Alim. Nutr., 22. 103-112. 2011.
[28]  Souza, R. V., Santos, P. C. F., Bambirra, E. A., Vieira, E. C., Alvarez-Leite, J. I. Nutritional Characteristics of Amazonian Fish Fat (Colossoma macropomum) and its effect on lipid metabolism of rats fed hypercholesterolemic diets. Ciênc. Tecnol. Aliment. 22. 88-93. 2002.
[29]  Martin, C.A., Almeida, V.V., Ruiz, M.R., Visentainer, J.E.L., Matshushita. M., Souza, N.E., Visentainer J.V. Omega-3 and omega-6 polyunsaturated fatty acids: importance and occurrence in foods. Rev. Nutr., 19, 761-770. 2006.
[30]  Fernandes V.R.T., Franco, M.L.R.S., Gasparino, E., Tanamati, A., Coutinho, M.E., Bielawsk,i K.. Hamburgers from pantanal caiman meat (Caiman yacare) subjected to different smoking technique. Arq. Bras. Med. Vet. Zootec. 65. 927-933. 2013.
Show Less References


Proximate Composition and Micronutrient Mineral Profile of wild Ganoderma lucidum and Four Commercial Exotic Mushrooms by ICP-OES and LIBS

1Nutrition Science Department, Purdue University West Lafayette, USA

2Department of Biochemistry and Molecular Biology, University of Gujrat, 50700 Gujrat, Pakistan

3Department of Biochemistry, University of Agriculture Faisalabad-38040, Pakistan

4Department of Physics, University of Agriculture Faisalabad-38040, Pakistan

Journal of Food and Nutrition Research. 2016, 4(11), 703-708
doi: 10.12691/jfnr-4-11-1
Copyright © 2016 Science and Education Publishing

Cite this paper:
Sumaira Sharif, Ghulam Mustafa, Hira Munir, Connie M. Weaver, Yasir Jamil, Muhammad Shahid. Proximate Composition and Micronutrient Mineral Profile of wild Ganoderma lucidum and Four Commercial Exotic Mushrooms by ICP-OES and LIBS. Journal of Food and Nutrition Research. 2016; 4(11):703-708. doi: 10.12691/jfnr-4-11-1.

Correspondence to: Sumaira  Sharif, Nutrition Science Department, Purdue University West Lafayette, USA. Email:


Edible mushrooms are excellent food that can be incorporated into well balanced diets due to their low content of fat and energy, high content of dietary fibers and proteins. Proximate composition of mushrooms also varies within and among species due to agro-climate conditions and environmental factors. The current study was designed to analyze proximate composition and mineral profile of one local wild Ganoderma lucidum, two commercial local cultivated mushrooms species i.e. Pleurotus ostreatus and Vovoriella volvacea, and two commercial exotic mushrooms i.e. Lentinus edodes and Hericium erinaceus for their nutritive values. Minerals were analyzed by Inductivity Coupled Plasma Optical Emission Spectrometry (ICP-OES). Selected mushrooms were also analyzed by laser induced break down spectroscopy (LIBS) to identify any harmful element(s) present in these mushrooms. Proximate analysis showed that crude protein ranged from 15.04-24.8%, crude fat 0.53-2.02%, Fiber 6.11-54.12%, Ash 2.0-9.99% and total carbohydrates varied in a range of 65.34-82.47% on dry weight basis. Ca, Mg, Na, Zn, P and K were in elevated concentration. Al, B, Cu, Li and Mn were in the range of 2.5-8.1, 0.4-6.1, 0.9-1.4, 0.2-1.4, 0.4-1.3 mg/100 g on dry weight basis respectively. As, Ba and Se were in lower concentration whereas Pb, Cd, Mo, Be, Sn and Co were below detectable limits. LIBS also revealed some elements like, titanium, barium, calcium, iodine, carbon and hydrogen. The selected local mushrooms are safe for consumption, in accordance with the permissible tolerance limit of the toxic metals.



[1]  Adejumo, T.O. and Awosanya, O.B. “Proximate and mineral composition of four edible mushroom species from South Western Nigeria”. African Journal of Biotechnology, 4, 1084-1088, 2005.
[2]  AOAC. 1995. Official Methods of Analysis. Association of Official Analytical Chemists. 16th Ed., Arlington, VA.
[3]  Brzostowski, A., Bielawski, L., Orlikowska, A., Plichta, S. and Falandysz, J. “Instrumental analysis of metals profile in poison pax (Paxillus involutus) collected at two sites in Bory Tucholskie”. Chemical Anal-Warsaw, 54, 1297-1308, 2009.
[4]  Colak, A., Faiz, Z. and Sesli, E. “Nutritional composition of some wild edible mushrooms”. Turkish Journal of Biochemistrt, 34, 25-31, 2009.
[5]  Falandysz, J., and Brzostowski, A. “Mercury and its bioconcentration factors in Poison Pax (Paxillus involutus) from various sites in Poland”. Journal of Environmental Sciences Health, Part A: Toxic/Hazar Substances and Environmental Engineering, 42, 1095-1100, 2007.
Show More References
[6]  Falandysz, J. “Selenium in edible mushrooms”. Journal of Environmental Sciences Health, 26, 256-299, 2008.
[7]  Genccelep, H., Uzun, Y., Tuncturk, Y. and Demirel, K.”Determination of mineral contents of wild grown edible mushrooms”. Food Chemistry, 113, 133-1036, 2009.
[8]  Hung, P.V. and Nhi, N.N.Y. “Nutritional composition and antioxidant capacity of several edible mushrooms grown in the Southern Vietnam”. International Food Research Journal, 19, 611-615, 2012.
[9]  Jonathan, S.G. and Awotona, F.E. “Studies on Antimicrobial Potentials of three Ganoderma species”. African Journal of Biomedical Research, 13, 133-139, 2010.
[10]  Keen, C.L., Uriu-Adams, J.Y., Ensuma, J.L., and Gershwin, M.E. Trace elements/ minerals and immunity. In: Gershin ME, Nestel P, Keen CL, (Eds.), Handbook of nutrition and immunity. Humana Press, 2004, Totowa, NJ, (pp. 117-140). 2004.
[11]  Koyyalamudi, S.R., Jeong, S.C., Manavalan, S., Vysetti, B., and Pang, G. “Micronutrient mineral content of the fruiting bodies of Australian cultivated Agaricus bisporus white button mushrooms”. Journal of Food Compositition and Analysis. 31:109-114, 2013.
[12]  Kuldo, E., Jarzynska, J. Z., Gucia, M. & Falandysz, J. “Mineral constituents of edible parasol mushroom (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area”. Chemical Papers, 68, 484-492, 2014.
[13]  Mallikarjuna, S.E., Ranjini, A., Haware, D.J., Vijayalakshmi, M.R., Shashirekha, M.N. and Rajarathnam, S. “Mineral Composition of Four Edible Mushrooms”. Journal of Chemical education. 2013.
[14]  Mattila, P., Salo-Vaananen, P., Konko, K., Aro, H., and Jalava, T. “Basic composition and amino acid contents of mushrooms cultivated in Finland”. Journal of Agriculture Food Chemistry, 50, 6419-6422, 2002.
[15]  McDowell, L. R. “Minerals in Animal and Human Nutrition, 2nd ed. Amsterdam”, 2003. The Netherlands, Elsevier.
[16]  Moore, D. and Chi, S.W. “Funi products as food (eds) pointing, S.B and Hyde, K.O. Int Bio-explotation of filamentous fungi”. Fungi Diversity Research. Lenis, 6, 223-251, 2005.
[17]  Mukhopadhyay, R. and Guha, A.K.”A comprehensive analysis of the nutritional quality of edible mushroom Pleurotus sajor-caju grown in deproteinized whey medium”. LWT- Food Science and Technology, 61, 339-345, 2015.
[18]  Okoro, I. O. and Achuba, F.I. “Proximate and mineral analysis of some wild edible mushrooms”. African Journal of Biotechnology, 11, 7720-7724. 2015.
[19]  Ouzouni, P. K., Petridis, D., Koller, W. D. and Riganakos, K. A. “Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece”. Food Chemistry, 115, 1575-1580, 2009.
[20]  Soylak, M., Saracoglu, S., Tuzen, M. and Mendil, D. “Determination of trace metals in mushroom samples from Kayseri, Turkey”. Food Chemistry, 92, 649-652, 2005.
[21]  Tuzen, M., Sesli, E. and Soylak, M. “Trace element levels of mushroom species from East Black Sea region of Turkey”. Food Control, 18, 806-810, 2007.
[22]  Vieira, P.A.F., Gontijo, D.C., Vieira, B.C., Fontes, E.A., de Assuncao, L.S., Leite, J.P.V., Oliveira, M.G.D.A. and Kasuya, M.C.M. ”Antioxidant activities, total phenolics and metal contents in Pleurotus ostreatus mushrooms enriched with iron, zinc or lithium”. LWT-Food Science and Technology, 54, 421-425, 2013.
[23]  Wang, Jia-sheng., Yun-zhang, L., Wei-lin, L., Dong-po, Q. and Ying, T. “Laser induced breakdown spectroscopic technique for analyzing rock and soil sample”. Metallurgical Analysis, 29, 30-34, 2009.
[24]  Wang, X.M., Zhang, J., Wu,L.H., Zhao, Y.L., Li, T., Li, J.Q., Wang, Y.Z. and Liu, H. G. “A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China”. Food Chemistyr. 151:279-285, 2014.
[25]  Xu, D.X., Lin, J., Duan, Z.M., Wan, Y.P., Bai, B. and Sun, C. “Detection of chemical compositions of wild Lactarius volemus from Yunnan province”. Edible Fungi, 4, 60-61, 2012.
[26]  Zahid, M.K., Barua, S. and Huq, S.M. “Proximate Composition and Mineral Content of Selected Edible Mushroom Varieties of Bangladesh”. Bangladesh Journal of Nutrition, 22, 61-68. 2010.
[27]  Zhang, Y., Cao, Y.R. and Xu, H. “Evaluation of heavy metal contents in some wild edible mushrooms from Panzhihua”. Journal of Sichuan University, 49, 246-252, 2012.
Show Less References


Effect of Zinc Oxide Nanoparticles on Barrier and Mechanical Properties of EVOH Nanocomposite film Incorporating with Plasticizer

1Department of Food Science and Technology, Isfahan University of Technology, Isfahan, Iran

Journal of Food and Nutrition Research. 2016, 4(11), 709-712
doi: 10.12691/jfnr-4-11-2
Copyright © 2016 Science and Education Publishing

Cite this paper:
Kambiz Sadeghi, Mohammad Shahedi. Effect of Zinc Oxide Nanoparticles on Barrier and Mechanical Properties of EVOH Nanocomposite film Incorporating with Plasticizer. Journal of Food and Nutrition Research. 2016; 4(11):709-712. doi: 10.12691/jfnr-4-11-2.

Correspondence to: Kambiz  Sadeghi, Department of Food Science and Technology, Isfahan University of Technology, Isfahan, Iran. Email:


In this study, ethylene vinyl alcohol copolymer (EVOH) nanocomposite was prepared by adding nano zinc oxide (nano-ZnO) as a filling agent and glycerol as a plasticizer. In the solution mixing method, usually a plasticizer is used to prevent the film from becoming brittle. However, adding a plasticizer also has adverse effects on the film. Examples of such effects include; decreased barrier properties (water vapor permeability and oxygen permeability) and reduced mechanical properties (tensile strength (TS)). The goal of this study was, to reduce the adverse effects of the plasticizer on film's matrix by adding nanoparticles. Three concentrations (0%, 1%, and 2%) of Nano-ZnO were used in order to find the optimum concentration of glycerol (30%, 40%, and 50%) with the least significant adverse effect. Incorporating glycerol reduced the barrier and the tensile strength properties in matrix films, while, adding nano-ZnO improved barrier, tensile strength properties and reduced adverse effects of the glycerol. FE- image analysis was used to confirm the adverse effects of glycerol on matrix film.



[1]  Mokwena, K. K. - Tang, J. - Laborie, M.: Water absorption and oxygen barrier characteristics of ethylene vinyl alcohol films. Journal Food Engineering, 105(3), 2011, p.p 436-443.
[2]  Gontard, N. - Guilbert, S. - Cuq, J.: Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. Journal Food Science, 57(1), 1992, p.p 190-195.
[3]  Yeo, J. H. - Hoon, L. C. - Park, C. - Lee, K.: Rheological, morphological, mechanical, and barrier properties of PP/EVOH blends. Advances Polymer and Technology, 20(3), 2001, p.p 191-201.
[4]  Mokwena, K. K. - Tang, J.: Ethylene vinyl alcohol: A review of barrier properties for packaging shelf stable Foods. Critical Review Food Science, 52(7), 2012, p.p 640-650.
[5]  Dastjerdi, R. - Montazer, M.: A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloid Surface B, 79(1), 2010, p.p 5-18.
Show More References
[6]  Emamifar, A. - Kadivar, M. - Shahedi, M. - Soleimanianzad, S.: Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science & Emerging Technologies, 11(4), 2010, p.p 742-748.
[7]  Rhim, J. - Hong, S. - Park, H. - Ng, P. K. W.: Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal Agriculture Food Chemistry, 54(16), 2006, p.p 5814-5822.
[8]  Fernandez-saiz, P. - Ocio, M. J. - Lagaron, M.: Antibacterial chitosan-based blends with ethylene vinyl alcohol copolymer. Carbohydrate Polymers, 80(3), 2010, p.p 874-884.
[9]  ASTM D 882. Standard test method for tensile properties of thin plastic sheeting. West Conshohocken: ASTM International, 2001.
[10]  ASTM E96. Standard test methods for water vapor transmission of materials. West Conshohocken: ASTM International, 1989.
[11]  ASTM D1434. Standard test method for determining gas permeability characteristics of plastic film and sheeting. West Conshohocken: ASTM International, 1998.
[12]  Kumar, P. - Sandeep, K. P. - Alavi, b. S. - Truong, V. D. - Gorga, R. D.: Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. Journal Food Engineering, 100(3), 2010, p.p 480-489.
[13]  Cyras, V. P. - Manfredi, L. B. - Ton-That, M. - Vazquez, A.: Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydrate Polymers, 73(1), 2008, p.p 55-63.
[14]  Cussler, E. L. - Highes, S. E. - Ward, W. J. - Aris, R.: Barrier membranes. Journal Membrane Science, 38, 1998, p.p 161-174.
[15]  Lopez-de-Dicastillo, C. - Gallur, M. - Catala, R. - Gavara, R. - Hernandez-Munoz, P.: Immobilization of b-cyclodextrin in ethylenevinyl alcohol copolymer for active food packaging applications. J Memberan Science, 353, 2010, p.p 184-191.
[16]  Oguzlu, H. - Tihminlioglu, F.: Preparation and barrier properties of chitosan-layered silicate nanocomposite films. Macromolecular Symposia, 298(1), 2010, p.p 91-98.
[17]  Kurek, M. - Scetar, A. - Voilley, A. - Galic, K. - Debeaufort, F.: Barrier properties of chitosan coated polyethylene. Journal Membrane Science, 403, 2012, p.p 162-168.
[18]  Cerisuelo, J. P. - Alonso, J. - Aucejo, S. - Gavara, R. - Hernandez-Munoz, P.: Modifications induced by the addition of a nanoclay in the functional and active properties of an EVOH film containing carvacrol for food packaging. Journal Membrane Science, 423, 2012, p.p 247-256.
[19]  Li, F. - Biagioni, P. - Finazzi, M. - Tavazzi, S. - Piergiovanni, L.: Tunable green oxygen barrier through layer-by-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydrate Polymers, 92(2), 2013, p.p 2128-2134.
Show Less References