Journal of Food and Nutrition Research

ISSN (Print): 2333-1119

ISSN (Online): 2333-1240

Editor-in-Chief: Prabhat Kumar Mandal




Characterizing Consumers’ Preference for an Iron-Biofortified Bean Variety in Northwest Guatemala: A Sensory Evaluation

1Harvest Plus, International Center for Tropical Agriculture (CIAT), Palmira, Colombia

2Harvest Plus, International Food Policy Research Institute (IFPRI), Washington, DC, USA

Journal of Food and Nutrition Research. 2016, 4(5), 309-317
doi: 10.12691/jfnr-4-5-7
Copyright © 2016 Science and Education Publishing

Cite this paper:
Salomón Pérez, Alexander Buritica, Adewale Oparinde, Ekin Birol, Carolina González, Manfred Zeller. Characterizing Consumers’ Preference for an Iron-Biofortified Bean Variety in Northwest Guatemala: A Sensory Evaluation. Journal of Food and Nutrition Research. 2016; 4(5):309-317. doi: 10.12691/jfnr-4-5-7.

Correspondence to: Salomón  Pérez, Harvest Plus, International Center for Tropical Agriculture (CIAT), Palmira, Colombia. Email:


The process of generating new crops varieties with higher micronutrient content or biofortification, could be a complementary strategy to fight against micronutrient deficiencies mainly in rural areas. Its success depends on whether those biofortified cultivars are accepted and consumed by target populations. Consumer behavior economics argues that consumer preferences for specific product characteristics are determined by socioeconomic, cultural and biological aspects. Based on that, this study aims to establish which socioeconomic and demographic characteristics predict respondents’ preferences for the sensory attributes in an iron bean variety compared to a traditional one, and the role that information and repetition on nutritional characteristics plays on forming those preferences. In August 2013, 360 rural families were surveyed in northwest Guatemala for this purpose. We found that the iron-fortified variety is slightly preferred compared to the conventional one regarding major significant factors as color, size, taste, and cooking time. While there is no homogeneity in socioeconomic characteristics defining the preferences for these attributes characteristics related to bean consumption, bean production status and market orientation of the respondents or households plays an important role on defining those preferences. Characteristics as age, education level, and poverty level do not influence those preferences, indicating that the beliefs and revealed preferences are mostly culturally formed and market related more than influenced by socio-demographic characteristics. Cluster analysis shows three clusters: fully accepters, slightly accepters and indifferent. Fully accepters are mainly wealthier women less related with bean activities. Slightly accepters are mainly men with higher education and traditionally not purchasing beans in the market. The indifferent are bean consumers and producers with less education and a higher probability of being under the poverty line Nutritional information does not seem to play an important role in consumer preference formation, however its repetition does, especially when repeated trice to men.



[1]  WHO (World Health Organization). “Nutrition topics. Iron deficiency anemia”. January 2014. [online]. Available at [Accessed Oct 15, 2014].
[2]  Banerji, A., Cowhury, S., De Groote, H., Meenakshi, J. V., Haleegoah, J., and Ewool, M. “Using Elicitation Mechanisms to Estimate the Demand for Nutritious Maize: Evidence from Experiments in Rural Ghana”, HarvestPlus Working Paper (10), 1-18, July 2013.
[3]  Saltzman, A., Birol, E., Bouis, H., Boy, E., De Moura F., Islam, Y., and Pfeiffer, W. “Biofortification: Progress toward a More Nourishing Future”, Global Food Security, 2 (1), 9−17, February 2013.
[4]  Meenakshi, J. V., Banerji, A., Manyong, V., Tomlins, K., P, Hamukwala., Zulu, R., and Mungoma, C. “Consumer Acceptance of Provitamin A Orange Maize in Rural Zambia”, HarvestPlus Working Paper (4), 1-36, March 2010.
[5]  Asare-Marfo, D., Birol, E., Gonzalez, C., Moursi, M., Pérez, S., Shwarz, J. and Zeller, M. “Prioritizing Countries for Biofortification Interventions Using Country Level Data”. HarvestPlus Working Paper, (11), October 2013.
Show More References
[6]  MSPS (Ministerio de Salud Pública y Asistencia Social). Encuesta Nacional de Micronutrientes 2009–2010. Gobierno de Guatemala. Guatemala City. 2012.
[7]  FAOSTAT. “Food Balance Statistics”. February 2011 [online]. Available at [Accessed Oct 4, 2014].
[8]  Costell, E., Tárrega, A. and Bayarri, S. “Food acceptance: the role of consumer perception and attitudes”, Chemosensory Perception, 3 (1), 42-50, March 2010.
[9]  Stevens, R., and Winter-Nelson, A. “Consumer Acceptance of Provitamin A-Biofortified Maize in Maputo, Mozambique.” Food Policy, 33 (4), 341-351, August 2008.
[10]  Pillay, K., Derera, J., Siwela, M., and Veldman, F. J.. “Consumer Acceptance of Yellow, Provitamin A-Biofortified Maize in KwaZulu-Natal.” South African Journal of Clinical Nutrition, 24 (4): 186-191. 2011.
[11]  Talsma, E. F., Melse-Boonstra, A., De Kok, B. P. H., Mbera, G. N. K., Mwangi, A. M. and Brouwer, I. D. “Biofortified Cassava with Provitamin A Is Sensory and Culturally Acceptable for Consumption by Primary School Children in Kenya.” PLoS ONE , 8 (9), 1-8, August 2013.
[12]  Oparinde, A., Banerji, A., Birol, E., and P, Ilona. “Information and Consumer Willingness to Pay for Biofortified Yellow Cassava: Evidence from Experimental Auctions in Nigeria”. HarvestPlus Working Paper, (13). June 2014.
[13]  Oparinde, A., Birol, E., Murekezi, A., Katsvairo, L., Diressie, M., Nkundiman, J., and Butare, L. Consumer Acceptance of Biofortified Iron Beans in Rural Rwanda: Experimental Evidence, HarvestPlus Working Paper, (18), March 2015.
[14]  Triplett, T. “Research probes how consumers rely on color for their purchases.” ,Marketing News, 29(18), 1, August 1995.
[15]  Troemel, E., Kimmel, B. and Bargmann, C. “Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans”, Cell, 91(12), 161-169, Oct 1997.
[16]  Moerbeek, H. and Casimir. G. “Gender differences in consumer’s acceptance of genetically modified foods”, International Journal of Consumer Studies, 29 (4), 308-318. July, 2005.
[17]  Bray, JP. Consumer behavior theory: Approaches and models. Bournemouth University. Discussion paper. 2008.
[18]  De Groote, H., and Kimenju, S. C. “Comparing Consumer Preferences for Color and Nutritional Quality Maize: Application of a Semi-Double-Bound Logistic Model on Urban Consumers in Kenya.” Food Policy (Elsevier), 33 (4), 362-370. August 2008.
[19]  Muzhingi, T., Langyintou, A. Malaba, L. and Banzinger, M. “Consumer Acceptability of Yellow Maize Products in Zimbabwe.” Food Policy 33 (4), 352-361, August 2008.
[20]  Gobierno de Guatemala, Plan Hambre Cero, Gobierno de Guatemala, Ciudad de Guatemala, 2012.
[21]  Avila Pinto, R. Country Report: Guatemala. Financially Viable Media in Emerging and Developing Markets, World Association of Newspapers and News Publishers, 65-75, 2010.
[22]  Meullenet, J. F., Xiong, R. and Findlay, C. Multivariate and Probabilistic Analyses of Sensory Science Problems, Blackwell Publishing. Oxford, 256, 2007.
[23]  Hair, J. F., Jr., and W. C. Black. Cluster Analysis. Reading and Understanding More Multivariate Statistics, American Psychological Association, Washington D.C., 437, 1998.
[24]  Gifford, K., and Bernard, J. C. “Factor and Cluster Analysis of Willingness to Pay for Organic and Non-GM Food.” Journal of Food Distribution Research, 39 (2), July 2008.
[25]  Norusis, M. J. Cluster Analysis. Statistics 19 Statistical Procedures Companion, Pearson Education, Inc. Rancho Cordova, CA, USA, 2011.
[26]  Grameen Foundation. “Progress Out of Poverty Index”, February 2015. [online]. Available at: [Accessed July22, 2014]
[27]  Meenakshi, J. V., Banerji, A. Manyong, Tomlins, V. K. Mittal, N. and Hamukwala, P. “Using a Discrete Choice Experiment to Elicit the Demand for a Nutritious Food: Willingness to Pay for Orange Maize in Rural Zambia.”, Journal of Health Economics, 31(1), 62-71. January 2012.
Show Less References


Changes in Bacterial Counts and Biogenic Amines during the Ripening of Salted Anchovy (Engraulis encrasicholus)

1Laboratory of Analysis and Control of Chemical and Microbiological of Environmental Pollutants, Faculty of Pharmacy, Monastir, Tunisia

2Department for the Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal

Journal of Food and Nutrition Research. 2016, 4(5), 318-326
doi: 10.12691/jfnr-4-5-8
Copyright © 2016 Science and Education Publishing

Cite this paper:
Souheil Ben Mohamed, Rogério Mendes, Rihab Ben Slama, Patricia Oliveira, Helena Alves Silva, Amina Bakhrouf. Changes in Bacterial Counts and Biogenic Amines during the Ripening of Salted Anchovy (Engraulis encrasicholus). Journal of Food and Nutrition Research. 2016; 4(5):318-326. doi: 10.12691/jfnr-4-5-8.

Correspondence to: Souheil  Ben Mohamed, Laboratory of Analysis and Control of Chemical and Microbiological of Environmental Pollutants, Faculty of Pharmacy, Monastir, Tunisia. Email:


Samples of salted anchovies (Engraulis encrasicholus) were taken at different stages during industrial ripening. The changes of bacterial counts and biogenic amines (histamine, tyramine, agmatine, putrescine, and cadaverine) contents were studied throughout the process. Bacterial growth was generally inhibited during ripening, with the occurrence of Enterobacteriaceae spp., probably related to hygienic failures. The changes in biogenic amines showed a decrease concentration trend, except with putrescine. The salt-ripened anchovy fillets exhibited low bacterial load (0.01-1.85 log CFU/g) and moderate biogenic amine contents (1.05-33.5 mg/kg). Relevant amine quality indicators such as histamine and tyramine showed levels, respectively, lower than those of the regulation and recommendation. This study indicated also that samples of salt-ripened anchovy fillets can be considered as safe.



[1]  Santos, M.H.S, Biogenic amines: Their importance in foods. Int J of Food Microbiol, 29, 213-231. 1996.
[2]  Brink, B., Damink, C., Joosten, H.M. and Huis in ’t Veld, J.H, Occurrence and formation of biologically active amines in foods. Int J Food Microbiol, 11(1). 73-84. 1990.
[3]  Stratton, J.E., Hutkins, R.W. and Taylor, S.L, Biogenic amines in cheese and other fermented foods: a review. J Food Prot, 54. 460-470. 1991.
[4]  Til, H.P., Falke, H.E., Prinsen, M.K. and Willems M.I, Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats, Food Chem Toxicol, 35. 337-348. 1997.
[5]  Smith, T.A, Amines in food. Food Chemistry, 6. 169-200. 1981.
Show More References
[6]  Halász, A., Baráth, Á., Simon-Sakardi, L. and Holzapfel, W.H, Biogenic amines and their production by microorganisms in food. Trends Food Sci & Techn, 5. 42-49. 1994.
[7]  Zarei, M., Najafzadeh, H., Enayati, A. and Pashmforoush, M, Biogenic amines content of canned tuna fish marketed in Iran, American-Eurasian J.Toxicol, Sci. 3. 190-193. 2011.
[8]  Tunisian Minister of Agriculture, Water Resources and fishing, Order of the Minister of Agriculture, Water Resources and fishing dated 26 Marsh 2010, amending and completing the order dated 19 September 1998, fixing the methods of sanitary control and monitoring of the conditions of production of fishery products ant their release for the market. Off Gazette of the Rep of Tunisia 26. 861-868. 2010.
[9]  European Union, Commission Regulation (EU) No 1019/2013 of 23 October 2013 amending annex I to regulation EC No 2073/2005 as regards histamine in fishery products. Off J European Union, 282. 46-47. 2013.
[10]  Food and Agriculture Organization, Fishery and Aquaculture Statistics. FAO Year Book, Rome, Italy. 105 p. 2014.
[11]  Pertierra, J.P. and J. Lleonart.- NW Mediterranean anchovy fisheries. In: I. Palomera and P, Rubiés, Eds., The European Anchovy and its Environment. Scient. Mar., 60 (supl.2). 257-267. 1996.
[12]  Ben Abdallah, L. and Gaamour. A, Répartition géographique et estimation de la biomasse des petits pélagiques des côtes Tunisiennes. In: D. Levi, T. Bahri, G. Basilone, L. Ben Abdallah, A. Bonanno, A. Gaamour, B. Patti and R. Zarrad (eds), Rep. Expert consulting on Small Pelagic Fishes, Stock identification and oceanographic processes influencing their abundance and distribution. MedSudMed Tech Doc n° 5. 48-66. 2004.
[13]  Triqui, R. and Reineccius, G.A, Flavor development in the ripening of anchovy (Engraulis encrasicholus L.). J Agric Food Chem, 43. 453-458. 1995.
[14]  Pérez-Villarreal, B. et Pozo, R, Ripening of the salted anchovy (Engraulis encrasicolus): Study of the sensory, biochemical and microbiological aspects. In: Huss, HH et al. (Eds.). Quality Assurance in the Fish Industry. Elsevier. 1992, 157-167.
[15]  Campello, F, Approche microbiologique de l’anchoitage (Microbiological approach of the maturation of Mediterranean anchovies). Rev Trav Inst Peches Marit 47. 217-226. 1985.
[16]  Hernández-Herrero, M.M., Roig-Sagues, A.X., López-Sabater E.I., Rodriguez-Jerez, J.J. and Mora-Ventura, M.T, Influence of Raw Fish Quality on Some Physicochemical and Microbial Characteristics as Related to Ripening of Salted Anchovies (Engraulis encrasicholus L). J Food Sci, 67 (7). 2631-2640. 2002.
[17]  Murray, C.K., Hobbs, G., and Gilbert, R.J, Scombrotoxin and scombrotoxin-like poisoning from canned fish. J Hygiene Cambridge, 88. 215-220. 1982.
[18]  Hernández-Herrero, M.M., Roig-Sagues, A.X., López-Sabater E.I., Rodriguez-Jerez, J.J. and Mora-Ventura, M.T, Total volatile basic nitrogen and other physicochemical and microbiological characteristics as related to ripening of salted anchovies. J Food Sci, 64 (2). 344-347. 1999.
[19]  Lee, H., Kim, S., Wei, C., Ho. Jun, S., Eun, J., An, H, Histamine and other biogenic amines and bacterial isolation in retail canned anchovies. J Food Sci, 70 (2). 145-150. 2005.
[20]  Burt, J.R. and Hardy, R, Composition and deterioration of pelagic fish. In: Pelagic Fish: the Resource and its Explotation, Cap. 9. Ed.: Burt, JR; Hardy, R; Whittle, KJ. Fishing New Books, Oxford, Reino Unido. 1992, 115-141.
[21]  Veciana-Nogués, M.T., Vidal-Carou, M.C, and Mariné-Font, A, Histamine and tyramine in preserved and semi-preserved fish products. J Food Sci, 54. 1653-1655. 1989.
[22]  Pons-Sánchez-Cascado, S., Veciana-Nogués, M.T., Bover-Cid, S., Mariné-Font, A., and Vidal-Carou, M.C, Volatile and biogenic amines, microbiological counts, and bacterial amino acid decarboxylase activity throughout the salt-ripening process of anchovies (Engraulis encrasicholus). J Food Prot, 68. 1683-1689. 2005.
[23]  Karaçam, H., Kutlu, S., and Köse, S, Effect of salt concentrations and temperature on the quality and shelf-life of brined anchovies. Int J Food Sci Technol, 37. 19-28. 2002.
[24]  Bover-Cid, S, and Holzapfel, W.H, Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol, 53 (1). 33-41. 1999.
[25]  Veciana-Nogués, M.T., Hernandez-Jover, T., Mariné-Font, A, and Vidal-Carou, M.C, Liquid chromatographic method for determination of biogenic amines in fish and fish products. J AOAC Int, 78 (4). 1045-1050. 1995.
[26]  Rodríguez-Jerez, J.J., Lopez-Sabater, E.I., Roig-Sagues, A.X, and Mora-Ventura, M.T. Evolution of histidine decarboxylase bacterial groups during the ripening of Spanish semi-preserved anchovies. J Vet Med Ser B, 40. 533-543. 1993.
[27]  Martinez, A, and Gildberg, A, Autolytic degradation of belly tissue in anchovy (Engraulis encrasicholus). Int J Food Sci Technol, 23. 185-194. 1988.
[28]  Pons-Sánchez-Cascado, S., Bover-Cid, S., Veciana-Nogués, M.T, and Vidal-Carou, M.C, Amino acid-decarboxylase activity of bacteria isolated from ice-preserved anchovies. European Food Res Technol, 220. 312-315. 2005.
[29]  Pons-Sánchez-Cascado, S., Veciana-Nogués, M.T. and Vidal-Carou, M.C, Effect of delayed gutting on biogenic amine contents during ripening of European anchovies. Eur Food Res Technol, 216. 489-493. 2003.
[30]  Filsinger, B., Sisti, E. and Bergamaschi, N.J, Technical note: chemical and sensory assessments in ripened anchovies. Int J Food Sci Technol, 22. 73-76. 1987.
[31]  Wheaton, F.W. and Lawson, T.B, Other preservation methods. In: Processing Aquatic Food Products. John Wiley & Sons Press, New York. 1985. 273-328.
[32]  Vieites, J.M., Gonza´lez, V., Delgado, M.L. and Leira, F, Study of microbiological parameters associated with the ripening of anchovies (Engraulis encrasicholus). Alimentaria, 275. 121-126. 1996.
[33]  Prescott, L.M., Harley, J.P. and Klein, D.A, Microbiology. 3rd edition, Wm. C. Brown Publishers, Dubuque IA. 1996, 880-885.
[34]  Hernández-Herrero, M.M., Roig-Sagues, A.X., Rodriguez-Jerez, J.J. and Mora-Ventura, M.T, Halotolerant and halophilic histamine-forming bacteria isolated during the ripening of salted anchovies. J Food Prot, 62 (5). 509-514. 1999.
[35]  Vieites, J.M., González-Herrero, V. Leira-Sanmartin F, Análisis microbiologico de semiconservas de anchoa en salazón y en aceite fabricadas en Espanã (Microbiological analysis of Spanish semipreserved anchovies packed with oil or with brine). Alimentaria, 266. 61-64. 1995.
[36]  Kim, S.H., Eun, J.B., Chen, TY, Wei, C.I., Clemens, R.A., and An, H, Evaluation of histamine and other biogenic amines and bacterial isolation in canned anchovies recalled by the USFDA. J Food Sci, 69. M157-62. 2004.
[37]  Baross, J.A. and Lenovich, M, Halophilic and osmophilic microorganisms. in Compendium of Methods for the Microbiological Examination of Foods. C. Vanderzant and D.F. Splittstoesser (Ed.), American Public Health Association, Washington, DC. p. 199-212. 1992.
[38]  Bensalma, M.F, Contribution à l’étude de l’anchoitage du poisson. Etude physico chimique et bactériologique. Mémoire de 3ème cycle en Industries Agro Alimentaires. Institut Agronomique et Vétérinaire Hassan II, Rabat, Maroc. 1996.
[39]  Chaouqy, N.E. and El Marrakchi, A, Aspects chimiques et bactériologiques de l’anchois (Engraulis encrasicholus) entreposé sous glace et à moyenne température (20-25°C). Revue Méd Vét, 156 (6). 341-349. 2005.
[40]  Veciana-Nogués, M.T., Albal-Hurtado, S., Mariné-Font, A., and Vidal-Carou, M.C, Changes in biogenic amines during the manufacture and storage of semipreserved anchovies. J Food Prot, 59. 1218-1228. 1996.
[41]  Draisci, R., Volpe, G., Lucentini, L., Cecilia, A., Federico, R. and Palleschi, G, Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies. Food Chem, 62 (2). 225-232. 1998.
[42]  Draisci, R., Marchiafava, C., Cecilia, A., Palleschi, L., Augelli, R. and Calvalli, S, Biogenic amines in semi-preserved anchovies as affected by processing. Italian J Food Sci, 4 (l.11). 347-354. 1999.
[43]  Fuselli, S.R., Casales, M.R. Fritz, R. and Yeannes, M.I, Microbiology of the marination process used in anchovy (E. anchoita) production. Lebensm Wiss Technol, 27. 214-218. 1994.
[44]  Bardócz, S., Duguid, T.J., Brown, D.S., Grant, G., Pusztai, A., White, A. and Ralph, A, The importance of dietary polyamines in cell regeneration and growth, Br J Nutr 73. 819-828. 1995.
[45]  Pons-Sánchez-Cascado, S., Vidal-Carou, M.C. Mariné-Font, A. and Veciana-Nogués, M.T, Influence of the freshness grade of raw fish on the formation of volatile and biogenic amines during the manufacture and storage of vinegar-marinated anchovies. J Agric Food Chem, 53. 8586-8592. 2005.
[46]  Food and Drug Administration, Scombrotoxin (histamine) formation. In Fish and fishery products hazards and controls guide (3rd ed.). Washington, DC: Department of Health and Human Services, Public Health Service, Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Seafood. pp. 73–93. 2001.
[47]  Kirschbaum, J., Rebscher, K. and Brückner, H, Liquid chromatographic determination of biogenic amines in fermented foods after derivatization with 3,5- dinitrobenzoyl chloride. J Chromatogr A, 88. 1517-30. 2000.
[48]  Sebastio, P., Ambroggi, F., Baldrati, G., Gola, S., Saccani, G., Draisci, R. and Lucentini, L, II rischio igienico-sanitario correlato alla presenza d’istamina nella filiera produttiva delle semiconserve di acciughe (Engraulis encrasicholus L.) [The hygienic-sanitary risk associated with the presence of histamine in the manufacture of anchovy semipreserves (Engraulis encrasicholus L.)]. Ind Conserve, 73. 192-205. 1998.
[49]  Sanceda, N.G., E. Suzuki, Ohashi M. and Kurata, T, Histamine behavior during the fermentation process in the manufacture of fish sauce. J Agric Food Chem, 47. 3596-3600. 1999.
[50]  Veciana-Nogués, M.T., Mariné-Font, A. and Vidal-Carou, M.C. Changes in biogenic amines during the storage of Mediterranean anchovies immersed in oil. Agric Food Chem, 45. 1385-1389. 1997.
[51]  El Filali, F., Hanoune, S., Khbaya, B., Bou M'Handi, N. and Kaaya A, Histamine and microbiological change during the storage of semi-preserved anchovies, in Second workshop on fish technology, utilization and quality assurance in Africa, FAO Fisheries and Aquaculture Report, 2009, n° FIIU/R 904 (Bi), 133-137.
[52]  Karnop, G, Histamine in salted anchovies. Archives für lebensmittel hygiene, 39. 67-73. 1988.
[53]  Nei, D, Evaluation of non-bacterial factors contributing to histamine accumulation in fish fillets. Food Control, 35. 142-145. 2014.
[54]  Ministerio de Sanidad y Consumo, Directiva del 15 de Agosto 1991, Orden del 2 de Agosto de 1991 por la que se aprueban las normas microbiológicas, los limites de contenido en metales pesados y los métodos analíticos para la determinación de metales pesados para los productos de la pesca y de la acuicultura. Bol. Of. Estado 195. 27513-27515. 1991.
[55]  Nout, M.J.R, Fermented foods and food safety. Food Research Int, 27 (3). 291-298. 1994.
[56]  Tunisian Minister of Agriculture, Water Resources and fishing, Order of the Minister of Agriculture, dated 03 Marsh 2001, fixing sanitary rules for self-control for fishery products. Off Gazette of the Rep of Tunisia 21. 524-528. 2001.
[57]  Veciana-Nogués, M.T., Mariné-Font, A. and Vidal-Carou, M.C, Biogenic amines as hygienic quality indicators of tuna. Relationship with microbial counts, ATP-related compounds, volatile amines and organoleptic changes. J Agric Food Chem, 45. 2036-2041. 1997.
[58]  European Food Safety Authority, Scientific opinion on (risk) based control of biogenic amine formation in fermented foods. EFSA J, 9 (10), 2393. 93 p. 2011.
Show Less References


Pumpkin Peel Flour (Cucurbita máxima L.) – Characterization and Technological Applicability

1Food Technology Departament, Federal University of Goiás, Box 131, CEP 74690-900, Goiânia, Goiás, Brazil

2Agronomy Departament, Federal University of Goiás, Box 131, CEP 74690-900, Goiânia, Goiás, Brazil

Journal of Food and Nutrition Research. 2016, 4(5), 327-333
doi: 10.12691/jfnr-4-5-9
Copyright © 2016 Science and Education Publishing

Cite this paper:
Ana Carolina Burger Staichok, Kamylla Rayssa Barros Mendonça, Pâmella Guerra Alves dos Santos, Lismaíra Gonçalves Caixeta Garcia, Clarissa Damiani. Pumpkin Peel Flour (Cucurbita máxima L.) – Characterization and Technological Applicability. Journal of Food and Nutrition Research. 2016; 4(5):327-333. doi: 10.12691/jfnr-4-5-9.

Correspondence to: Clarissa  Damiani, Food Technology Departament, Federal University of Goiás, Box 131, CEP 74690-900, Goiânia, Goiás, Brazil. Email:


The objectives of this paper were both the production and the characterization of flour from pumpkin peel as well as the development of breads with partial addition of the flour obtained from pumpkin peel substituting wheat flour. The characterization of the pumpkin peel flour revealed high protein content and good milk solubility index. We developed the following formulations: standard bread, bread with only wheat flour, and breads with 2.5 percent and five percent of pumpkin peel flour. The results demonstrated significant difference (p < 0.05) among the formulations regarding protein, ashes, carbohydrates, and caloric value. The texture parameters, in turn, indicated difference regarding cohesiveness and elasticity for the breads produced with 2.5 percent and five percent pumpkin peel flour. Specific volume and diameter also presented significant differences among the formulations. The manufacturing of breads with pumpkin peel flour is a healthy food alternative regarding the reuse of peels to reduces food waste. The formulation with the most satisfactory results among the analyses conducted involved the bread with five percent substitution with pumpkin peel flour.



[1]  EMBRAPA. “Catálogo Brasileiro de Hortaliças”. Brasília, DF: Embrapa Hortaliças, 2010. Disponível em: [Accessed March. 5, 2015.
[2]  Monteiro, B.A. “Nutritional value of conventional and unconventional parts of fruits and vegetables”. Dissertation, Paulista State University, 2009.
[3]  AOAC - Association of Official Analytical Chemists. Official Methods of Analysis. 18th edition, 3th Review, Washington: AOAC International, 2010.
[4]  Anderson, R.A. et al. “Gelatinization of corn grits by roll and extrusion cooking”. Cereal Science Today, 14 (1), 4-11, 1969.
[5]  Merrill, A.L., Watt, B.K. “Energy value of foods: basis and derivation”. Washington, DC: United States Department of Agriculture. 1973.
Show More References
[6]  AACC. American Association of Cereal Chemists. Approved Methods of the American Association of Cereal Chemists. USA: AACC, 2000.
[7]  El-Dash, A.A., Camargo, C.O. and Diaz, N.M. Fundamentals of Baking technology. Secretaria da Indústria Comércio e Tecnologia: São Paulo, 1982, p.1-243.
[8]  ESCOUTO, L.F.S. “Preparation and sensory evaluation mass premix for gluten-free bread energy from cassava derivatives”. Thesis, Faculty of Agricultural Sciences, UNESP, 2004.
[9]  BRASIL. Agência Nacional de Vigilância Sanitária - ANVISA. Resolução n° 263, de 22 de setembro de 2005 – Regulamento Técnico para produtos de cereais, amidos, farinhas e farelos. Diário Oficial da República Federativa do Brasil, Brasília, DF, set. 2005.
[10]  El-Dash, A. and Germani, R. Technology mixed flours: use of mixed flour of wheat and corn in the production of bread. EMBRAPA – SPI: Brasília, 1994. 81 p.
[11]  Achu, M.B., Fokou, E., Tchiégang, C., Fotso, M. and Tchouanguep, F.M. “Nutritive value of some Cucurbitaceae oilseeds from different regions in Cameroon”. African Journal of Biotechnology, 4 (11), 1329-1334, 2005.
[12]  NEPA - Núcleo de Estudos e Pesquisas em Alimentação da UNICAMP Tabela brasileira de composição de alimentos: TACO: Campinas, 2011. 161 p.
[13]  Santangelo, S.B. “Use pumpkin seed meal (Cucurbita maxima, L.) panettone”. Dissertation, Rural Federal University of Rio de Janeiro, 2006.
[14]  Couto, E.M. et al. Chemical characterization of the flour Pequi. In: 14th Congresso Pós-Graduandos da UFLA, Lavras, UFLA, 2005.
[15]  Amorim, A.G., Sousa, T.A. and Souza, A.O. Determination of pH and titratable acidity of pumpkin seed meal (Cucurbita máxima). In: 7th Congresso Norte Nordeste de Pesquisa e Inovação, Palmas: IF-Sertão, 1-6, 2012.
[16]  Freire, L.S., Freitas, A.K.N., Paz, H.C., Silva, M.J.M. and Pires, R.M.C. Determination of pH and water activity in yellow passion fruit peel flour (Passiflora edulis f. flavicarpa). 5th Simpósio de segurança alimentar. Bento Gonçalves: RS, 1-5, 2015.
[17]  Piekarski, F.V.B.W. “Pumpkin Sheet: physical-chemical, mineral and effect of the addition in the mass rheology and sensory quality of bread containing dietary fiber”. Dissertation, Federal University of Paraná, 2009.
[18]  Chisté, R.C., Cohen, K.O., Mathias, E.A. and Ramos Júnior, A.G.A. “Quality of cassava flour from a dry group”. Food Science and Technology, 26 (4), 861-864, 2006.
[19]  Fernandes, A.F., Pereira, J., Germani, R. and Oiano-Neto, J. “Effect of the partial replacement of wheat flour for potato skin flour (Solanum Tuberosum L.)”. Food Science and Technology, 28 (Supl.), 55-56, 2008.
[20]  Couto, E.M. “Using pequi shell flour (Caryocar brasiliense Camb.) In the preparation of pan bread”. Dissertation, Federal University of Lavras, 2007.
[21]  Fiorda, F.A., Júnior, M.S.S., Silva, F.A. and Souto, L.R.F., Grossmann, M.V.E. (2013). “Cassava bagasse flour: use of by-product and comparison with cassava starch.” Pesquisa Agropecuária Tropical, 43 (4), 408-416, 2013.
[22]  Ferreira, S.M. “Enzymatic modification of broken grains of rice flour for food production without gluten”. Dissertation, Federal University of Goiás, 2012.
[23]  BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. “Resolução RDC n. 90, de 18 de outubro de 2000” - Regulamento técnico para fixação de identidade e qualidade de pão. Diário Oficial da República Federativa do Brasil, Brasília, DF, out. 2000.
[24]  Doxastakis, G., Zafiriadis, I., Irakli, M., Marlani, H. and Tananaki, C. “Lupin, soya and triticale addition to wheat fl our doughs and their effect on rheological properties”. Food Chemistry, 77 (2), 219-227, 2002.
[25]  Maforimbo, E., Skurray, G., Uthayakumaran, S. and Wrigley, C.W. “Improved functional properties for soywheat doughs due to modification of the size distribution of polymeric proteins”. Journal of Cereal Science, 43 (2), 223-229, 2006.
[26]  Ribotta, P.D., Arnulphi, S., Leon, A.E. and Anon, M.C. “Effect of soybean addition on the rheological properties and breadmaking quality of wheat flour”. Journal of the Science of Food and Agriculture, 85 (11), 1889-1896, 2005.
[27]  Roccia, P., Ribotta, P.D., Perez, G.T. and Leon, A.E. “Influence of soy protein on rheological properties and water retention capacity of wheat gluten”. LWT - Food Science and Technology, 42 (1), 358-362, 2009.
[28]  Queji, M.F.D., Schemin, M.H. and Trindade, J.L.F. “Rheological properties of wheat dough with added alpha-amylase”. Ciências Exatas e da Terra, Ciências Agrárias e Engenharias, 12 (2), 21-29, 2006.
[29]  Oliveira, T.M., Pirozi, M.R. and Borges, J.T.S. “Use of flaxseed and wheat composite flour in bread making”. Alimentos e Nutrição, 18 (2), 141-150, 2007.
[30]  Škrbić, B., Milovac, S., Codig, D. and Filipčev, B. “Effects of hull-less barley fl our and flakes on bread nutritional composition and sensory properties”. Food Chemistry, 115 (3), 982-988, 2009.
[31]  Szczesniak, A.S. “Texture is a sensory property”. Food Quality and Preference, 13 (4), 215-225, 2002.
[32]  Moreira, M.R. “Premix preparation for gluten-free bread for coeliacs”. Dissertation, Federal University of Santa Catarina, 2007.
[33]  Mohammed, I., Ahmed, R.A. and Senge, B. “Dough rheology and bread quality of wheat– chickpea flour blends”. Industrial Crops and Products, 36 (1), 196-202, 2012.
[34]  Morris, C. and Morris, G.A. “The effect of inulin and fructo-oligosaccharide supplementation on the textural, rheological and sensory properties of bread and their role in weight management: a review”. Food Chemistry, 133 (2), 237-248, 2012.
[35]  Gutkoski, L. C., Velloso, C.B., Dório, C.T., Silveria, A.A. and Bonafé, L.Z. “Use of mixed wheat flour and oats in baked goods: breads type form, salt and pre-pizza”. Boletim CEPPA, 11 (1), 33-45, 1993.
[36]  Freitas, R.E., Stertz, S.C. and Waszczynskyj, N. “Viability of the production of bread, using mixed wheat flour and cassava in different proportions”. Boletim CEPPA, 15 (2), 197-208, 1997.
Show Less References