Journal of Food and Nutrition Research

ISSN (Print): 2333-1119

ISSN (Online): 2333-1240

Editor-in-Chief: Prabhat Kumar Mandal




Omega-3, 6 and 9 Fatty Acids Composition and Lipid Content from Liver and Muscle Tissues of Spiny Lobster (Panulirus homarus) in the Persian Gulf

1Faculty of Biological Sciences, Shahid Beheshti University, Tehran, Iran

2Department of Chemistry, Science & Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran, Iran

3Department of Marine Sciences and Technology, Science & Research Branch, Islamic Azad University, Tehran, Iran

Journal of Food and Nutrition Research. 2017, 5(1), 27-30
doi: 10.12691/jfnr-5-1-5
Copyright © 2017 Science and Education Publishing

Cite this paper:
Keivandokht Samiee, Abdolhossein Rustaiyan, Farnaz Keshavarz. Omega-3, 6 and 9 Fatty Acids Composition and Lipid Content from Liver and Muscle Tissues of Spiny Lobster (Panulirus homarus) in the Persian Gulf. Journal of Food and Nutrition Research. 2017; 5(1):27-30. doi: 10.12691/jfnr-5-1-5.

Correspondence to: Keivandokht  Samiee, Faculty of Biological Sciences, Shahid Beheshti University, Tehran, Iran. Email:


In this investigation, the liver and muscle tissues of Panulirus homarus from Bushehr region in the Persian Gulf in Aug 2013 were separately extracted for their lipid content especially omega-3, 6 and 9 fatty acids composition using the method of Blight & Dyer. The compounds were determined by Gas Chromatography-Mass Spectrometry (GC- MS). The components detected in the liver and muscle tissues, include saturated fatty acid Palmitic acid, monounsaturated fatty acid Oleic acid, polyunsaturated fatty acids Arachidonic acid (AA), Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA), andone methyl ester of fatty acids including Octadecanoic acid, methyl ester. The results showed that Eicosapentaenoic acid and Palmitic acid were the composition dominant fatty acids in the species.



[1]  Allen KG and Harris MA, 2001. The role of n-3 fatty acids in gestation and parturition. Exp. Biol. Med. (Maywood) 226(6): 498-506.
[2]  Anneken D, Sabine B, Christoph R, Fieg G, Steinberne U, Westfechte A, 2006. Fatty Acids in Ullmanns Encyclopedia of Industrial chemistry 2006, Wiley-VCH, Weinheim.
[3]  Blight EG, and Dyer WJ, 1959. A rapid method of total lipid extraction and purification.Can. J. Biochem. Physiol. 37, 911-917.
[4]  Bousquet M, Saint-Pierre M, Julien C, Salem N, Cicchetti F and Calon F, 2008. Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson¡¯s disease. The FASEB Journal, 22: 1213-1225.
[5]  Butler M, Cockcroft A and Mac Diarmid A, 2009. ¡°Panulirus homarus¡±. IUCN Red List of Threatened Species. Version 3.1. International Union for Conservation of Nature. Retrieved August 22, 2011.
Show More References
[6]  Calo L, Bianconi L, Colivicchi F, et al., 2005. N-3 fatty acids for the prevention of atrial fibrilliation after coronary artery bypass surgery. JAM Coll Cardio. 45: 1723-8.
[7]  Chan T, 2010. ¡°Panulirus homarus (Linnaeus, 1758).¡± World Register of Marine Species. Retrieved June 1, 2010.
[8]  Chattipakorn N, Settakorn J et al., 2009.Cardiac mortality is associated with low levels of Omega-3 and Omega-6 fatty acids in the heart of cadavers with a history of coronary heart disease. Nutr Res. 29 (10); 696-704.
[9]  Cunnane SC, Plourde M, Pifferi F, B¨¦gin M, F¨¦art C and Barberger-Gateau P, 2009. Fish, docosahexaenoic acid and Alzheimer¡¯s disease. Progress in Lipid Research 48(5): 239-25.
[10]  Cunnane SC1, Schneider JA, Tangney C, Tremblay-Mercier J, Fortier M, Bennett DA, Morris MC, 2012. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis. 29:691-7.
[11]  David L and Michael M, 2005. Principles of Biochemistry. (W. H. Freeman), New York.
[12]  Frenoux JR, Pros ED, Bellelle JL and Prost JL, 2001. A polyunsaturated fatty acid diet lowersblood pressure and improves antioxidant status in spontaneously hypertensive rate. Journal of Nutrition 131: 39-45.
[13]  Gil A, 2002. Polyunsaturated fatty acids and inflammatory disease. Biomed. Pharmacother., 56: 388-396.
[14]  Grimm H, Mayer K, Mayser P, and Eigenbrodt E, 2002. Regulatory potential of n-3 fatty acids in immunological and inflammatory processes. Br. J. Nutr. 87 Suppl 1:S59:67.
[15]  Guesnet P, Alessandri JM, 2011, ¡°Docosahexaenoic acid (DHA) and the developing central nervous system (CNS)- Implications for dietary recommendations¡±. Biochimie 93 (1): 7-12.
[16]  Harbige LS and Fischer BA, 2001. Dietary fatty acid modulation of mucosally-induced tolerogenic immune responses. Proc. Nutr. Soc. 60(4): 449-456.
[17]  Hardman WE, 2002. Omega-3 fatty acids to augment cancer therapy. J. Nutr. 132 (11 Suppl): 3508S-3512S).
[18]  Kato T, Hancock RL, Mohammadpour H, McGregor B, Manalo P, Khaiboullina S, Hall MR, Pardini L, Pardini RS ,2002. ¡°Influence of omega-3 fatty acids on the growth of human colon carcinoma in nude mice¡±. Cancer Lett. 187 (1-2): 169-77.
[19]  Khain VE, Gadjiev AN, Kengerli TN, 2007. ¡°Tectonic origin of the Apsheron Threshold in the Caspian Sea¡±. Doklady Earth Sciences 414: 552-556.
[20]  Kris-Etherton P, Eckel RH, Howard BV, St. Jeor S and Bazzare TL, 2001. AHA Science Advisory: Lyon Diet Heart Study. Benefits of a Mediterranean-style, National Cholesterol Education Program/American Heart Association Step I Dietary Pattern on Cardiovascular Disease.
[21]  Reiffel JA, Mc Donald, 2006. ¡°Antiarrhythmic effects of omega-3 fatty acids¡±. The American Journal of Cardiology 98 (4A): 50i-60i.
[22]  Rees D, Miles EA, Banerjee T, Wells SJ, Roynette CE, 2006. Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: a comparison of young and older men. AM J Clin Nutr, 83:331-42, 2006.
[23]  Rustaiyan A, Samiee K and, Shahbazi S, 2016. identification of omega-3, 6 and 9 fatty acids composition and lipid content from muscle tissue of ophionereis dubia (y-striped brittle star) in qeshm island of the persian gulf. ejpmr ,3(11), 138-142.
[24]  Samiee K, Rustaiyan A and, Golchehreh M, 2016. Identification of omega-3, 6 and 9 fatty acids composition and lipid content in liver and muscle tissues of salmo salar in the south of the caspian sea. ejpmr, 3(11), 143-147.
[25]  Schonberg SA, Lundemo AG, Fladvad T, Holmgren K, Bremseth H, Nilsen A, Gederaas O, Tvedt KE, Egeberg KW, Krokan HE ,2006. ¡°Closely related colon cancer cell lines display different sensitivity to polyunsaturated fatty acids, accumulate different lipid classes and down regulate sterol regulatory element-binding protein 1¡±. Cancer Lett. 273 (12): 2749-65.
[26]  Simopoulos AP, 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 56(8): 365-79.
[27]  Song C, Zhao S, 2007. ¡°Omega-3 fatty acid eicosapentaenoic acid. A new treatment for psychiatric and neurodegenerative diseases: a review of clinical investigations¡±. Expert OpinInvestig Drugs 16 (10): 1627-38.
[28]  Stampfer MJ, Hu FB, Manson JE, Rimm EB and Willett WC, 2000. Primaryprevention of coronary heart disease in women through diet and lifestyle. N. Engl. J. Med., 343:1:16-22.
[29]  Teres S, Barcelo-Coblijn G, Benet M, Alvarez R, Bressani R et al., 2008. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. PNAS 2008, 105 (37); 13811-6.
[30]  Williams KC, 2009. Spiny lobster aquaculture in the Asia-Pacific region. Proceedings of an international symposium held at NhaTrang, Vietnam, 9-10 December, 2008. ACIAR Conference Proceedings No. 132. Australian Centre for International Agricultural Research, Canberra. 162pp.
Show Less References


Biochemical Compositions and Biological Activities of Extracts from 3 Species of Korean Pine Needles

1Gyeongbuk Institute for Marine Bio-Industry, Uljin, Republic of Korea

2South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea

3Korea Marine Environment Management Corporation, Seoul, Republic of Korea

4Department of Life Science and Biotechnology, Shingyeong University, Hwaseong, Republic of Korea

Journal of Food and Nutrition Research. 2017, 5(1), 31-36
doi: 10.12691/jfnr-5-1-6
Copyright © 2017 Science and Education Publishing

Cite this paper:
So Jung Kim, So Yun Park, Juyun Lee, Man Chang, Youngjae Chung, Taek-Kyun Lee. Biochemical Compositions and Biological Activities of Extracts from 3 Species of Korean Pine Needles. Journal of Food and Nutrition Research. 2017; 5(1):31-36. doi: 10.12691/jfnr-5-1-6.

Correspondence to: Taek-Kyun  Lee, South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea. Email:


Crude extracts of pine needles have long been used as a health-food and for cosmetics. In this study, we determined the biochemical composition and biological activities of extracts from three pine species: red pine (RP, Pinus densiflora S et Z), Keumkang pine (KP, Pinus densiflora for. erecta) and sea pine (SP, Pinus thunbergii). The SP extract had the highest levels of moisture, ash, crude protein, and lipids based on the dry weight. The SP extract also had the highest level of polyunsaturated fatty acids (PUFAs). The SP extract had much more β-pinene, β-caryophyllene, and germacrene-D than extracts from the other species. Total phenolic content was the highest in the 100% ethanol extract of SP, and the 50% ethanol extract of SP had the highest DPPH radical scavenging activity. The SP extract had the greatest antimicrobial effect. These results indicate that SP has the greatest potential as a natural antioxidant resource and raw material for cosmetic-goods.



[1]  Park YS, Jeon MH, Hwang HJ, Park MR, Lee SH, Kim SG, Kim M. “Antioxidant activity and analysis of proanthocyanidins from pine (Pinus densiflora) needles,” Nutr Res Pract, 5(4), 281-287, 2011.
[2]  Graikou K, Gortzi O, Mantanis G, Chinou I. “Chemical composition and biological activity of the essential oil from the wood of Pinus heldreichii Christ. var. leucodermis,” Eur J Wood Prod, 70, 615-620, 2012.
[3]  Lee WK, Biging GS, Son Y, Byun WH, Lee KH, Son YM, Seo JH. “Geostatistical analysis of regional differences in stem taper form of Pinus densiflora in central Korea,” Eco Res, 21, 513-525, 2006.
[4]  Park GY, Paudyal D, Hwang ID, Tripathi G, Yang YK, Cheong HS. “Production of fermented needle extracts from red pine and their functional characterization,” Biotechnol Bioprocess Eng, 13(2), 256-261, 2008.
[5]  Kim KY, Chung HJ. “Flavor compounds of pine sprout tea and pine needle tea,” J Agr Food Chem, 48, 1269-1272, 2000.
Show More References
[6]  Zeng WC, Zhang Z, Gao H, Jia LR, He Q. “Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara) ,” J Food Sci, 77(7), 824-829, 2012.
[7]  Maimoona A, Naeem I, Saddiqe Z, Jameel K. “A review on biological, nutraceutical and clinical aspects of French maritime pine bark extract,” J Ethnopharmacol, 133, 261-277, 2011.
[8]  Oh BT, Choi SG, Cho SH. “Antimicrobial & physiological characteristics of ethanol extract from Pinus rigida Miller leaves,” Korean J Food Preserv, 13(5), 629-633, 2006.
[9]  Lee E. “Effects of powdered pine needle (Pinus densiflora seib et Zucc.) on serum and liver lipid composition and antioxidative capacity in rats fed high oxidized fat,” J Korean Soc Food Sci Nutr, 32, 926-930, 2003.
[10]  Zeng WC, Zhang Z, Jia LR. “Antioxidant activity and characterization of antioxidant polysaccharides from pine needle (Cedrus deodara) ,” Carbohydr Polym, 8, 58-64, 2014.
[11]  Kwak CS, Moon SC, Lee MS. “Antioxidant, antimutagenic, and antitumor effects of pine needles (Pinus densiflora),” Nutr Cancer, 56(2), 162-171, 2006.
[12]  Apetrei CL, Spac A, Brebu M, Tuchilus C, Miron A. “Composition and antioxidant and antimicrobial activities of the essential oils of a full-grown Pinus cembra L. tree from the Calimani Mountains (Romania),” J Serb Chem Soc, 78(1), 27-37, 2013.
[13]  Wei A, Shibamoto T. “Antioxidant activities and volatile constituents of various essential oils,” J Agr Food Chem, 55, 1737-1742, 2007.
[14]  AOAC. Official method of Analysis of AOAC Intl. 16th ed. Association of official analytical chemists, Arlington. VA, USA 1995.
[15]  Folch J, Lees M, Sloane-Stanley GH. “A simple method for the isolation and purification of total lipids from animal tissues,” J Biol Chem, 226, 497-509, 1957.
[16]  Suh SS, Kim SJ, Hwang J, Park M, Lee TK, Kil EJ, Lee S. “Fatty acid methyl ester profiles and nutritive values of 20 marine microalgae in Korea,” Asian Pac J Trop Med, 8(3), 191-196, 2015.
[17]  Kim YS, Shin DH. “Volatile components and antibacterial effects of pine needle (Pinus densiflora S. and Z.) extracts,” Food Microbiol, 22, 37-45, 2005.
[18]  Parliament TH. Solvent extraction and distillation techniques. In: Marsili R. editor. Techniques for analyzing food aroma. Marcel Dekker Inc. New York, USA, 1997, 1-26.
[19]  Capannesi C, Palchetti I, Mascini M, Parenti A. “Electrochemical sensor and biosensor for polyphenols detection in olive oils,” Food Chem, 71, 535-562, 2000
[20]  Lu Y, Foo LY. “Antioxidant and radical scavenging activities of polyphenols apple pomace,” Food Chem, 68, 81-85, 2000.
[21]  Kim S, Woo S, Yun H, Yum S, Choi E, Do JR, Jo JH, Kim D, Lee S, Lee TK. “Total phenolic contents and biological activities of Korean seaweed extracts,” Food Sci Biotechnol, 14, 798-802, 2005.
[22]  Martino LD, Feo VD, Formisano C, Mignola E, Senatore F. “Chemical composition and antimicrobial activity of the essential oils from three chemotypes of Origanum vulgare L. ssp. hirtum (Link) Ietswaart growing wild in Campania (Southern Italy),” Molecules, 14, 2735-2746, 2009.
[23]  Zielinska A., Nowak I. “Fatty acids in vegetable oils and their importance in cosmetic industry,” CHEMIK, 68(2), 103-110, 2014.
[24]  Sa´nchez-Machado DI, Lo´pez-Cervantes J, Lo´pez-Herna´ndez J, Paseiro-Losada P. “Fatty acids, total lipid, protein and ash contents of processed edible seaweeds,” Food Chem, 85, 439-444, 2004.
[25]  Egert S, Somoza V, Kannenberg K, Fobker M, Krome K, Erbersdobler HF, Wahrburg U. “Influence of three rapeseed oil-rich diets, fortified with alpha-linolenic acid, eicosapentaenoic acid or docosahexaenoic acid on the composition and oxidizability of low-density lipoproteins: Results of a controlled study in healthy volunteers,” Eur J Clin Nutr, 61(3), 314-325, 2007.
[26]  Efstathia I, Aikaterini K, Olga T, Vassilios R. “The genus Pinus: a comparative study on the needle essential oil composition of 46 pine species,” Phytochem Rev, 13(4), 741-768, 2014.
Show Less References


Advantages of the Supplementation with both a Protein and Heme Hydrolyzate and Ionic Iron during Iron Deficiency Anemia

1Laboratorio de Antianémicos y Nutracéuticos, Centro Nacional de Biopreparados (BioCen), Carretera Beltrán km 11/2, Mayabeque, Cuba

2Departamento de Bioquímica, Facultad de Biología, Universidad de la Habana, Cuba

3Departamento de Biología Celular. Facultad de Ciencias, Universidad Nacional autónoma de México (UNAM), México DF, México

4Departamento de Fisiología, Facultad de Farmacia, Universidad de Granada, España

Journal of Food and Nutrition Research. 2017, 5(1), 37-47
doi: 10.12691/jfnr-5-1-7
Copyright © 2017 Science and Education Publishing

Cite this paper:
Yenela García, Olimpia Carrillo, René Cárdenas, Javier Díaz-Castro. Advantages of the Supplementation with both a Protein and Heme Hydrolyzate and Ionic Iron during Iron Deficiency Anemia. Journal of Food and Nutrition Research. 2017; 5(1):37-47. doi: 10.12691/jfnr-5-1-7.

Correspondence to: Yenela  García, Laboratorio de Antianémicos y Nutracéuticos, Centro Nacional de Biopreparados (BioCen), Carretera Beltrán km 11/2, Mayabeque, Cuba. Email:


Background: nutritional anemia caused by iron (Fe) deficiency is considered a major public health problem. Interventions to address nutritional anemia have been traditionally focused on supplementation with ionic Fe that causes gastrointestinal adverse effects. On the other hand, some nutritional studies have demonstrated the advantages of supplementation with both, a protein and heme hydrolyzate and ionic Fe. However there are few experimental and clinical evidences to conclude on the efficacy of this supplementation strategy to treat the Fe deficiency and anemia. Aim: is to know about the physiological and biochemical events proposed to explain the anemia recovery during a treatment with both a protein and heme hydrolyzate and ionic Fe during Fe deficiency anemia recovery. Results: some aspects related to the most recent events elucidated about the metabolism of both chemical forms of Fe were included in this work. Nutritional supplements that exist from both, a protein hydrolyzate with heme and ionic Fe, with some results that demonstrate the efficacy of this treatment in humans and a rat model of anemia, are also discuss. Conclusion: supplementation with both Fe sources allows, simultaneously, the anemia recovery and the decreased oxidative damage caused by traditional Fe therapies to treat nutritional anemia by Fe deficiency.



[1]  Abu-Ouf, N.M., Jan, M.M. “The impact of maternal iron deficiency and iron deficiency anemia on child’s health,” Saudi Medical Journal, 36(2).146-149.2015.
[2]  World Health Organization. Available: [Accessed Oct. 12, 2015].
[3]  Pita, G.M., Jiménez, S., Basabe B., García, R.G., Macías, C., Selva, L., Hernández, C., Cruz, M., Herrera, R., O’Farrill, R., Calderius, I., Paulí, K., Leyva, M., Arocha, C., Herrera, D. “Anemia in Children under Five Years Old in Eastern Cuba, 2005-2011,” MEDICC Review, 16 (1).16-23. 2014.
[4]  McLean, E., Egli, I., Cogswell, M., de Benoisand, B., Wojdyla, D. Worldwide prevalence of anemia in preschool aged children, pregnant women and non-pregnant women of reproductive age. In: Nutritional anemia, Sight and Life, Switzerland, 2007, 10-12.
[5]  Geissler, C., Singh, M. “Iron, Meat and Health,” Nutrients, 3. 283-316. 2011.
Show More References
[6]  Milman, N. “Oral Iron Prophylaxis in Pregnancy: Not Too Little and Not Too Much!,” Journal of Pregnancy,1-8. 2012.
[7]  Venkatesh, M. The case for urgent action to address nutritional anemia. In: Nutritional anemia, Sight and Life Press, Switzerland, 2007, 13.
[8]  Khalafallan, A.A., Dennis, A.E. “Iron deficiency anemia in pregnancy and Postpartum: Pathophysiology and effect of oral versus intravenuos iron therapy,” Journal of Pregnancy, 2012 Available: [Accessed Feb. 1st, 2013].
[9]  Harrington, M., Hotz, C., Zeder, C., Polvo, G.O., Villalpando, S., Zimmermann, M.B., Walczyk, T., Rivera, J.A., Hurrell, R.F. “A comparison of the bioavailability of ferrous fumarate and ferrous sulfate in non-anemic Mexican women and children consuming a sweetened maize and milk drink,” European Journal Clinical Nutrition , 65. 20-25.2011.
[10]  Cancelo-Hidalgo, M.J., Castelo-Blanco, C., Palacios, S., Hava-Palazuelos, J., Ciria-Recasens, M., Manasanch, J., Pérez-Edo, L. “Tolerability of different oral iron supplements: a systematic review,” Current Medical Research Opinion, 29 (4).291-03. 2013.
[11]  González, R., Aznar, E., González, M., Hernández, J.C., Varela A., Silva, P., García, Y. “Nueva línea de productos para prevenir y tratar la anemia partiendo del hierro hemínico,”. Informacéutico, 15. 43-8. 2008.
[12]  Sobieraj, D. “Heme or non-heme? An overview of iron supplements,” DrugStore News, 2010. Available: [Accessed March 4, 2013].
[13]  Nagaraju, S.P., Cohn, A., Akbari, A., Davis, J.L., Zimmerman, L. “Heme iron polypeptide for the treatment of iron deficiency anemia in non-dialysis chronic kidney disease patient: a randomized controlled trial,” BMC Nephrology, 2013. Available: [Accessed May 28, 2013].
[14]  Vaghefi, N., Nedjaoum, F., Guillochon, D., Bureau, F., Arhan, P., Bougle, D. “Iron absorption from concentrated hemoglobin hydrolysate by rat,” Journal Nutrition of Biochemistry, 16. 347- 352. 2005.
[15]  Vaghefi, N., Nedjaoum, F., Guillochon, D., Bureau, F., Arhan, P., Bougle, D. “Influence of the extent of hemoglobin hydrolysis on the digestive absorption of heme iron. An in vitro study”, Journal Agriculture Food Chemistry, 50. 4969-73. 2002.
[16]  Arredondo, M., Kloosterman, J., Núñez, S., Segovia, F., Candia, V., Flores, S., Le Blanc, S., Olivares, M., Pizarro, F. “Heme iron uptake by Caco-2 cells is a saturable, temperature sentitive and modulated by extracellular pH and Potassium,” Biological Trace Elements Research, 125.109-19. 2008.
[17]  Layrisse, M., Martinez-Torres, C., Leets, I., Taylor, P., Ramirez, J. “Effect of histidine, cysteine, glutathione or beef on iron absorption in humans,” Journal Nutrition, 114. 217-23. 1984.
[18]  Conrad, M.E., Cortell, S., Williams, H.L., Foy, A.L. “Polymerizationand intraluminal factors in the absorption of hemoglobin iron,” Journal Laboratory and Clinical Medicine, 68. 659-668. 1966.
[19]  Hurrell, R.F. “Fortification: overcoming technical and practical barriers,” Journal of Nutrition, 132. 806S-812S. 2002.
[20]  Frykman, E., Bystrom, M., Jansson, U., Edberg, A., Hansen, T. “Side effects of iron supplements in blood donors: superior tolerance of heme iron,” Journal Laboratory and Clinical Medicine, 123. 561-64. 1994.
[21]  González, R., Pizarro, F., Aznar, E. “Biodisponibilidad del Fe en sujetos normales con el empleo de tres formulaciones farmacéuticas antianémicas,” Revista Mexicana de Ciencias Farmacéutica, 41 (Supl 1). 23. 2010.
[22]  Pizarro, F., Olivares, M., Hertrampf, E., Mazariegos, D.I., Arredondo, M., Letelier, A., Gidi, V. “Iron bis-glycine chelate competes for the non heme-iron absorption pathway,” American Journal Clinical Nutrition, 76: 577-81. 2002.
[23]  Campos, M.S., Pallares, D.I., Moratalla, A., Lopez-Aliaga, I., Gomez-Ayala, A.E., Hartiti, S., Alferez, M.J.M., Barrionuevo D.M., Lisbona, F. “Bioavailability of Fe, Ca, P and Mg in Fe deficient rats treated with different dietary iron,” Nutrition Research, 16 (4): 683-96. 1996.
[24]  Lisbona, F., Reyes, A.M., López-Aliaga, I., Barrionuevo, M., Alférez, M.J.M., Campos, M.S. “The importance of the proportion of heme/non heme iron in the diet to minimize the interference with calcium, phosphorus, and magnesium metabolism on recovery from nutritional ferropenic anemia,” Journal of Agriculture and Food Chemistry, 47. 2026-32. 1999.
[25]  Carpenter, C.E., Mahoney, A.W. “Contributions of heme and non heme iron to human nutrition,” Critical Review of Food Science and Nutrition, 31: 333-367. 1992.
[26]  Fritz, J.C., Pla, G.W., Roberts, T., Boehne, J.W., Hove, E.L. “Biological availability in animals of iron from common dietary sources,” Journal of Agriculture and Food Chemistry, 18: 647-51. 1970.
[27]  Conrad, M.E., Weintraub, L.R., Sears, D.A., Crosby, W.H. “Absorption of hemoglobin iron,” American Journal Physiology, 211. 1123-1130. 1966.
[28]  Gunshin, H., Mackenzie, B., Berger, U.V., Gunshin, Y., Romero, M.R., Boron, W.F., Nussberger, S., Gollan, J.L., Hediger, M.A. “Cloning and characterization of a mammalian proton coupled metal-ion transporter,” Nature, 388. 482-8. 1997.
[29]  McKie, A.T., Marciani, P., Rolfs, A., Brennan, K., Wehr, K., Barrow, D., Miret, S., Bomford, A., Peters, T.J., Farzaneh, F., Hediger, M.A., Hentze, M.W., Simpson, R.J. “A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation,” Molecular Cell, 5. 299-309. 2000.
[30]  Hallberg, L., Rossander, L., Skanberg, A.B. “Phytates and the inhibitory effect of bran on iron absorption in man,” American Journal of Clinical Nutrition, 45. 988-96. 1987.
[31]  Siegenberg, D., Baynes, R.D., Bothwell, T.H., Macfarlane, B.J., Lamparelli, R.D., Car, N.G., MacPhail, P., Schmidt, U., Tal, A., Mayet, F. “Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption,” American Journal of Clinical Nutrition, 53. 7-41. 1991.
[32]  Reddy, M.B., Hurrell, R.F., Juillerat, M.A., Cook, J.D. “The influence of different protein sources on phytate inhibition of nonheme-iron absorption in humans,” American Journal of Clinical Nutrition, 63.203-7. 1996.
[33]  Uzel, C., Conrad, M.E. “Absorption of heme iron,” Seminars in Hematology, 35. 27-34. 1998.
[34]  Gaitán, D., Flores, S., Saavedra, P., Miranda, C., Olivares, M., Arredondo, M., López de Romaña, D., Lonnerdal, B., Pizarro, F. “Calcium Does not inhibit the absorption of 5 milligrams of non heme or heme iron at doses less than 800 milligrams in non pregnant women,” Journal of Nutrition, 141(9). 1652-6. 2011.
[35]  McKie, A.T., Barrow, D., Latunde-Dada, G.O., Rolfs, A., Sager, G., Mudaly, E., Mudaly, M., Richardson, C., Barlow, D., Bomford, A., Peters, T.J., Raja, K.B., Shirali, S., Hediger, M.A., Farzaneh, F., Simpson, R.J. “An iron-regulated ferric reductase associated with the absorption of dietary iron,” Science 291.1755-9. 2001.
[36]  Gunshin, H., Starr, C.N., Direnzo, C., Fleming, M.D., Jin, J., Greer, E.L., Sellers, V.M., Galica, S.M., Andrews, N.C. “Cybrd1 (duodenal cytochrome b) is not necessary for dietary iron absorption in mice,” Blood, 106(8). 2879-2883. 2005.
[37]  Knutson, M.D. “Steap proteins: implications for iron and copper metabolism,” Nutrition Review, 65(7). 335-340. 2007.
[38]  West, A.R., Oates, P.S. “Mechanisms of heme iron absorption: Current questions and controversies,” World Journal of Gastroenterology, 14 (26). 4101 - 10. 2008.
[39]  Roberts, S.K., Henderson, R.W., Young, G.P. “Modulation of uptake of heme by rat small intestinal mucosa in iron deficiency,” American Journal of Physiology, 265. G712-G718.1993.
[40]  Grasbeck, R., Kouvonen, I., Lundberg, M., Tenhunen, R. “An intestinal receptor for heme,” Scandinavian Journal of Haematology, 23. 5-9.1979.
[41]  Shayeghi, M., Latunde-Dada, G.O., Oakhill, J.S., Laftah, A.H., Takeuchi, K., Halliday, N., Khan, Y., Warley, A., MaCann, F.E., Hider, R.C., Frazer, D.M., Anderson, G.J., Vulpe, C.D., Simpson, R.J., Mackie, A.T. “Identification of an intestinal heme transporter,” Cell, 122. 789-801. 2005.
[42]  Qiu, A., Jansen, M., Sakaris, A., Min, S.H., Chattopadhyay, S., Tsai, E., Sandoval, C., Zhao, R., Akabas, M.H., Goldman, I.D. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell, 127. 917-928. 2006.
[43]  Le Blanc, S., Garrick, M.D., Arredondo, M. “Heme carrier protein 1 transports heme and is involved in heme-Fe metabolism,” American Journal of Physiology - Cell Physiology, 302: C1780–C1785. 2012.
[44]  Chiabrando, D., Vinchi, F., Fiorito, V., Mercurio, S., Tolosano, E. “Heme in pathophysiology: a matter of scavenging metabolism and trafficking across cell membranes,” Frontiers in Pharmacology, 5. 61. 2014.
[45]  Rajagopal, A., Rao, A.U., Amigo, J., Tian, M., Upadhyay, S.K., Hall, C., Uhm, S., Mathew, M.K., Fleming, M.D., Paw, B.H., Krause, M., Hamza, I. “Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins,” Nature, 453. 1127-1131. 2008.
[46]  Yanatori, I., Tabuchi, M., Kawai, Y., Yasui, Y., Akagi, R., Kishi, F. “Heme and non-heme iron transporters in non-polarized and polarized cells,” BMC Cell Biology, 11. 39. 2010.
[47]  White, C., Yuan, X., Schmidt, P.J., Bresciani, E., Samuel, T.K., Campagna, D., Hall, C., Bishop, K., Calicchio, M.L., Lapierre, A., Ward, D.M., Liu, P., Fleming, M.D., Hamza, I. “HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis,” Cell Metabolism, 17(2). 261-270. 2013.
[48]  Quigley, J.G., Yang, Z., Worthington, M.T., Phillips, J.D., Sabo, K.M., Sabath, D.E., Berg, C.L., Sassa, S., Wood, B.L., Abkowitz, J.L. “Identification of a human heme exporter that is essential for erythropoiesis,” Cell, 118(6). 757-766. 2004.
[49]  Keel, S.B., Doty, R.T., Yang, Z., Quigley, J.G., Chen, J., Knoblaugh, S., Kingsley, P.D., De Domenico, L., Vaughn, M.B., Kaplan, J., Palis, J., Abkowitz, J.L. “A heme export protein is required for red blood cell differentiation and iron homeostasis,” Science, 319(5864). 825-828. 2008.
[50]  Uc, A., Stokes, J.B., Britigan, B.E. “Heme transport exhibits polarity in Caco-2 cells: evidence for an active and membrane protein-mediated process,” American Journal of Physiology- Gastrointestinal and Liver Physiology, 287. G1150-7. 2004.
[51]  Chiabrando, D., Marro, S., Mercurio, S., Giorgi, C., Petrillo, S., Vinchi F, Fiorito, V., Fagoonee, S., Camporeale, A., Turco, E., Merlo, G.R., Silengo, L., Altruda, F., Pinton, P., Tolosano, E. “The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation,” The Journal of Clinical Investigation, 122. 4569-4579. 2012.
[52]  Yang, Z., Philips, J.D., Doty, R.T., Giraudi, P., Ostrow, J.D., Tiribelli, C., Smith, A., Abkowitz, J.L. “Kinetics and Specificity of Feline Leukemia Virus Subgroup C Receptor (FLVCR) Export Function and Its Dependence on Hemopexin,” Journal of Biologycal Chemistry, 285(37). 28874-28882. 2010.
[53]  Krishnamurthy, P., Ross, D.D., Nakanishi, T., Bailey-Dell, K., Zhou, S., Mercer, K.E., Sarkadi, B., Sorrentino, B.P., Schuetz, J.D. “The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme,” Journal of Biologycal Chemistry, 279. 24218-24225. 2004.
[54]  Doyle, L. A., Yang, W., Abruzzo, L. V., Krogmann, T., Gao, Y., Rishi, A. K., Ross, D.D. “A multidrug resistance transporter from human MCF-7 breast cancer cells,” Proceedings of the National Academy of Science of U.S.A., 95. 15665-15670. 1998.
[55]  Krishnamurthy, P., Schuetz, J.D. “The ABC transporter Abcg2/Bcrp: role in hypoxia mediated survival,” Biometals, 18(4). 349-58. 2005.
[56]  Latunde-Dada, G., Laftah, A.H., Masaratana, P., McKie, T., Simpson, R.J. “Expression of ABCG2 (BCRP) in mouse models with enhanced erythropoiesis,” Frontiers of Pharmacology, 5. 135. 2014.
[57]  Khan, A.A., Quigley, J.G. “Control of intracellular heme levels: Heme transporters and Hemeoxygenases,” Biochimica et Biophysica Acta, 1813 (5). 668-82. 2011.
[58]  Latude-Dada, G.O., Simpson, R.J., Mckie, A.T. Recent Advances in mammalian haem transport. Trends in Biochemical Sciences, 31 (3). 182-8. 2006.
[59]  Tenhunen, R., Marver, H.S., Schmidt, R.T. “The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase,” Proceedings of the National Academy of Science of U.S.A., 244. 6388-6394. 1968.
[60]  Tenhunen, R., Marver, H.S., Schmidt, R. “Microsomal Heme Oxygenase,” The Journal of Biological Chemistry, 244(23). 6388-94. 1969.
[61]  Maines, M.D. “Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications,” FASEB Journal, 2. 2557-2568. 1988.
[62]  Maines, M.D., Trakshel, G.M., Kurry, R.K. “Characterization of two constitutive forms of rat liver microsomal heme oxygenase: only one molecular species of the enzyme is inducible,” Journal of Biologycal Chemistry, 261. 411-419.1986.
[63]  Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N., Ames, B.N. “Bilirubin is an antioxidant of possible physiological importance,” Science, 235: 1043-1046. 1987.
[64]  Collins J.F., Franck, C.A., Kowdley, K.V., Ghishan, F.K. “Identification of differentially expressed genes in response to dietary iron deprivation in rat duodenum,” American Journal of Physiology- Gastrointestinal and Liver Physiology, 288. G964-G971. 2005.
[65]  Oates, P.S., West, A.R. “Heme in intestinal epithelial cell turnover, differentiation, detoxification, inflammation, carcinogenesis, absorption and motility,” World Journal of Gastroenterology, 12. 4281-4295. 2006.
[66]  West, A.R., Oates, P.S. “Subcellular location of heme oxygenase 1 and 2 and divalent metal transporter 1 in relation to endocytotic markers during heme iron absorption,” Journal of Gastroenterology and Hepatology, 23(1). 150-8. 2008.
[67]  Hentze, M.W., Muckenthaler, M.U., Andrews, N.C. “Balancing acts: molecular control of mammalian iron metabolism,” Cell, 117(3). 285-297. 2004.
[68]  Marx, J.M. “Mucosal uptake, mucosal transfer and retention of iron, measured by whole-body counting,” Scandinavian Journal of Haematology, 23. 293-302. 1979.
[69]  Anderson, G.J., Darshan, D., Wilkins, S.J., Frazer, D.M. “Regulation of systemic iron homeostasis: how the body responds to changes in iron demand,” Biometals, 20 (3-4). 665-674. 2007.
[70]  Conrad, M.E., Weintraub, L.R., Crosby, W.H. “The role of the intestine in iron kinetics,” Journal of Clinical Investigation, 43. 963-974. 1964.
[71]  Sharp, P.A. “Intestinal iron absorption: regulation by dietary & systemic factors,” International Journal for Vitamin and Nutrition Research, 80(4-5). 231-242. 2010.
[72]  Nemeth, E., Tuttle, M.S., Powelson, J., Vaughn, M.B., Donovan, A., Ward, D.M., Ganz, T., Kaplan, J. “Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization,” Science, 306(5704). 2090-2093. 2004.
[73]  Laftah, A.H., Ramesh, B., Simpson, R.J., Solanky, N., Bahram, S., Schu¨mann, K., Debnam, E.S., Surjit, K., Srai, S., Ganz, T., Nemeth, E. “Effect of hepcidin on intestinal iron absorption in mice,” Blood, 103. 3940-3944. 2004.
[74]  Nemeth, E., Ganz, T. “Regulation of iron metabolism by hepcidin,” Annual Review of Nutrition, 26: 323-42. 2006.
[75]  Brasse-Lagnel, C., Karim, Z., Letteron, P., Bekri, S., Bado, A., Beaumont, C. “Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation,” Gastroenterology, 140(4). 1261-71. 2011.
[76]  Cao, C., Thomas, C.E., Insogna, K.I., O´Brien, K.O. “Duodenal absorption and tissue utilization of dietary heme and non heme iron differ in rat,” Journal of Nutrition, 144. 1710-1717. 2014.
[77]  Muckenthaler, M., Gray, N.K., Hentze, M.W. “IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F,” Molecular Cell, 2. 383-388. 1998.
[78]  Anderson, G.J., Frazer, D.M., McLaren, G.D. “Iron absorption and iron metabolism,” Current Opinion in Gastroenterology, 25. 129-135. 2009.
[79]  Muñoz, M., Villar, I., García-Erce, J.A. “An update on iron physiology,” World Journal of Gastroenterology, 15 (37). 4617-4626. 2009.
[80]  Abbaspour, N., Hurrell, R., Kelishadi, R. “Review on iron and its importance for human health,” Journal of Research in Medical Science, 19 (2). 164-174. 2014.
[81]  Fuqua, B.K., Lu, Y., Darshan, D., Frazer, D.M., Wilkins, S.J. , Wolkow, N, Bell, A.G., Hsu J.A., Yu, C.C., Chen, H., Dunaief, J.L., Anderson, G.J., Vulpe, C.D. “The Multicopper Ferroxidase Hephaestin Enhances Intestinal Iron Absorption in Mice,” PLoS One, 9(6). e98792. 2014.
[82]  Baker, H.M., Anderson, B.F., Naker, E.N. “Dealing with iron: common structural principles in proteins that transport iron and heme,” Proceedings of the National Academy of Science of U.S.A., 100. 3579-3583. 2003.
[83]  Cheng, Y., Zak, O., Aisen, P., Harrison, S.C., Walz, T. “Structure of the human transferrin receptor-transferrin complex,” Cell, 116. 565-576. 2004.
[84]  Kawabata, H., Yang, R., Hirama, T., Vuong, P.T., Kawano, S., Gom, Cassabart, A.F., Koeffler, H.P. “Molecular cloning of transferring receptor 2. A new member of the transferrin receptor-like family,” The Journal of Bioogical Chemistry, 274. 20826-20832. 1999.
[85]  Paoli, M., Anderson, B.F., Baker, H.M., Morgan, W.T., Smith, A., Baker, E.N. “Crystal structure of hemopexin reveals a novel high-affinity heme site formed between two b-propeller domains,” Nature Structural and Molecular Biology, 6. 926-931. 1999.
[86]  De Domenico, I., McVey Ward, D., Kaplan, J. “Regulation of iron acquisition and storage: consequences for iron-linked disorders,” Nature Reviews Molecular Cell Biology, 9. 72-81. 2008.
[87]  Schultz, I.J., Chen, C., Paw, B.H., Hamza, I. “Iron and Porphyrin Trafficking in heme biogenesis,” Journal of Biological Chemistry, 85 (35). 26753-59. 2010.
[88]  Yuan, X., Protchenko, O., Philpott, C.C., Hamza, I. “Topologically conserved residues direct heme transport in HRG-1 related proteins,” Journal of Biological Chemistry, 287(10). 4914-24. 2012.
[89]  Bratosin, D., Mazurier, J., Tissier, J.P., Estaquier, J., Huart, J.J., Ameisen, J.C., Aminoff, D., Montreuil, J. “Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review,” Biochimie, 80.173-195. 1998.
[90]  Mukhopadhyay, A., Bhatla, N., Kriplani, A., Pandey, R.M., Saxena, R. “Daily versus intermittent iron supplementation in pregnant women: Hematological and pregnancy outcome,” Journal of Obstetrics and Gynaecology Research, 30(6). 409-13. 2004.
[91]  Kumar, N., Chandhiok, N, Dhillon, B.S., Kumar, P. “Role of oxidative stress while controlling iron deficiency anemia during pregnancy - indian scenario,” Indian Journal of Clinical Biochemistry, 24 (1). 5-14. 2009.
[92]  Prousek, J. “Fenton chemistry in biology and medicine,” Pure and Applied Chemistry, 79. 2325-2338. 2007.
[93]  Zastawny, T.H., Altman, S.A., Randerseichhorn, L., Madurawe, R., Lumpkin, J.A., Dizdaroglu, M., Rao, G. “DNA base modifications and membrane damage in cultured mammalian cells treated with iron ions,” Free Radical Biology and Medicine, 18. 1013-1022. 1995.
[94]  Traber, M.G., Kamal-Eldin, A. Oxidative stress and vitamin E in anemia. In: Nutritional anemia, Sight and Life, Switzerland, 2007, 186.
[95]  Masella, R., Di Benedetto, R., Vari, R., Filesi, C., Giovannini, C. “Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related-enzymes,” The Journal of Nutritional Biochemistry, 16. 577-586. 2005.
[96]  Iwasaki, K., Hailemariam, K., Tsuji, Y. “PIAS3 interacts with ATF1 and regulates the human ferritin H gene through and Antioxidant Response Element,” Journal of Biological Chemistry, 282 (31). 22335-43. 2007.
[97]  Varady, J., Elder, K., Ringseis, R. “Dietary oxidized fat activates the oxidative stress-responsive transcription factor NF-κB and Nrf2 in intestinal mucosa of mice,” European Journal of Nutrition, 50 (8). 601-9. 2011.
[98]  Gessner, D.K., Fiesel, A., Most, E., Dinges, J., Wen, G., Ringseis, R., Eder, K. “Supplementation of a grape seed and grape marc meal extract decreases activities of the oxidative stress-responsive transcription factors NF-κB and Nrf2 in the duodenal mucosa of pigs,” Acta Veterinaria Scandinavica, 55. 1-10. 2013.
[99]  Jeney, V., Balla, J., Yachie, A., Varga, Z., Vercellotti, G.M, Eaton, J.W., Balla, G. “Pro-oxidant and cytotoxic effects of circulating heme,” Blood, 100(3). 879-87. 2002.
[100]  Kumar, S., Bandyopadhyay, U. “Free heme toxicity and its detoxification systems in human,” Toxicology Letters, 157(3). 175-88. 2005.
[101]  European Food Safety Authority. “Scientific Opinion on the safety of heme iron (blood peptonates) for the proposed uses as a source of iron added for nutritional purposes to foods for the general population, including food supplements,” EFSA Journal, 8(4).1585. 2010.
[102]  WHO Collaborating Centre for Drug Statistics Methodology, Norwegian institute of public health. “B03AE Iron in other combinations,” Available: [Accessed March 11, 2016].
[103]  Aznar, E., González, R., González, M., Suárez, S. Utilización del Trofin, NeoTrofin y sus formulaciones con vitamina C y ácido fólico para disminuir la anemia por deficiencia de hierro. In: Alimentación, Nutrición y Salud, MINSAP, La Habana. 2009. 173-75.
[104]  García, Y., González, R., García, A., Ángeles, S., Carmona, A., Cárdenas, R. “Efecto de la suplementación con diferentes fuentes de hierro durante la recuperación de ratas anémicas,” Revista CNIC Ciencias Biológicas, 44(3). 14-22. 2013.
[105]  Subcommittee on Laboratory Animal Nutrition. Nutrient Requirements of laboratory rat. In: Nutrient Requirements of laboratory animals. Academy Press, United States. 1995. 11-79.
[106]  Nadadur, S.S., Srirama, K., Mudipalli, A. “Iron transport and homeostasis mechanisms: Their role in health and diseases,” Indian Journal of International Medical Research, 128. 533-544. 2008.
[107]  García, Y., Díaz-Castro, J., López-Aliaga, I., Alférez, M.J.M., Ramos, A., Campos, M.S. “Bioavailability of Fe, Cu and Zn and antioxidant defense in anemic rat supplemented with a mixture of heme/non heme Fe,” Journal of Food and Nutrition Research, 52(2). 128-138. 2013.
[108]  Mastrogiannaki, M., Matak, P., Peyssonnaux, C. “The gut in the iron homeostasis: role of HIF-2 under normal and pathological conditions,” Blood, 122. 885-92. 2013.
[109]  Díaz-Castro, J., García, Y., López-Aliaga, I., Alférez, J.M., Hijano, S., Ramos, A., Campos, M.S. “Influence of Several Sources and Amounts of Iron on DNA, Lipid and Protein Oxidative Damage During Anaemia Recovery,” Biological Trace Element Research, 155. 403-410. 2013.
[110]  Thomas, C., Gaffney-Stomberg, E., Ben-Hua, S., O-Brien, K., Kerstetter, J., Insogna, K. “Increasing dietary protein acutely augments intestinal iron transporter expression and significantly increases iron absorption in rats,” FASEB Journal, 27. 2476-2483. 2013.
[111]  Miao, L., Clair, D.K. “Regulation of Superoxide Dismutase Genes: Implications in Diseases,” Free Radical Biology and Medicine, 47 (4). 344 -56. 2009.
[112]  Gasche, C., Lomer, M., Cavill, I., Weiss, G. “Iron, anaemia, and inflammatory bowel diseases,” Gut, 53: 1190-1197. 2004.
[113]  Gardner, L.C., Cox, T.M. “Biosynthesis of heme in immature erythroid cells,” Journal of Biological Chemistry, 263 (14). 6676-82. 1987.
[114]  Glueck, R., Green, D., Cohen, I., Ts´ao, C.H. “Hematin: unique effects of hemostasis,” Blood, 61. 243-249. 1983.
[115]  Tenhunen, R., Tokola, O., Lindén, I.B. “Haem arginate: a new stable haem compound,” Journal of Pharmacy and Pharmacology, 39 (10). 780-6. 1987.
[116]  Siegert, S.W., Holt, R.J. “Physicochemical properties, pharmacokinetics, and pharmacodynamics of intravenuos hematin: a literatura review,” Advances in Therapy, 25(9). 842- 57. 2008.
[117]  Yuan, X., Protchenko, O., Philpott, C.C., Hamza, I. “Topologically conserved residues direct heme transport in HRG-1 related proteins,” The Journal Biological Chemistry, 287(10). 4914-24. 2012.
Show Less References