Journal of Food and Nutrition Research

ISSN (Print): 2333-1119

ISSN (Online): 2333-1240

Editor-in-Chief: Prabhat Kumar Mandal

Website: http://www.sciepub.com/journal/JFNR

   

Article

Combined Effects of Soy Isoflavones and Docosahexaenoic Acid on Osteoclast Formation

1Institute of Food, Nutrition and Human Health, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand

2Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan

3Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan


Journal of Food and Nutrition Research. 2016, 4(7), 429-435
doi: 10.12691/jfnr-4-7-3
Copyright © 2016 Science and Education Publishing

Cite this paper:
Shinichi Katsumata, Gabrielle G. Plimmer, Miki Tadaishi, Yuko Tousen, Yoshiko Ishimi, Marlena C. Kruger. Combined Effects of Soy Isoflavones and Docosahexaenoic Acid on Osteoclast Formation. Journal of Food and Nutrition Research. 2016; 4(7):429-435. doi: 10.12691/jfnr-4-7-3.

Correspondence to: Shinichi  Katsumata, Institute of Food, Nutrition and Human Health, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand. Email: s1katsum@nodai.ac.jp

Abstract

Soy isoflavones and docosahexaenoic acid (DHA) are effective for maintaining bone health. This study investigated the combined effects of soy isoflavones and DHA on osteoclast formation. Mouse bone marrow cells were pre-cultured with macrophage colony-stimulating factor (M-CSF) for 3 days and then cultured with M-CSF and receptor activator of nuclear factor κB ligand (RANKL) for 6 days. RAW 264.7 cells were cultured with RANKL for 5 days. In mouse bone marrow cells, daidzein, genistein, and DHA significantly decreased the number of tartrate-resistant acid phosphatase-positive multinucleated cells (TRAP(+)MNCs), and the combination of soy isoflavones and DHA further decreased the number of TRAP(+)MNCs. Nuclear factor of activated T-cells c1 (NFATc1) mRNA expression tended to be decreased by daidzein, and was significantly decreased by genistein and DHA. Furthermore, the combination of daidzein and DHA caused significant reduction in NFATc1 mRNA expression compared to the control. In RAW 264.7 cells, daidzein tended to decrease and genistein significantly decreased the number of TRAP(+)MNCs, however, the combination of daidzein and DHA significantly decreased the number of TRAP(+)MNCs compared to the control. These results demonstrated that the combination of soy isoflavones and DHA decreased in osteoclast formation significantly, possibly by modulating the expression of specific genes.

Keywords

References

[1]  Beral, V., Bull, D. and Reeves, G., “Endometrial cancer and hormone-replacement therapy in the Million Women Study,” Lancet, 365, 1543-1551, 2005.
 
[2]  Kim, D.W., Yoo, K.Y., Lee, Y.B., Lee, K.H., Sohn, H.S., Lee, S.J., Cho, K.H., Shin, Y.K., Hwang, I.K., Won, M.H. and Kim, D.W., “Soy isoflavones mitigate long-term femoral and lumbar vertebral bone loss in middle-aged ovariectomized mice,” J. Med. Food, 12, 536-541, 2009.
 
[3]  Chang, K.L., Hu, Y.C., Hsieh, B.S., Cheng, H.L., Hsu, H.W., Huang, L.W. and Su, S.J., “Combined effect of soy isoflavones and vitamin D3 on bone loss in ovariectomized rats,” Nutrition, 29, 250-257, 2013.
 
[4]  Santos, M.A., Florencio-Silva, R., Medeiros, V.P., Nader, H.B., Nonaka, K.O., Sasso, G.R., Simões, M.J. and Reginato, R.D. “Effects of different doses of soy isoflavones on bone tissue of ovariectomized rats.,” Climacteric, 17, 393-401, 2014.
 
[5]  Gao, Y.H. and Yamaguchi, M., “Inhibitory effect of genistein on osteoclast-like cell formation in mouse marrow cultures,” Biochem. Pharmacol., 58, 767-772, 1999.
 
Show More References
[6]  Karieb, S. and Fox, S.W., “Phytoestrogens directly inhibit TNF-α-induced bone resorption in RAW264.7 cells by suppressing c-fos-induced NFATc1 expression,” J. Cell Biochem., 112, 476-487, 2011.
 
[7]  Lee, S.H., Kim, J.K. and Jang, H.D., “Genistein inhibits osteoclastic differentiation of RAW 264.7 cells via regulation of ROS production and scavenging,” Int. J. Mol. Sci., 15, 10605-10621, 2014.
 
[8]  Sun, D., Krishnan, A., Zaman, K., Lawrence, R., Bhattacharya, A. and Fernandes, G., “Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice,” J. Bone Miner. Res., 18, 1206-1216, 2003.
 
[9]  Nakanishi, A., Iitsuka, N. and Tsukamoto, I., “Fish oil suppresses bone resorption by inhibiting osteoclastogenesis through decreased expression of M-CSF, PU.1, MITF and RANK in ovariectomized rats,” Mol. Med. Rep., 7, 1896-1903, 2013.
 
[10]  Bhattacharya, A., Rahman, M., Sun, D. and Fernandes, G., “Effect of fish oil on bone mineral density in aging C57BL/6 female mice,” J. Nutr. Biochem., 18, 372-379, 2007.
 
[11]  Poulsen, R.C., Firth, E.C., Rogers, C.W., Moughan, P.J. and Kruger, M.C., “Specific effects of gamma-linolenic, eicosapentaenoic, and docosahexaenoic ethyl esters on bone post-ovariectomy in rats,” Calcif. Tissue Int., 81, 459-471, 2007.
 
[12]  Rahman, M.M., Bhattacharya, A. and Fernandes, G., “Docosahexaenoic acid is more potent inhibitor of osteoclast differentiation in RAW 264.7 cells than eicosapentaenoic acid,” J. Cell Physiol., 214, 201-209, 2008.
 
[13]  Yuan, J., Akiyama, M., Nakahama, K., Sato, T., Uematsu, H. and Morita, I., “The effects of polyunsaturated fatty acids and their metabolites on osteoclastogenesis in vitro,” Prostaglandins Other Lipid Mediat., 92, 85-90, 2010.
 
[14]  Boeyens, J.C., Deepak, V., Chua, W.H., Kruger, M.C., Joubert, A.M. and Coetzee, M. “Effects of ω3- and ω6-polyunsaturated fatty acids on RANKL-induced osteoclast differentiation of RAW264.7 cells: a comparative in vitro study,” Nutrients, 6, 2584-2601, 2014.
 
[15]  Watkins, B.A., Reinwald, S., Li, Y. and Seifert, M.F., “Protective actions of soy isoflavones and n-3 PUFAs on bone mass in ovariectomized rats,” J. Nutr. Biochem., 16, 479-488, 2005.
 
[16]  Ward, W.E. and Fonseca, D., “Soy isoflavones and fatty acids: effects on bone tissue postovariectomy in mice,” Mol. Nutr. Food Res., 51, 824-831, 2007.
 
[17]  Uchida, R., Chiba, H., Ishimi, Y., Uehara, M., Suzuki, K., Kim, H. and Matsumoto, A., “Combined effects of soy isoflavone and fish oil on ovariectomy-induced bone loss in mice,” J. Bone Miner. Metab., 29, 404-413, 2011.
 
[18]  Tadaishi, M., Nishide, Y., Tousen, Y., Kruger, M.C. and Ishimi, Y., “Cooperative effects of soy isoflavones and carotenoids on osteoclast formation,” J. Clin. Biochem. Nutr., 54, 109-115, 2014.
 
[19]  Liou, S.F., Hsu, J.H., Lin, I.L., Ho, M.L., Hsu, P.C., Chen, L.W., Chen, I.J. and Yeh, J.L., “KMUP-1 suppresses RANKL-induced osteoclastogenesis and prevents ovariectomy-induced bone loss: roles of MAPKs, Akt, NF-κB and calcium/calcineurin/NFATc1 pathways,” PLoS One, 8, e69468, 2013.
 
[20]  Fujita, K. and Janz, S., “Attenuation of WNT signaling by DKK-1 and -2 regulates BMP2-induced osteoblast differentiation and expression of OPG, RANKL and M-CSF,” Mol. Cancer, 6, 71, 2007.
 
[21]  Deepak, V., Kasonga, A., Kruger, M.C. and Coetzee, M., “Inhibitory effects of eugenol on RANKL-induced osteoclast formation via attenuation of NF-κB and MAPK pathways,” Connect. Tissue Res., 11, 1-9, 2014.
 
[22]  Morito, K., Hirose, T., Kinjo, J., Hirakawa, T., Okawa, M., Nohara, T., Ogawa, S., Inoue, S., Muramatsu, M. and Masamune, Y., “Interaction of phytoestrogens with estrogen receptors alpha and beta,” Biol. Pharm. Bull., 24, 351-356, 2001.
 
[23]  Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E.F., Mak, T.W., Kodama, T. and Taniguchi, T., “Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts,” Dev. Cell, 3, 889-901, 2002.
 
[24]  Ishida, N., Hayashi, K., Hoshijima, M., Ogawa, T., Koga, S., Miyatake, Y., Kumegawa, M., Kimura, T. and Takeya, T., “Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator,” J. Biol. Chem., 277, 41147-41156, 2002.
 
[25]  Yamashita, T., Yao, Z., Li, F., Zhang, Q., Badell, I.R., Schwarz, E.M., Takeshita, S., Wagner, E.F., Noda, M., Matsuo, K., Xing, L. and Boyce, B.F. “NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1,” J. Biol. Chem., 252, 18245-18253, 2007.
 
[26]  Akiyama, M., Nakahama, K. and Morita, I., “Impact of docosahexaenoic acid on gene expression during osteoclastogenesis in vitro-a comprehensive analysis,” Nutrients, 5, 3151-3162, 2013.
 
Show Less References

Article

Listeria monocytogenes in Chicken Meat

1Federal University of Mato Grosso, Graduate Program in Animal Science, Faculty of Agronomy, Veterinary Medicine, and Animal Science, Cuiabá-MT, Brazil

2Federal University of Mato Grosso, Laboratory of Food Molecular Microbiology, Faculty of Nutrition – Av. Fernando Correa da Costa, 2.367, Boa Esperança, Cuiabá-MT, Brazil


Journal of Food and Nutrition Research. 2016, 4(7), 436-441
doi: 10.12691/jfnr-4-7-4
Copyright © 2016 Science and Education Publishing

Cite this paper:
Greika Ferreira Moura, Cleise de Oliveira Sigarini, Eduardo Eustáquio de Souza Figueiredo. Listeria monocytogenes in Chicken Meat. Journal of Food and Nutrition Research. 2016; 4(7):436-441. doi: 10.12691/jfnr-4-7-4.

Correspondence to: Eduardo  Eustáquio de Souza Figueiredo, Federal University of Mato Grosso, Graduate Program in Animal Science, Faculty of Agronomy, Veterinary Medicine, and Animal Science, Cuiabá-MT, Brazil. Email: figueiredoeduardo@hotmail.com

Abstract

Listeria monocytogenes is the causative agent of listeriosis, an infection that gives rise to bacteremia and meningitis that can be propagated to humans via food contamination. The chicken-meat and derivatives processing industries are common sites of this pathogen, and the great challenge is in controlling this hazard to avoid economic and public health losses. A literature review on L. monocytogenes and implications to the chicken supply chain, poultry slaughterhouses, and public health was conducted. The review was compiled with the main papers published around the world in the last 15 years containing the key words Listeria monocytogenes, poultry, meat, chicken, broilers, and listeriosis, using the main publishers of online journals. The collected information was discussed and it was concluded that poultry can be asymptomatic carriers of L. monocytogenes and introduce contamination in slaughterhouses, which can become a persistent problem in poultry slaughterhouses due to its capacity to form biofilms on many different materials, causing cross-contamination in chicken meat and its derivatives. Carcasses, cuts, or giblets of chilled or frozen chicken in natura are sources of contamination by L. monocytogenes and can transmit listeriosis to humans.

Keywords

References

[1]  Mackiw, E., Modzelewska, M., Maka, L., Sciezynska, H., Pawlowska, K., Postupolski, J. and Korsak, D. “Antimicrobial resitance profiles of Listeria monocytogenes isolated from ready to eat product in Poland in 2007-2011.” Food Control, 59, 7-11. January 2016.
 
[2]  Gianfranceschi, M.V, Rodriguez-Lazaro, D., Hernandez, M., González-García, P., Comin, D.,Gattuso ,A., Delibato, E., Sonnessa, M., Pasquali, F., Prencipe, V., Sreter-Lancz, Z., Saiz-Abajo, M.J., Pérez-De-Juan, J., Butrón, J., Kozačinski, L., Tomic, D.H., Zdolec, N., Johannessen, G.S., Jakočiūnė, D., Olsen, J.E., De Santis, P., Lovari, S., Bertasi, B., Pavoni, E., Paiusco, A., De Cesare, A., Manfreda, G. and De Medici, D. “European validation of a real-time PCR-based method for detection of Listeria monocytogenes in soft cheese.” Int J Food Microbiol., 184,128-133. Aug 2014.
 
[3]  Centers of Disease Control. “Listeria (Listeriosis).” 2015. [Online]. Available: http://www.cdc.gov/listeria/statistics.html#two. [Accessed Nov 26, 2015].
 
[4]  Liu, P., Mizue, H., Fujihara, K., Kobayashi, H., Kamikado, H., Tanaka, T., Honjoh K. and Myamoto, T. “A new rapid real-time PCR method for detection of Listeria monocytogenes targeting the hlyA gene.” Food Sci Technol Res, 18(1), 47-57. 2012.
 
[5]  BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Circular n. 352/2004/DCI/DIPOA. Departamento de Inspeção de Produtos de Origem Animal. Brasília – DF, 2004.
 
Show More References
[6]  Tresse, O., Shannom, K., Pinon, A., Malle, P., Vialette, M. and Midelet-Bourdin, G. “Variable adhesion of Listeria monocytogenes isolates from food processing facilities and clinical cases to inert surfaces.” J Food Prot., 70(7), 1569-1578. Jul 2007.
 
[7]  Renier, S., Hébraud, M. and Desvaux, M. “Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen.” Environ Microbiol.,13(4), 835-850. Apr 2011.
 
[8]  Food safety authority of Ireland. “The control and management of Listeria monocytogenes contamination of food.” 2005. [Online] Available: https://www.fsai.ie/workarea/downloadasset.aspx?id=1234 [Accessed September 15, 2015].
 
[9]  Leclercq, A., Clermont, D., Bizet, C., Grimont, P.A., Le Flèche-Matéos, A., Roche, S.M., Buchrieser, C., Cadet-Daniel, V., Le Monnier, A., Lecuit, M. and Allerberger, F. “Listeria rocourtiae sp. nov.” Int J Syst Evol Microbiol., 60 (Pt 9), 2210-2214. Sep 2010.
 
[10]  Bertsch, D., Rau, J., Eugster, M.R., Haug, M.C., Lawson, P.A., Lacroix, C. and Meile L. “Listeria fleischmannii sp. nov., isolated from cheese.” Int J Syst Evol Micr, 63(Pt 2),, 526–532. Feb 2013.
 
[11]  Lang Halter, E., Neuhaus, K. and Scherer, S. “Listeria weihenstephanensis sp. nov., isolated from the water plant Lemna trisulca taken from a freshwater pond.” Int J Syst Evol Microbiol., 63 (Pt 2), 641-647. Feb 2013.
 
[12]  den Bakker, H.C., Warchocki, S., Wright, E.M., Allred, A.F., Ahlstrom, C., Manuel, C.S., Stasiewicz, M.J., Burrell, A., Roof, S., Strawn, L.K., Fortes, E., Nightingale, K.K., Kephart, D. and Wiedmann, M. “Listeria floridensis sp. nov., Listeria aquatica sp. nov., Listeria cornellensis sp. nov., Listeria riparia sp. nov. and Listeria grandensis sp. nov., from agricultural and natural environments.” Int J Syst Evol Microbiol., 64 (Pt 6): 1882-1889. Jun 2014.
 
[13]  Rocourt, J. and Buchrieser, C. The Genus Listeria and Listeria monocytogenes: Phylogenetic Position, taxonomy, and Identification. In: Ryser ET, Marth EH. Listeria, Listeriosis e Food safety. CRC Press, Nova Yorque, 2007, 1-12.
 
[14]  Breed R.S., Murray, E.G.D. and Hitchens, A.P. Bergey’s manual of determinative bacteriology. Baltimore: The William and Wilkins Co. 60p. 1948.
 
[15]  Liu, D. “Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen.” J Med Microbiol., 55 (Pt 6) , 645-659. Jun 2006.
 
[16]  Cruz, C.D., Martinez, M.B. and Destro, M.T. “Listeria monocytogenes: um agente pouco conhecido no Brasil.” Alim. Nutr., 19(2), 195-206. apr./jun. 2008.
 
[17]  Schmid, M.W., Ng, E.Y., Lampidis, R., Emmerth, M., Walcher, M., Kreft, J., Goebel, W., Wagner, M. and Schleifer, K.H. “Evolutionary history of the genus Listeria and its virulence genes.” Syst Appl Microbiol., 28(1), 1-18. Jan 2005.
 
[18]  Farber, J.M. and Peterkin, P.I. “Listeria monocytogenes: a foodborne pathogen.” Microbiol Rev., 55, 476-511. 1991.
 
[19]  Pagotto, F., Daley, E., Farber, J. and Warburton, D. Isolation of Listeria monocytogenes from all food environmental samples. In: Canada. Health Products Food Branch. Compendium of analytical methods: laboratory procedures of microbiological analytical of foods MFHPB-30, 2006. [E-book] Available: http://www.hc-sc.gc.ca/fn-an/res-rech/analy-meth/microbio/volume3-eng.php.
 
[20]  Gasanov, U., Hughes, D. and Hansbro, P. M. “Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review.” FEMS Microbiology Reviews, 29,851-875, December 2005.
 
[21]  Vázquez-Boland, J.A., Domínguez-Bernal, G., González-Zorn, B., Kreft, J. and Goebel. “Pathogenicity islands and virulence evolution in Listeria.” Microbes Infect., 3(7), 571-584. Jun 2001.
 
[22]  Beverly, R.L. “The control, survival and growth of Listeria monocytogenes on food products.” Tese (Doctor of Philosophy)-Agricultural and Mechanical College. 2004.
 
[23]  Cossart, P. and Toledo-Arana, A. “Listeria monocytogenes, a unique model in infection biology: na overview.” Microbes Infect., 10(9), 1041-1050.Jul 2008.
 
[24]  Forsythe, S.J. Microbiologia de a segurança alimentar, Artmed, Porto Alegre, 2005, 242p.
 
[25]  Trabulsi, L.R. and Alterthun, F. Listeria monocytogenes. In: Microbiologia. Atheneu, Rio de Janeiro, 2008, 237-245.
 
[26]  Lasa, I., Dehoux, P. and Cossart, P. “Actin polymerization and bacterial movement.” Biochim. Biophys. Acta, 1402 (3), 217-228. Apr 1998.
 
[27]  Lambrechts, A., Gevaert, K. and Vandekerckhoue, J. “Listeria comet tails: The actin-based motility marchinery at work.” Trends Cell Biol., 18(5), 21-28.May 2008.
 
[28]  Robbins, J.R. Barth, A.I., Marquis, H., Hostos, E.L., Nelson, W.J. and Theriot, J.Á. “Listeria monocytogenes exploits normal host cell processes to spread from cell to cell.” J. Cell. Biol., 146(6), 1333-1350.Sep 1999.
 
[29]  Decatur, A.L. and Portnoy, D.A. “A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity.” Science., 290(5493), 992-999.Nov 2000.
 
[30]  Wesley, I.V. Listeriosis in Animals. In: Ryser ET, Marth EH. Listeria, Listeriosis e Food safety. CRC Press, Nova Yorque, 2007, 55-73.
 
[31]  Abdul-Aziz, T. “Overview of Listeriosis in Poultry.” In: Merck Manual. 2013. [Online]. Available: http://www.merckmanuals.com/vet/poultry/listeriosis/overview_of_listeriosis_in_poultry.html [Accessed Jan 22, 2015].
 
[32]  Nalerio, E.S., Araújo, M.R., Mendonça, K.S., Bassani, M.T and Silva, W.P. Listeria monocytogenes: monitoramento desse perigo biológico na cadeia produtiva de frangos do sul do Rio Grande do Sul. “Listeria monocytogenes: monitoring of this biological hazard in the production chain of the southern Rio Grande do Sul chickens” Ciênc. Tecnol. Aliment., 29(3), 626-630. jul.set. 2009.
 
[33]  Dhama, K., Verma, A.K., Rajagunalam, S., Kumar, A., Tiwari, R., Chakraborty, S. and Kumar, R. “Listeria monocytogenes infection in poultry and its public health importance with special reference to foodborne zoonoses”. Pakistan Journal of Biological Science, 16, 301-308, 2013.
 
[34]  Njagi, L.W., Mbuthia, P.G., Bebora, L.C., Nyaga, P.N., Minga, V. and Olsen, J.E. “Carrier status for Listeria monocytogenes and other Listeria species in free range farm and market healthy indigenous chickens and ducks” East African Medical Journal, 81, 529-533. October 2004.
 
[35]  Lehnert, C.H. Doenças infecciosas em animais domésticos. Rocca, São Paulo, 1988.
 
[36]  Jones, T.C., Hunt, R.D. and King, N.W. Moléstias causadas por bactérias. In: Patologia Veterinária, Manole, São Paulo, 2002, 471-473.
 
[37]  Departamento de Agricultura dos Estados Unidos – USDA. “Poultry - Production and Value.” 2014. [Online]. Available: http//:http://www.usda.gov/nass/PUBS/TODAYRPT/plva0415.pdf [Accessed March 22, 2015].
 
[38]  Food and Agriculture Organization of the United Nations. “OECD-FAO Agricultural Outlook.” 2014. [Online]. Available: http://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2014/meat_agr_outlook-2014-10-en [Accessed February 15, 2015].
 
[39]  Carpentier, B. and Cerf, O. “Review — Persistence of Listeria monocytogenes in food industry equipment and premises.” Int J Food Microbiol., 145(1), 1-8. Jan 2011.
 
[40]  Markkula, A., Autio, T., Lundén, J. and Korkeala, H. “Raw and processed fish show identical Listeria monocytogenes genotypes with pulsed-field gel eletrophoresis.” J Food Prot,. 68(6), 1228-1231. Jun 2005.
 
[41]  Tresse, O., Shannom, K., Pinon, A., Malle, P., Vialette, M. and Midelet-Bourdin, G. “Variable adhesion of Listeria monocytogenes isolates from food processing facilities and clinical cases to inert surfaces.” J Food Prot., 70(7), 1569-1578. Jul 2007.
 
[42]  Casarin, L.S. and Tondo, E.C. Adhesion and Biofilm Formation of Listeria monocytogenes on Food Contact Surfaces: General Aspects and Control Measurces In: Listeria monocytogenes: Incidence, Growth Behavior and Control, Nova Science Publishers: Nova Iorque. 2015.
 
[43]  Saludes, M., Troncoso, M. and Figueroa, G. “Presence of Listeria monocytogenes in Chilean food matrices.” Food Control, 50, 331-335. 2015.
 
[44]  Chiarini, E., Tyler, K., Farber, J.M., Pagotto, F. and Destro, M.T. “Listeria monocytogenes in two different poultry facilities: Manual and automatic evisceration.” Poult Sci, 88,791–797. 2009.
 
[45]  Centers of Disease Control. “Epidemiologic Notes and Reports Listeriosis Associated with Consumption of Turkey Franks.” MMWR, 38 (15), 267-268. 1989.
 
[46]  Miettinen, M.L., Siitonem, A., Heiskanem, P., Hajanem, H., Bjorkroth, K. and Korkeala, H.J. “Molecular epidemiology of na outbreak of febrile gastroenteritis caused by Listeria monocytogenes in cold-smoked rainbow trout.” J Clin Microbiol,. 37(7), 2358-2360. Jul 1999.
 
[47]  Capita, R., Alonso Calleja, C., Moreno, B. and Garcia Fernandez, M.C. “Ocurrence of Listeria species in retail poultry meat and comparison of a cultural/immunoassay for their detection.” Int J Food Microbiol., 65(1-2), 75-82. Apr 2001.
 
[48]  Barbalho, T.C.F., Almeida, P.F., Almeida, R.C.C. and Hofer, E. “Prevalence of Listeria spp at a poultry processing plant in Brazil and a phage test for a rapid test confirmation of suspect colonies.” Food control, 16 (3), 211-216. March 2005.
 
[49]  Pesavento, G., Ducci, B., Nieri, D., Comodo, N. and Lo Nostro, A. “Prevalence and antibiotic susceptibility of Listeria spp. isolated frow raw meat and retail foods.” Food Control 21, 708-713. 2010.
 
[50]  Osaili, T.M., Alaboudi, A.R. and Nesiar, E.A. “Prevalence of Listeria spp. and antibiotic susceptibility of Listeria monocytogenes isolated from raw chicken and ready-to-eat chicken products in Jordan.” Food Control, 22 (3-4), 586-59. March–April 2011.
 
[51]  Hosseinzadeh, S., Shekarforoush, S.S., Ansari-Lari, M., Jahromi, M.E., Berizi, E. and Abdollahi, M. “Prevalence and Risk Factors for Listeria monocytogenes in Broiler Flocks in Shiraz, Southern Iran.” Foodborne Pathog Dis, 9(6), 568-572. Jun 2012.
 
[52]  Kuan, C.H., Goh, S.G., Loo, Y.Y., Chang, W.S., Lye, Y.L., Puspanadan, S., Tang, J.Y.H., Nakaguchi, Y., Nishibuchi, M., Mahyudin, N.A. and Radu, S. “Prevalence and quantification of Listeria monocytogenes in chicken offal at the retail level in Malaysia.” Poult Sci, 92(6), 1664-1669.Jun 2013.
 
[53]  Chasseignaux, E., Gérault, P., Toquin, M.T., Salvat, G., Colin P. and Ermel, G. “Ecology of Listeria monocytogenes in the environment of raw poultry meat and raw pork meat processing plants.” FEMS Microbiol Lett., 210(2), 271-275.May 2002.
 
[54]  Gudbjörnsdóttir, B., Suihko, M.L., Gustavsson, P., Thorkelsson, G., Salo, S., Sjöberg, A.M., Niclasen, O. and Bredholt, S. “The incidence of Listeria monocytogenes in meat, poultry and seafood plants in the Nordic countries.” Food Microbiol., 21(2), 217-225. April 2004.
 
[55]  Norton, D.M. “Polymerase chain reaction-based methods for detection of Listeria monocytogenes: toward real-time screening for food and environmental samples.” J AOAC Int, 85(2) 505-515 Mar-Apr. 2002.
 
[56]  Jantzen, M.M. “Listeria monocytogenes: detecção de células injuriadas por altas pressões e efeito de pré-enriquecimentos na PCR em tempo real.” 2006. Tese (Doutorado em Ciências-Microbiologia de Alimentos) – Universidade Federal de Pelotas – Programa de Pós Graduação em Ciência e Tecnologia Agroindustrial, Pelotas.
 
[57]  Silva, N., Silveira, N.F.A., Junqueira, V.C.A., Taniwaki, M.H., Dos Santos, R.F.S. and Gomes, R.A.R. Listeria monocytogenes. In: Manual de métodos de análises microbiológicas de alimentos e água. Varela, Santa Maria, 2010, 261-284.
 
[58]  Bell, K. and Kyriakides, A. Listeria: Una aproximación práctica al microortanismo y su control en los alimentos. Acribia: Zaragoza,1998, 173.
 
[59]  Ky, Y.U., Noh, Y., Park, H.J., Lee, N., Youn, M., Jung B.Y. and Youn, B.S. “Use of monoclonal antibodies that recognize p60 for identification of Listeria monocytogenes.” Clin Diagn Lab Immunol , 11 (3), 446-4451. May 2004.
 
[60]  Brehm-Stecher, B.F. and Johnson, E.A. Rapid Methods for Detection of Listeria. In: RYSER, E. T.; MARTH, E.H. Listeria, Listeriosis e Food safety. CRC Press, Nova Yorque, 2007, 257-275.
 
[61]  Rossmanith, P., M. Krassnig, M. Wagner, and I. Hein. “Detection of Listeria monocytogenes in food using a combined enrichment/real-time PCR method targeting the prfA gene.” Res. Microbiol., 157(18), 763-771. Oct 2006.
 
[62]  Rantsiou, K. et al. “Detection, quantification and vitally Listeria monocytogenes in food as determined by quantitative PCR.” International Journal of Food Microbiology, 121(1), 99-105, Jan 2008.
 
[63]  Traunšek, U., Toplak, N., Jeršek, B., Lapanje, A,. Majstorović, T. and Kovač, M. “Novel cost-efficient real time PCR assays for detection and quantitation of Listeria monocytogenes.” Journal of Microbiology Methods 85 (1), 40-46. Apr 2011.
 
[64]  Volokhov, D.V., Duperrier, S., Neverov, A.A., George, J., Buchrieser, C. and Hitchins, A.D. “The presence of the internalin gene in natural atypically hemolytic Listeria innocua strains suggest descent from Listeria monocytogenes.” Applied and Environmental Microbiology, 73 (3), 1928-1939. Mar 2007.
 
[65]  den Bakker, H.C., Bundrant, B.N., Fortes, E.D., Orsi, R.H. and Wiedmann, M. “A population genetics-based an phylogenetic approach to understanding the evolution of virulence in the genus Listeria.” Applied and Environmental Microbiology, 76 (18), 6082-6100. Sep 2010.
 
[66]  Destro, M.T. “Listeria monocytogenes na cadeia produtiva de alimentos: da produção primária ao consumidor final.” 2006. Tese (Livre Docência- Alimentos e Nutrição Experimental) – Universidade de São Paulo – Faculdade de Ciências Farmacêuticas, São Paulo.
 
[67]  ILSI. “Achieving continuous improvement in reduction in foodborne listeriosis – A risk based approach.” J Food Protect, 68, 1932-1994. 2005.
 
[68]  Ashraf, M.A., Ullah, S., Ahmad, L., Qureshi, A.K., Balkhair, K.S. and Abdur Rehamn, M.”Green biociddes, a promising technology: current and future applications to industry and industrial processes.” J. Sci. Food Agric., 94(3), 348-403. Feb 2014.
 
[69]  Neyret, C., Herry, J.M., Meylheuc, T. and Dubois Brissonnet, F. “Plant derived compounds as natural antimicrobials to control paper mill biofilms.” J Ind Microbiol Biotechnol, 41(1), 87-96. Jan 2014.
 
[70]  Bridier, A., Sanchez-Vizuete, P., Guilbaud, M., Piard, J.C., Naital, M. and Briandet, R. “Biofilm associated persistence of food borne pathogens.” Food Microbiol., 45, 167-178. Feb 2015.
 
Show Less References

Article

Effects of High-pressure Processing Technique on the Quality and Shelf Life of Chinese Style Sausages

1Food Industry Research and Development Institute, P.O. BOX 246, Hsinchu, Taiwan, ROC


Journal of Food and Nutrition Research. 2016, 4(7), 442-447
doi: 10.12691/jfnr-4-7-5
Copyright © 2016 Science and Education Publishing

Cite this paper:
C.K. Yeung, S.C. Huang. Effects of High-pressure Processing Technique on the Quality and Shelf Life of Chinese Style Sausages. Journal of Food and Nutrition Research. 2016; 4(7):442-447. doi: 10.12691/jfnr-4-7-5.

Correspondence to: S.C.  Huang, Food Industry Research and Development Institute, P.O. BOX 246, Hsinchu, Taiwan, ROC. Email: hsc30@firdi.org.tw

Abstract

Fresh Chinese-style sausage is a traditional product in Taiwan. Because it is made from fresh meat, the initial total plate count of packed products can be lowered using non-thermal preservation methods. The high pressure processing (HPP) technique (100-1000 MPa) can be applied to sterilize packed products to reduce microbial contamination. This study applied the HPP technique to fresh Chinese-style sausages and evaluated their physicochemical, microbial and sensory characteristics. The results revealed that when the sausages are processed at a pressure greater than 400 MPa, the a value of color increases. Regarding the texture properties, the hardness, cohesiveness, gumminess and chewiness decreases as the pressure rises. Moreover, an increased pressure effectively reduces the initial total plate count. The sensory analysis showed that after HPP, the sausages exhibit significantly high acceptability in texture and overall characteristics. In addition, in a storage treatments conducted at 7 °C, a control group reached 6 log CFU/g in total plate count and swelling was observed after 80 days of treatment. however, sausages that received HPP (at 600 MPa for 10 min) exhibited a significantly lower total plate count of 3 log CFU / g after 90 days of treatment. These results indicate that HPP considerably reduces the initial plate count of the sausages as well as suppresses the growth of the total plate count during the storage period. Therefore, HPP can extend the shelf life of fresh Chinese-style sausages by at least 30%.

Keywords

References

[1]  Sikes, A., Tornberg, E. and Tume, R, “A proposed mechanism of tenderising post-rigor beef using high pressure-heat treatment,” Meat Science, 84.390-399. 2010.
 
[2]  Campus, M., Flores, M., Martinez, A. and Toldra F, “Effect of high pressure treatment on color, microbial and chemical characteristics of dry cured loin,” Meat Science, 80. 1174-1181. 2008.
 
[3]  Garriga M., Aymerich, M.T., Costa, S., Monfort, J.M. and Hugsa, M, “Bactericidal synergism through bacteriocins and high pressure in a meat model systemduring storage,” Food Microbiology, 19. 509-518. 2002
 
[4]  Hoover, D.G., Metrick, C., Papineau, A.M., Farkas, D.F., & Knorr, D, “Biological effects of high hydrostatic pressure on food microorganisms,” Food Technology, 47. 99-107. 1989.
 
[5]  Marcos, B., Jofre, A., Aymerich, T., Monfort, J.M. and Garriga, M, “Combined effect of natural antimicrobials and high pressure processing to prevent Listeria monocytogenes growth after a cold chain break during storage of cooked ham,” Food Control, 19. 76-81. 2008.
 
Show More References
[6]  Liu, G., Wang, Y., Gui, M., Zheng, H., Dai, R. and Li, P, “Combined effect of high hydrostatic pressure and enterocin LM-2 on the refrigerated shelf life of ready-to-eat sliced vacuum-packed cooked ham.” Food Control, 24. 64-71. 2012.
 
[7]  Han, Y.Q., Jiang, Y., Xu, X.L. Sun, X.S., Xu, B. and Zhou, G.H, “Effect of high pressure treatment on microbial populations of sliced vacuum-packed cooked ham,” Meat Science, 88. 682-688. 2011.
 
[8]  Elisabeth B., Marie-Louise K.M.,Ylva B, “Bacterial spoilage of meat and cured meat products,” International Journal of Food Microbiology, 33. 103-120. 1996.
 
[9]  Nychas, G.J.N., Skandamis, P.N., Tassou, C.C. and Koutsoumanis, K.P, “Meat spoilage during distribution” Meat Science, 78. 77-89. 2008.
 
[10]  Hygreeva, D. and Pandey M.C, “Novel approaches in improving the quality and safety aspects of processed meat products through high pressure processing technology - A review,” Trends in Food Science and Technology, 54. 175-185. 2016.
 
[11]  Hereu, A., Dalgaard, P., Garriga, M., Aymerich, T., and Bover-Cid, S, “Analysing and modelling the growth behaviour of Listeria monocytogenes on RTE cooked meat products after a high pressure treatment at 400 MPa,” International Journal of Food Microbiology, 186. 84-94. 2014.
 
[12]  Ahmadi, H., Anany, H., Walkling-Ribeiro, M., and Griffiths, M. W, “Biocontrol of Shigella flexneri in ground beef and Vibrio cholerae in seafood with bacteriophage-assisted high hydrostatic pressure (HHP) treatment,” Food and Bioprocess Technology, 8. 1160-1167. 2015.
 
[13]  Huang, S.C., Tsai, Y.F. and Chen, C.M, “Effects of wheat fiber, oat fiber, and inulin on sensory and physico-chemical properties of chinese-style sausages,” Asian-Australasian Journal of Animal Sciences, 24(6). 875-880. 2011.
 
[14]  AOAC, AOAC Official Method 990.12 for Aerobic Plate Count in Foods, Official methods of analysis, 14th Ed, DC: Association of Official Analytical Chemists, Wshington, DC.,1995.
 
[15]  AOAC, AOAC Official Method 991.14 for Coliform and Escherichia coli Counts in Foods, Official methods of analysis, 14th Ed, DC: Association of Official Analytical Chemists, Washington, DC., 1995.
 
[16]  Meilgaard, M., Civille G.V., and Carr. B.T, Sensory evaluation techniques, 2nd Ed, CRC Press, USA, 1991.
 
[17]  Marcos, B., Kerry, J.P. and Mullen, A.M, “High pressure induced changes on sarcoplasmic protein fraction and quality indicators,” Meat Science, 85. 115-120. 2010.
 
[18]  McArdle, R., Marcos, B. Kerry, J.P. and Mullen, A, “Monitoring the effects of high pressure processing and temperature on selected beef quality attributes,” Meat Science, 86. 629-634. 2010.
 
[19]  Grossi, A., Søltoft-Jensen, J., Knudsen, J.C., Christensen, M. and Orlien, V, “Synergistic cooperation of high pressure and carrot dietary fibre on texture and colour of pork sausages,” Meat Science, 89. 195-201. 2011.
 
[20]  Bak, K.H., Orlien, V., Karlsson, A.H. and Lindahl, G, “Effect of high pressure processing, temperature, and storage on the color of pork longissimus,” Internationaol Congress of Meat Science and Technology, 581-891. 2009.
 
[21]  Jung, S., Ghoula, M. and Lamballerie-Antonb, M, “Influence of high pressure on the color and microbial quality of beef meat,” LWT - Food Science and Technology, 36. 625-631. 2003.
 
[22]  Carlez, A., Veciana-Nogues, T. and Cheftel, J.C, “Changes in Color and Myoglobin of Minced Beef Meat Due to High Pressure Processing,” LWT - Food Science and Technology, 28.528-538. 1995.
 
[23]  Wackerbarth, H., Kuhlmann, U., Tintchev, F., Heinz, V. and Hildebrandt, P, “Structural changes of myoglobin in pressure-treated pork meat probed by resonance Raman spectroscopy,” Food Chemistry, 115. 1194-1198. 2009.
 
[24]  Souza, C.M., Boler, D.D., Clark, D.L., Kutzler, L.W., Holmer, S.F., Summerfield, J.W., Cannon, J.E., Smit, N.R., McKeith, F.K. and Killefer, J, “The effects of high pressure processing on pork quality, palatability, and further processed products,” Meat Science, 87. 419-427. 2011.
 
[25]  Sikes, A.L., Tobin, A.B. and Tume, R.K, “Use of high pressure to reduce cook loss and improve texture of low-salt beef sausage batters,” Innovative Food Science and Emerging Technologies, 10. 405-412. 2009.
 
[26]  Alba, M., Montiel, R., Bravo, D., Gaya, P. and Medina, M, “High pressure treatments on the inactivation of Salmonella Enteritidis and the physicochemical, rheological and color characteristics of sliced vacuum-packaged dry-cured ham,” Meat Science, 91. 173-178. 2012.
 
[27]  Ma, H.J. and Ledward, D.A, “High pressure/ thermal treatment effects on the texture of beef muscle,” Meat Science, 68. 347-355. 2004.
 
[28]  Canto, A.C.V.C.S., Lima, B.R.C.C. Cruz, A.G., Lazaro, C.A., Freitas, D.G.C., Faria, J.A.F., Torrezan, R., Freitas, M.Q. and Silva, T.P.J, “Effect of high hydrostatic pressure on the color and texture parameters of refrigerated Caiman (Caiman crocodilus yacare) tail meat,” Meat Science, 91. 255-260. 2012.
 
[29]  Hugas, M., Garriga, M. and Monfort, J.M, “New mild technologies in meat processing: high pressure as a model technology,” Meat Science, 62. 359-371. 2002.
 
[30]  Rodríguez-Calleja, J.M., Cruz-Romero, M.C., O’Sullivan, M.G., García-López, M.L. and Kerry, J.P, “High-pressure-based hurdle strategy to extend the shelf-life of fresh chicken breast fillets,” Food Control, 25. 516-524. 2012.
 
[31]  Garriga, M., Grèbol, N., Aymerich, M.T., Monfort, J.M. and Hugas, M, “Microbial inactivation after high-pressure processing at 600 MPa in commercial meat products over its shelf life,” Innovative Food Science and Emerging Technologies, 5. 451-457. 2004.
 
[32]  Realini, C.E., Guàrdia, M.D., Garriga, M., Pérez-Juan, M. and Arnau, J, “High pressure and freezing temperature effect on quality and microbial inactivation of cured pork carpaccio,” Meat Science, 88. 542-547. 2011.
 
[33]  Vercammen, A., Vanoirbeek, K.G.A., Lurquin, I., Steen, L., Goemaere, O., Szczepaniak, S., Paelinck, H., Hendrickx, M.E.G. and Michiels, C.W, “Shelf-life extension of cooked ham model product by high hydrostatic pressure and natural preservatives,” Innovative Food Science and Emerging Technologies, 12. 407-415. 2011.
 
Show Less References