Welcome to International Journal of Physics

International Journal of Physics is a peer-reviewed, open access journal that publishes original research articles and review articles in all areas of physics. The goal of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of physics.

ISSN (Print): 2333-4568

ISSN (Online): 2333-4576

Editor-in-Chief: B.D. Indu

Website: http://www.sciepub.com/journal/IJP



Concentration Measurements of Radon 222 Indoors in Lima – Peru

1Sección Física, Pontificia Universidad Católica del Perú, Lima – Perú

International Journal of Physics. 2015, 3(4), 165-169
doi: 10.12691/ijp-3-4-5
Copyright © 2015 Science and Education Publishing

Cite this paper:
P. Pereyra, M.E. López, L. Vilcapoma. Concentration Measurements of Radon 222 Indoors in Lima – Peru. International Journal of Physics. 2015; 3(4):165-169. doi: 10.12691/ijp-3-4-5.

Correspondence to: P.  Pereyra, Sección Física, Pontificia Universidad Católica del Perú, Lima – Perú. Email: ppereyr@pucp.edu.pe


The measurement of the levels of 222Rn was accomplished during autumn to spring season in 2014 at residences distributed throughout 30 districts of Lima Metropolitan Area, including the north, centre and south areas of the city. The houses where the measurements were achieved were selected considering several variables as type of construction, age, construction materials, coatings, soil type, occupational use of rooms monitored, etc. For all the measurements of 222Rn passive detectors was used (Solid State Nuclear Track Detectors SSNTDs) of cellulose nitrate (LR- 115). Procedure and data acquisition are described and results; this monitoring is the first realized in this city. The results are only indicating the presence of 222Rn, the detectors used do not allow to the discrimination of its descendants.



[1]  Canoba, A., López, F.O., Arnaud, M.I., Oliveira, A.A., Neman, R.S., Hadler, J.C., Iune, P.J., Paulo, S.R., Osorio, A.M., Aparecido, R., Rodríguez, C., Moreno, V., Vásquez, R., Espinosa, G., Golzarri, J.I., Martínez, T., Navarrete, M., Cabrera, I., Segovia, N., Peña, P., Taméz, E., Pereyra, P., López-Herrera, M.E., Sajo-Bohus, L., “Indoor radon measurements in six Latin American countries”, Geofísica Internacional (2002), Vol. 41, Num. 4, pp. 453-457 (2002).
[2]  Espinosa, G., Trazas Nucleares en Sólidos, UNAM, México, ISBN: 968-36- 4219-5 (2002).
[3]  Fleischer, R.L., Price, P.B., Walker, R.M., Nuclear Tracks in Solids: Principles and Applications, University of California Press, Berkeley (1975).
[4]  Fleischer, R.L., Price, P.B., Walker, R.M., “Solid State track detector: application to nuclear science and geophysics”, Annu. Rev. Nucl. Sci., 15, pp. 1-28 (1965).
[5]  Gupta, M., “Monitoring of indoor radon and its progeny in dwellings of Delhi using SSNTDs”, Advances in Applied Science Research 2, (5): 421-426 (2011).
Show More References
[6]  Liendo, J., Sajó-Bohus, L., Pálfavi, J., Greaves, E.D., Gomez, N., “Radon monitoring for health studies in the Caracas subway using SSNTDS”, Radiation Measurements, Vol. 28, Issues 1–6, 1997, Pag. 729-732 (1997).
[7]  Pereyra, P., Aplicación de la técnica de huellas nucleares en dosimetría de partículas alfa, Tesis de bachiller de la Pontificia Universidad Católica del Perú (1991).
[8]  Santos, T., Rocha, Z., Barreto, A.A., de Souza, A., Miguel, R., de Oliveira, A., Indoor radon distribution in metropolitan region of Belo horizonte, Brasil Proceedings 2009, International Nuclear Atlantic Conference - INAC 2009 ISBN: 978-85-99141-0 (2009).
[9]  Urban, M., Piesch, E., “Low level environmental radon dosimetry with a passive track etch detector device”, Radiat. Protect. Dosimetry, 1, pp. 97-109 (1981).
[10]  ICRP, Lung Cancer Risk from Exposures to Radon Daughters, ICRP Publication 50 (1987).
[11]  ICRP, Lung Cancer Risk from Radon and Progeny and Statement on Radon, ICRP Publication 115, (2010).
[12]  “Instituto nacional de estadística e informática,” http://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1157/libro.pdf (2014).
[13]  A citizens guide to Radon Homepage United State Environmental Protection Agency” http://www.epa.gov (2013).
[14]  Eappern, K.P., Mayya, Y.S, “Calibration factors for LR 115 (type II) based radon thoron discriminating dosimeter”, Radiation Measurements, 38, pp 5-17 (2014).
Show Less References


Effect of Interface Morphology on Charge Transport

1RKSD College Kaithal

2Global College of Engineering & Technology, Khanpur Khui, Punjab

3Shri Jagdishprasad Jhabarmal Tibrewala University

International Journal of Physics. 2015, 3(4), 170-174
doi: 10.12691/ijp-3-4-6
Copyright © 2015 Science and Education Publishing

Cite this paper:
O.P. Garg, Vijay Kr Lamba, D.K. Kaushik. Effect of Interface Morphology on Charge Transport. International Journal of Physics. 2015; 3(4):170-174. doi: 10.12691/ijp-3-4-6.

Correspondence to: Vijay  Kr Lamba, Global College of Engineering & Technology, Khanpur Khui, Punjab. Email: lamba_vj@hotmail.com


Molecular devices are a promising candidate for new technology nowadays. Great effort has been devoted recently to understand the charge transport at the interfaces in nano junctions and the role of bond length on the transport properties of molecular junctions. However, these studies have been largely based on the analysis of the low-bias conductance, which does not allow elucidating the exact influence of the symmetry in both the electronic structure and transport characteristics of the interfaces. In this work we had presented a theoretical study of the charge transport, and how conductance changes with varying the bond length of end group anchor (thiol group) on both sides of anthracene molecule to the extreme limits beyond these either the bond broke or it got overlapped with another consecutive bond. Further we rotated (along Z axis) the molecule under observation (anthracene di-thiol) and measured the effect of the rotation on the current and conductance. We have performed first principles calculations of the transport properties of these molecules using a combination of density functional theory and non-equilibrium Green's function techniques.



[1]  N.W. Ashcroft and N.D. Mermin, “Solid State Physics”, Saunders College Publishing, New York, 1976, Chap 2, 3.
[2]  C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, “A direct calculation of the tunnelling current: IV. Electron-phonon interaction effects”, J. Phys. C, 21(5), 1972.
[3]  L. Kadanoff and G. Baym, “Quantum Statistical Mechanics”, W.A. Benjamin, Menlo Park, CA, 1962, Chapter 6-9.
[4]  L. V. Keldysh, “Diagram Technique for Non-equilibrium Processes” , Sov. Phys. JETP (20), P. 1018, 1965.
[5]  Atomistix ToolKit: Manual, 11.2.0, Chapter 4 & 5; (2011).
Show More References
[6]  S. Datta, “Electronic Transport in Mesoscopic Systems”, Cambridge University Press, Cambridge, UK, 1995, Chapter 2, 5 & 7.
[7]  H. Haug and A. P. Jauho, “Quantum Kinetics in Transport and Optics of Semi-Conductors”, Berlin, 1996, Chapter 8, & 9.
[8]  M. D. Ventra, S. T. Pantelides, and N. D. Lang, “First-Principles Calculation of Transport Properties of a Molecular Device”, Phys. Rev. Lett. (84), 2000, P 979.
[9]  E. Emberly and G. Kirczenow, “Theoretical study of electrical conduction through a molecule connected to metallic nanocontacts”, Phys. Rev. B (58), 1998, P 10911.
[10]  A.R. Rocha and S. Sanvito, “Asymmetric I-V characteristics and magnetoresistance in magnetic point contacts”, Phys. Rev. B , (70), 2004, P 220045.
[11]  R. Rocha, V. M. G. Su´arez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, “Spin and molecular electronics in atomically generated orbital landscapes”, Phys. Rev. B (73), 2006, P 085414.
[12]  C.W.J. Beenakker, “Theory of Coulomb-blockade oscillations in the conductance of a quantum dot”, Phys. Rev. B (44), 1991, P 1646.
[13]  R. Gebauer and R. Car, “ Kinetic theory of quantum transport at the nanoscale”, Phys. Rev. B (70), 2004, P 125324.
[14]  L. G. C. Rego, A. R. Rocha, V. Rodrigues, and D. Ugarte, “ Role of structural evolution in the quantum conductance behaviour of gold nano-wires during stretching”, Phys. Rev. B (67), 2003, P 045412.
[15]  M. Buttiker, Y. Imry, R. Landauer, and S. Pinhas, “Generalized many-channel conductance formula with application to small rings”, Phys. Rev. B (31), 1985, 6207.
[16]  B.J. Van Wees, H. Van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon. “Quantized conductance of point contacts in a two-dimensional electron gas”, Phys. Rev. Lett. (60), 1988 P 848.
[17]  D. Stone and A. Szafer. “What is measured when you measure a resistance?- The Landauer formula” , IBM J. Res. Develop., (32), 1988, P-384.
[18]  Yun Zheng, Cristian Rivas, Roger Lake, “Electronic Properties of Silicon Nanowires”, IEEE Transactions on Electron Devices, vol. 52, no. 6, 2005, pp.1097-1103
[19]  Sweta Parashar, Pankaj Srivastava, and Manisha Pattanaik, “Electrode materials for biphenyl-based rectification devices”, J Mol Model (19) 2013, P 4467-4475.
[20]  Du Y, Pan H, Wang S, Wu T, Feng YP, Pan J, Wee ATS, “Symmetrical negative differential resistance behavior of a resistive switching device”. ACS Nano 6, 2012, P 2517-2523.
Show Less References


Magnetism as an Electric Angle-effect and Gravitation as an Electric Effect

1Web-site: http://www.hochecker.eu

International Journal of Physics. 2015, 3(4), 175-201
doi: 10.12691/ijp-3-4-7
Copyright © 2015 Science and Education Publishing

Cite this paper:
Hans-Joerg Hochecker. Magnetism as an Electric Angle-effect and Gravitation as an Electric Effect. International Journal of Physics. 2015; 3(4):175-201. doi: 10.12691/ijp-3-4-7.

Correspondence to: Hans-Joerg  Hochecker, Web-site: http://www.hochecker.eu. Email: jo.hoer@yahoo.de


At first, I regard magnetism. I can show that the magnetic force is an electric angle-effect by establishing two postulates: the dependence of the electric force on the velocity, and the existence of the anti-field. With the help of a third postulate, this is the quantization of the energy-transfer of the electric field, I then show that gravitation is also an electric effect. So, the three postulates describe three qualities of the electric field by which magnetism and gravitation can be derived. I finally carry out quantum-mechanical considerations at which the three postulates will be excellently confirmed. For the correct classification of this work I must mention that the theory of special relativity is absolutely considered as being correct and that it is an important and necessary component of this work.



[1]  A. Einstein, Zur Elektrodynamik bewegter Körper Annalen der Physik 17, 891-921 (1905).
[2]  PAM Dirac: The Quantum Theory of the Electron. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. A, Nr. 778, 1928, S. 610-624.
[3]  Dieter Meschede: Gerthsen Physik. 23. Auflage, Springer, Berlin/Heidelberg/New York 2006.
[4]  James Clerk Maxwell, A Dynamical Theory of the Electromagnetic Field, Royal Society Transactions 155, 1865, Seiten 459-512.
[5]  Introduction to Electrodynamics (3rd Edition), D.J. Griffiths, Pearson Education, Dorling Kindersley, 2007.
Show More References
[6]  Electromagnetism (2nd Edition), I.S. Grant, W.R. Phillips, Manchester Physics, John Wiley & Sons, 2008
[7]  Dirac, Paul (1996), General Theory of Relativity, Princeton University Press
[8]  Einstein, Albert (1916), "Die Grundlage der allgemeinen Relativitätstheorie", Annalen der Physik 49.
[9]  Hartle, James B. (2003), Gravity: an Introduction to Einstein's General Relativity, San Francisco: Addison-Wesley
[10]  M. Planck: Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. In: Verhandlungen der Deutschen physikalischen Gesellschaft. 2, Nr. 17, 1900, S. 245, Berlin (vorgetragen am 14. Dezember 1900).
[11]  Roger Bach, Damian Pope, Sy-Hwang Liou, Herman Batelaan Controlled double-slit electron diffraction In: New Journal of Physics, Roger Bach et al 2013 New J. Phys. 15 033018.
[12]  R. L. Jaffe: The Casimir Effect and the Quantum Vavuum. In: Physical Review D. Band 72, 2005 (online).
[13]  J. Baez. What´s the energy density of the vacuum?, 2006
[14]  M. Gell-Mann: A Schematic Model of Baryons and Mesons in Phys. Lett. 8, 1964, 214-215.
[15]  Moshe Carmeli, John G. Hartnett, Firmin J. Oliveira On the anomalous acceleration of Pioneer spacecraft Int.J.Theor.Phys. 45 (2006) 1074-1078.
[16]  Albert Einstein: Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. In: Sitzungsberichte der Preußischen Akademie der Wissenschaften.
[17]  Chandrasekhar Roychoudhuri, Rajarshi Roy: The nature of light: What is a photon? In: Optics and Photonics News. 14, Nr. 10, 2003, ISSN 1047-6938, Supplement, S. 49-82.
[18]  Harry Paul: Photonen: Eine Einführung in die Quantenoptik. 2. Auflage. Teubner, Stuttgart 1999, ISBN 3-519-13222-2. (Teubner-Studienbücher Physik).
[19]  Klaus Hentschel: Einstein und die Lichtquantenhypothese. In: Naturwissenschaftliche Rundschau. 58(6), 2005, ISSN 0028-1050, S. 311-319.
[20]  Liang-Cheng Tu, Jun Luo, George T. Gillies: The mass of the photon. In: Reports on Progress in Physics. 68, Nr. 1, 2005, S. 77-130.
[21]  J D Franson Apparent correction to the speed of light in a gravitational potential In: New Journal of Physics, J D Franson 2014 New J. Phys. 16 065008.
[22]  Berestetskii V B, Lifshitz E M and Pitaevskii L P 1980 Quantum Electrodynamics (Oxford: Pergamon).
[23]  H. Grote: On the possibility of vacuum QED measurements with gravitational wave detectors In: Phys. Rev. D 91, 0220022-7 January 2015.
[24]  Max Born, Albert Einstein: Albert Einstein, Max Born. Briefwechsel 1916-1955. München (Nymphenburger) 1955, S. 210.
[25]  Simon Gröblacher, Tomasz Paterek, Rainer Kaltenbaek, Caslav Brukner, Marek Zukowski, Markus Aspelmeyer, Anton Zeilinger: An experimental test of non-local realism. In: Nature. 446, 2007, S. 871-875. (Abstract).
[26]  Jacob Biemond The MagneticFfield of Pulsars and the Gravito-Magnetic Theory Trends in Pulsar Research (Ed. Lowry, J. A.), Nova Science Publishers, New York, Chapter 2 (2007).
[27]  Shervgi S. Shahverdiyev Unification of Electromagnetism and Gravitation in the Framework of General Geometry Proceedings of the workshop in "Fizika" N 12, 2004.
[28]  Friedrich W. Hehl An Assesment of Evans´Uunified Field Theory Foundations of Physics 38 (2008) 7-37.
[29]  Bahram Mashhoon, Frank Gronwald and Herbert I.M. Lichtenegger Gravitomagnetism and the Clock Effect Lect.Notes Phys. 562 (2001) 83-108.
[30]  Sumana Bhadra Electromagnetic Mass Models in General Theory of Relativity Ph.D. thesis, Sambalpur University, Jyoti Vihar, Burla – 768019, Orissa, India (2007).
[31]  J.H. Field Forces Between Electric Charges in Motion: Rutherford Scattering, Circular Keplerian Orbits, Action-at-a-Distance and Newton’s Third Law in Relativistic Classical Electrodynamics arXiv:physics/0507150v3 (2007)
[32]  J.H.Field Classical Electromagnetism as a Consequence of Coulomb's Law, Special Relativity and Hamilton's Principle and its Relationship to Quantum Electrodynamics Phys.Scripta 74 (2006) 702-717.
[33]  M. Tajmar and C. J. de Matos Extended Analysis of Gravitomagnetic Fields in Rotating Superconductors and Superfluids ARC Seibersdorf research GmbH, A-2444 Seibersdorf, Austria and ESA-HQ, European Space Agency, 8-10 rue Mario Nikis, 75015 Paris, France.
[34]  M. Tajmar, F. Plesecu, B. Seifert and K. Marhold Measurement of Gravitomagnetic and Acceleration Fields Around Rotating Superconducters AIP Conf. Proc. 880, 1071 (2007).
[35]  Martin Tajmar, Florin Plesescu, Klaus Marhold and Clovis J. Matos Experimental Detection of the Gravitomagnetic London Moment Space Propulsion, ARC Seibersdorf research GmbH, A-2444 Seibersdorf, Austria and ESA-HQ, European Space Agency, 8-10 rue Mario Nikis, 75015 Paris, France (2006).
[36]  V.V. Roschin and S. M. Godin Experimental Research of the Magnetic-Gravity Effects Institute for High Temperatures, Russian Academy of Science
[37]  H.-J. Hochecker Theory of Objects of space At: http://www,hochecker.eu.
Show Less References