**International Journal of Physics:**Latest Articles More >>

## Article

# The Wave Properties of Matter: The Physical Aspect

^{1}The State University of Management, Moscow, Russia

*International Journal of Physics*.

**2014**, 2(6), 189-196

**DOI:**10.12691/ijp-2-6-2

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Liudmila B. Boldyreva. The Wave Properties of Matter: The Physical Aspect.

*International Journal of Physics*. 2014; 2(6):189-196. doi: 10.12691/ijp-2-6-2.

Correspondence to: Liudmila B. Boldyreva, The State University of Management, Moscow, Russia. Email: boldyrev-m@yandex.ru

## Abstract

## Keywords

## References

[1] | De Broglie, L.V, “A Tentative Theory of Light Quanta,” Philosophical Magazine, 47. 446, 1924. | ||

[2] | Wichmann, E.H, Quantum Physics. Berkeley physics course, v. IV, McGraw-Hill Book company, 1971. | ||

[3] | Sinha K.P., Sudarshan E.C.G. and Vigier J.P, “Superfluid Vacuum Carrying Real Einstein De Broglie Waves”, Phys. Lett. 114A, No. 6, 298-300, 1986. | ||

[4] | Mandl F. and Shaw G, Quantum Field Theory, John Wiley & Sons, Chichester UK, revised edition, 56, 176, 1984/2002. | ||

[5] | Sedov L.I, A Course in Continuum Mechanics, v. 1-4, Wolters-Noordhoﬀ, 1971-1972. | ||

[6] | Boldyreva L.B, What does this give to physics: attributing the properties of superfluid ^{3}He-B to physical vacuum? Moscow, KRASAND, 2012. | ||

[7] | Boldyreva L.B, “Quantum correlations – Spin supercurrents”, International Journal of Quantum Information, 12, No. 1, 1450007 (13 pp.), 2014. | ||

[8] | Born M, Einstein’s Theory of Relativity, Dover Publications, New York, 1962. | ||

[9] | Purcell E.М, Electricity and Magnetism. Berkeley physics course, v. 2, McGraw-Hill Book company, 1965. | ||

[10] | Thomas L.T, “The Kinematics of an Electron with an Axis,” Philosophical Magazine 3 (1), 1-22, 1927. | ||

[11] | Kroemer H. and Kittel C, Thermal Physics (2nd ed.), W. H. Freeman company, 1980. | ||

[12] | Lamoreaux, S.K, “Demonstration of the Casimir Force in the 0.6 to 6μm Range,” Phys. Rev. Lett. 78, 5-8, 1997. | ||

[13] | Capasso F, Munday J.N. and Parsegian V.A, “Measured long-range repulsive Casimir-Lifshitz forces,” Nature, 457, 170-173, 2009. | ||

[14] | Biberman L., Sushkin N. and Fabrikant V, “Diffraction of successively travelling electrons,” Reports of the Academy of Sciences of USSR, LXVI, No.2, 185-186, 1949. | ||

[15] | Belinskii A.V, “Quantum nonlocality and the absence of a priori values for measurable quantities in experiments with photons,” Physics Uspekhi, 46, 877-881, 2003. | ||

[16] | Čerenkov P.A, “Visible radiation produced by electrons moving in a medium with velocities exceeding that of light,” Phys. Rev. 52, 378, 1937. | ||

## Article

# The Critical Error in the Formulation of the Special Relativity

^{1}Mechanical Department, DAH (S & P), Beirut, Lebanon

*International Journal of Physics*.

**2014**, 2(6), 197-201

**DOI:**10.12691/ijp-2-6-3

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Radwan M. Kassir. The Critical Error in the Formulation of the Special Relativity.

*International Journal of Physics*. 2014; 2(6):197-201. doi: 10.12691/ijp-2-6-3.

Correspondence to: Radwan M. Kassir, Mechanical Department, DAH (S & P), Beirut, Lebanon. Email: radwan.elkassir@dargroup.com

## Abstract

## Keywords

## References

[1] | Einstein, A, “Zur elektrodynamik bewegter Körper.” Annalen der Physik, 322. 891-921. 1905. | ||

[2] | Nimtz, G, “Tunneln mit Überlichtgeschwindigkeit,” DLR Nachrichten, 90. 1998. | ||

[3] | Nimtz G, “Evanescent modes ar not necessarily Einstein causal,” The European Physical Journal, B7. 523. 1999. | ||

[4] | Cahill R.T, Kitto K, “Michelson-Morley experiments revisited and the Cosmic Background Radiation preferred frame,” Apeiron, 10 (2). 104-117. 2003. | ||

[5] | Cahill R.T, “A new light-speed anisotropy experiment: absolutemotion and gravitational waves detected,” Progress in Physics, 4. 73-92. 2006. | ||

[6] | Beckmann, P, Einstein Plus Two (Golem Press, 1987). | ||

[7] | Hatch, R, Escape from Einstein (Kneat Kompany 1992). | ||

[8] | Dingle, H, Science at the Crossroads (Martin Brian and O’keeffe, 1972). | ||

[9] | Kelly, A, Challenging Modern Physics: Questioning Einstein's Relativity Theories (Brown Walker Press, 2005). | ||

[10] | Wang, L. J, “Symmetrical Experiments to Test the Clock Paradox,” in Physics and Modern Topics in Mechanical and Electrical Engineering (ed Nikos Mastorakis), 45 (World Scientific and Engineering Society Press, 1999). | ||

[11] | Eckardt, H, “An Alternative Hypothesis for Special Relativity,” Progress in Physics, 2. 56-65. Apr. 2009. | ||

[12] | Mansouri R, Sexl R.U, "A test theory of special relativity. I: Simultaneity and clock synchronization," General. Relat. Gravit. 8 (7). 497-513. 1977. | ||

[13] | Mansouri R, Sexl R.U, "A test theory of special relativity: II. First order tests," General. Relat. Gravit, 8 (7). 515-524. 1977. | ||

[14] | Hsu, J.-P, Hsu, L, “A Broader View of Relativity,” World Scientific. ISBN 981-256-651-1. 2006. | ||

[15] | von Ignatowsky, W, "Das Relativitätsprinzip," Archiv der Mathematik und Physik, 17 (1). 1911. | ||

[16] | Feigenbaum, M. J, "The Theory of Relativity-Galileo's Child," arXiv: 0806. 1234. 2008. | ||

[17] | Cacciatori, S, Gorini, V, Kamenshchik, A, "Special relativity in the 21st century," Annalen der Physik, 520 (9-10). 728-768. 2008. arXiv: 0807. 3009. | ||

[18] | Kassir, R.M, “On Lorentz Transformation and Special Relativity: Critical Mathematical Analyses and Findings,” Physics Essays, 27 (1). 16-25. Mar. 2014. | ||

[19] | Kassir, R.M, “On Special Relativity: Root cause of the problems with Lorentz transformation,” Physics Essays, 27 (2). 198-203. Jun. 2014. | ||

[20] | Einstein, A, “Einstein's comprehensive 1907 essay on relativity, part I, english translations, in American Journal of Physics, 45. 1977,” Jahrbuch der Radioaktivitat und Elektronik, 4. 1907. | ||

## Article

# Concept of Scalar-Vector Potential in the Contemporary Electrodynamic, Problem of Homopolar Induction and Its Solution

^{1}B.I. Verkin Institute for Low Temperature Physics and Engineering NAS, Ukraine, 47 Lenin Ave., Kharkov, Ukraine

*International Journal of Physics*.

**2014**, 2(6), 202-210

**DOI:**10.12691/ijp-2-6-4

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

F.F. Mende. Concept of Scalar-Vector Potential in the Contemporary Electrodynamic, Problem of Homopolar Induction and Its Solution.

*International Journal of Physics*. 2014; 2(6):202-210. doi: 10.12691/ijp-2-6-4.

Correspondence to: F.F. Mende, B.I. Verkin Institute for Low Temperature Physics and Engineering NAS, Ukraine, 47 Lenin Ave., Kharkov, Ukraine. Email: mende_fedor@mail.ru

## Abstract

## Keywords

## References

[1] | R. Feynman, R. Leighton, M. Sends, Feynman lectures on physics, M:, Mir, Vol. 6, 1977. | ||

[2] | V.V.Nicolsky, T.I. Nicolskaya, Electrodynamics and propagation of radio waves, Moscow, Nauka, 1989. | ||

[3] | J.Jackson, Classical Electrodynamics, Mir, Moscow, 1965. | ||

[4] | F.F. Mende, On refinement of equations of electromagnetic induction, Kharkov, deposited in VINITI, No 774 - B88 Dep., 1988. | ||

[5] | F.F. Mende, On refinement of certain laws of classical electrodynamics, arXiv.org/abs/physics/0402084. | ||

[6] | F. F. Mende, New electrodynamics. Revolution in the modern physics, Kharkov, NTMT, 2012. | ||

[7] | F. F.Mende, New approaches in contemporary classical electrodynamics, Part II, Engineering Physics, №2, 2013. | ||

[8] | W.F. Edwards, C.S. Kenyon, D.K. Lemon, Continuing investigation into possible electric arising from steady conduction current, Phys. Rev. D 14, 922 (1976). | ||

[9] | F.F. Mende, Experimental corroboration and theoretical interpretation of dependence of charge velocity on DC flow velocity through superconductors, Proceedings International Conference “Physics in Ukraine”, Kiev 22-27 June, 1993. | ||

[10] | F. F. Mende, A New Tipe of Contact Potential Difference and Electrification of Superconducting Coils and Tori, American Journal of Electrical and Electronic Engineering, Vol. 2, No. 5, (2014), 146-151. | ||

## Article

# Problems of Lorentz Force and Its Solution

^{1}B.I. Verkin Institute for Low Temperature Physics and Engineering NAS, Ukraine, 47 Lenin Ave., Kharkov, Ukraine

*International Journal of Physics*.

**2014**, 2(6), 211-216

**DOI:**10.12691/ijp-2-6-5

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

F.F. Mende. Problems of Lorentz Force and Its Solution.

*International Journal of Physics*. 2014; 2(6):211-216. doi: 10.12691/ijp-2-6-5.

Correspondence to: F.F. Mende, B.I. Verkin Institute for Low Temperature Physics and Engineering NAS, Ukraine, 47 Lenin Ave., Kharkov, Ukraine. Email: mende_fedor@mail.ru

## Abstract

## Keywords

## References

[1] | V.V.Nicolsky, T.I. Nicolskaya, Electrodynamics and propagation of radio waves, Moscow, Nauka, 1989. | ||

[2] | R. Feynman, R. Leighton, M. Sends, Feynman lectures on physics, –М. Mir, Vol. 6 (1977). | ||

[3] | J.Jackson, Classical Electrodynamics, Mir, Moscow, 1965, 702. | ||

[4] | F.F. Mende, On refinement of equations of electromagnetic induction,- Kharkov, deposited in VINITI, No 774-B88 Dep. (1988). | ||

[5] | F. F.Mende, Are thereerrorsin modern physics. Kharkov, Constant, 2003. | ||

[6] | F.F. Mende, On refinement of certain laws of classical electrodynamics, arXiv.org/abs/physics/0402084 | ||

[7] | F. F. MendeNew electrodynamics.Revolution in the modern physics.Kharkov, NTMT, 2012. | ||

## Article

# Multistability in a Single System with Hidden Attractors- Theory and Experiment

^{1}Department of Physics, B.P. Poddar Institute of Management & Technology, VIP Road, Kolkata, India

^{2}High Energy Physics Division, Department of Physics, Jadavpur University, Kolkata, India

*International Journal of Physics*.

**2014**, 2(6), 217-225

**DOI:**10.12691/ijp-2-6-6

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Papri Saha, Dolonchampa Saha Anirban Ray, A. Roy Chowdhury. Multistability in a Single System with Hidden Attractors- Theory and Experiment.

*International Journal of Physics*. 2014; 2(6):217-225. doi: 10.12691/ijp-2-6-6.

Correspondence to: A. Roy Chowdhury, High Energy Physics Division, Department of Physics, Jadavpur University, Kolkata, India. Email: asesh_r@yahoo.com

## Abstract

## Keywords

## References

[1] | M. Brambilla, L. A. Lugiato, and V. Penna. Phys. Rev. A 43, 5114 (1991). | ||

[2] | F. Prengel, A. Wacker, and E. Schöll. Phys. Rev. B 50, 1705 (1994). | ||

[3] | S. Schiff, K. Jerger, D. H. Duong, T. Chang, M. L. Spano, and W. L. Ditto. Nature 370, 615 (1994). | ||

[4] | P. Marmillot, M. Kaufman, and J.-F. Hervagault, J. Chem. Phys. 95, 1206 (1991). | ||

[5] | F. T. Arecchi, R. Meucci, G. Puccioni, and J. Tredicce. Phys. Rev. Lett. 49, 1217 (1982). | ||

[6] | F. T. Arecchi, R. Badii, and A. Politi. Phys. Rev. A 32, 402 (1985). | ||

[7] | H. Sun, S. Scott and K. Showalter. Phys. Rev. E 60, 3876 (1999). | ||

[8] | C. N. Ngonghala, U. Feudel and K. Showalter; Phys. Rev. E 83, 056206 (2011). | ||

[9] | Ulrike Feudel and Celso Grebogi. Chaos 7, 597 (1997). | ||

[10] | A. Balanov, N. Janson, and E. Schöll. Phys. Rev. E 71, 016222 (2005). | ||

[11] | J.C. Sprott, X. Wang. and G. Chrn. Int. J. Bifurc. & Chaos 23, 1350093 (2013)." | ||

[12] | E.N. Lorenz. “Compound windows of the Henon Map”. Physica D 237 (2008)1689. | ||

[13] | J.A.C. Gallas. Structure of the parameter space of the Henon Map; Phys. Rev. Lett.70 (1993) 2714. | ||

[14] | J.C. Sprott. Phys. Rev. E 50(1994) 647. | ||

## Article

# Non-Relativistic Weibel Instability Due to Inverse Bremsstrahlung Absorption in Laser Fusion Plasma

^{1}Laboratoire de Physique des Rayonnements et de leurs Interactions avec la Matière (PRIMALAB), département des sciences de la matière, faculté des sciences,université de Batna, Algeria

^{2}Laboratoire Electronique Quantique, faculté des sciences, université (USTHB), Alger, Algeria

*International Journal of Physics*.

**2014**, 2(6), 226-230

**DOI:**10.12691/ijp-2-6-7

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

S. Belghit, A. Sid, K. Bendib. Non-Relativistic Weibel Instability Due to Inverse Bremsstrahlung Absorption in Laser Fusion Plasma.

*International Journal of Physics*. 2014; 2(6):226-230. doi: 10.12691/ijp-2-6-7.

Correspondence to: S. Belghit, Laboratoire de Physique des Rayonnements et de leurs Interactions avec la Matière (PRIMALAB), département des sciences de la matière, faculté des sciences,université de Batna, Algeria. Email: Belghit.slimen@gmail.com

## Abstract

## Keywords

## References

[1] | E. S. Weibel. Phys. Rev. Lett. 2, pp 83-84 (1959). | ||

[2] | K. Bendib, and al.Laser and Particle Beams 16, 3, pp 473-490 (1998). | ||

[3] | A. Bendib, and al. Phys. Rev. E. 55, pp 7522 -7526 (1997). | ||

[4] | A. Bendib and al, Phys. Fluids 30 (5), pp 1353-1361 (1987). | ||

[5] | J. P. Matte and al, Phys. Rev. Lett. 58, pp 2067-2070 (1987). | ||

[6] | A. Bruce Langdon. phys. Rev. Let. 44, pp 575-579 (1980). | ||

[7] | S. I. Braginski, in (M. A. Leonvitch, Consultant Bureau) N. Y. 1965 | ||

[8] | I. P. Shkarofsky, and al. (Addison-Wesley) 1966. | ||

[9] | M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York 1970). | ||

[10] | A. Sid, physics of plasmas. 10, pp 214-219.2003. | ||

[11] | Sid, A. and al. Plasma and Fusion Research Volume: 5 pp 007-1-6 (2010). | ||

[12] | S.Peter Gary And al. Journal of geophysical research, Vol. 111, A11224. 1-5,2006. | ||

## Article

# Consideration and the Refinement of Some Laws and Concepts of Classical Electrodynamics and New Ideas in Modern Electrodynamics

^{1}B.I. Verkin Institute for Low Temperature Physics and Engineering, NAS Ukraine, 47 Lenin Ave., Kharkov, 61164, Ukraine

*International Journal of Physics*.

**2014**, 2(6), 231-263

**DOI:**10.12691/ijp-2-6-8

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

F.F. Mende. Consideration and the Refinement of Some Laws and Concepts of Classical Electrodynamics and New Ideas in Modern Electrodynamics.

*International Journal of Physics*. 2014; 2(6):231-263. doi: 10.12691/ijp-2-6-8.

Correspondence to: F.F. Mende, B.I. Verkin Institute for Low Temperature Physics and Engineering, NAS Ukraine, 47 Lenin Ave., Kharkov, 61164, Ukraine. Email: mende_fedor@mail.ru

## Abstract

^{2}/c

^{2}terms. The permittivity and permeability of materials media are shown to be independent of frequency. The notions magnetoelectrokinetic and electromagnetopotential waves and kinetic capacity have been introduced. It is shown that along with the longitudinal Langmuir resonance, the transverse resonance is possible in nonmagnetized plasma, and both the resonances are degenerate. A new notion scalar-vector potential is introduced, which permits solution of all present-day problems of classical electrodynamics. The use of the scalar-vector potential makes the magnetic field notion unnecessary.

## Keywords

## References

[1] | R. Feynman, R. Leighton, M. Sends, Feynman lectures on physics, М:, Mir, Vol.6, 1977. | ||

[2] | V.V. Nicolsky, T.I. Nicolskaya, Electrodynamics and propagation of radio waves, Moscow, Nauka,1989. | ||

[3] | J. Jackson, Classical Electrodynamics, Mir, Moscow, 1965. | ||

[4] | F.F. Mende, A.I. Spitsyn, Surface impedance in superconductors, Kiev, Naukova Dumka, 1985. | ||

[5] | F. F. Mende, On refinement of equations of electromagnetic induction, – Kharkov, deposited in VINITI, No 774-B88 Dep., 1988. | ||

[6] | A. F. Aleksandrov, L.S. Bogdankevich, A. A. Rukhdze, Oscillations and waves in plasma media, Moscow University Publishers, 1990. | ||

[7] | L. D. Landau, E.M. Lifshits, Electrodynamics of continuous media. Moscow. 1973. | ||

[8] | V. L. Ginzburg, The propagation of electromagnetic waves in a plasma. - M .: Science. 1967. | ||

[9] | A. I. Akhiezer, Plasma Physics Nauka, Moscow, 1974. | ||

[10] | L. A. Artsimovich As every physicist should know about plasma. M .: Atomizdat, 1976. | ||

[11] | F. F. Mende, Role and place of the kinetic inductance of charges in classical electrodynamics, Engineering Physics, №11, 2012. | ||

[12] | F. F. Mende, Transverse Plasma Resonans Mode in an Nonmagnetized Plasma and Its Practical Applications, American Journal of Electrical and Electronic Engineering, Vol. 2, No. 5, (2014), 152-158 . | ||

[13] | F.F. Mende, On refinement of certain laws of classical electrodynamics, arXiv.org/abs/physics/0402084. | ||

[14] | F. F. Mende, Are there errors in modern physics. Kharkov, Constant, 2003. | ||

[15] | F. F. Mende, Conception of the scalar-vector potential in contemporary electrodynamics, arXiv.org/abs/physics/0506083. | ||

[16] | F. F. Mende, Transversal plasma resonance in a nonmagnetized plasma and possibilities of practical employment of it, arXiv.org/abs/physics/0506081. | ||

[17] | F. F. Mende, Consistent electrodynamics and the threat of nuclear Space terrorism. Kharkov NTMT, 2008. | ||

[18] | F. F. Mende New electrodynamics. Revolution in the modern physics. Kharkov, NTMT, 2012. | ||

[19] | F. F. Mende, Electric kinetic capacity. Engineering Physics, №3, 2013. | ||

[20] | V. V.Nicolsky, T. I. Nicolskaya, Electrodynamics and propagation of radio waves, Moscow, Nauka, 1989. | ||

[21] | W. F. Edwards, C. S. Kenyon, D. K. Lemon, Continuing investigation into possible electric arising from steady conduction current, Phys. Rev. D 14, 922, 1976. | ||

[22] | Roser W.G.V. Second-Order Electric Field due to a Conducting Curent. American Journal of Physics, 1962, v. 30, №7, p. 509-511. | ||

[23] | Don A. Baker. Second-Order Electric Field due to a Conducting Curent. American Journal of Physics, 1964, v.32, № 2, p. 153-157. | ||

[24] | F. F. Mende, On secondary electric fields excited at direct currents flowing through superconductors. – Kharkov, deposited in VINITI 05.11.92. No. 3182-B92. Dep., 1992. | ||

[25] | F. F. Mende, Experimental corroboration and theoretical interpretation of dependence of charge velocity on DC flow velocity through superconductors. Proceedings International Conference “Physics in Ukraine”, Kiev 22-27 June, 1993. | ||

[26] | F. F. Mende, A New Tipe of Contact Potential Difference and Electrification of Superconducting Coils and Tori, American Journal of Electrical and Electronic Engineering, Vol. 2, No. 5, 2014, 146-151. | ||

## Article

# Carl Sagan’s Conjecture of a Message in π

^{1}B&E Scientific Ltd, Seaford BN25 4PA, United Kingdom

*International Journal of Physics*.

**2014**, 2(6), 264-266

**DOI:**10.12691/ijp-2-6-9

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Arne Bergstrom. Carl Sagan’s Conjecture of a Message in π.

*International Journal of Physics*. 2014; 2(6):264-266. doi: 10.12691/ijp-2-6-9.

Correspondence to: Arne Bergstrom, B&E Scientific Ltd, Seaford BN25 4PA, United Kingdom. Email: arne.bergstrom@physics.org

## Abstract

*Contact*, the astrophysicist Carl Sagan hypothesized an alien message to be buried somewhere deep inside the numerical representation of the transcendental number π. The present article looks for markers that might possibly support such a hypothesis, and surprisingly finds a sequence of seven successive zeros (actually seven successive nines rounded off) at a depth of 3256 digits into the representation of 2π in the special case of base ten. Finding such a sequence of zeros within the first 1000 digits has a probability of 1 in 10000. No such occurrences happen even remotely for 2π at any base other than ten, nor even remotely in corresponding representations of other common transcendental numbers, such as

*e*, which appear in physical applications. In π, this occurrence thus also remarkably appears at a depth that is a multiple of the same power of two as bits in a computer byte, which thus makes it even more enigmatic. Still, these effects are most probably just numerical coincidences without physical relevance.

## Keywords

## References

[1] | C. Sagan, Contact, (Century Hutchinson Ltd, 1986). | ||

[2] | H. S. M. Coxeter, Non-Euclidean Geometry (Univ. Toronto Press 1942, reissued 1998 by Mathematical Assoc. of America). | ||

[3] | http://en.wikipedia.org/wiki/ Elliptic_geometry retrieved 2014-11-02. | ||

[4] | http://en.wikipedia.org/wiki/Hyperbolic_geometry retrieved 2014-11-02. | ||

[5] | M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, P. DeMarco, Maple 7 Programming Guide (Waterloo Maple, 2001). | ||

[6] | http://www.exploratorium.edu/pi/pi_archive/Pi10-6.html http://www.piday.org/million/ retrieved 2014-11-02. | ||

[7] | U.-G. Meissner et al., “Life on earth – An accident? Chiral symmetry and the anthropic principle”, International Journal of Modern Physics E 23, 1461005 (2014). | ||

## Article

# Outstanding Outcomes from a Recent Theory of Gravity

^{1}via Madonna del Piano 41, Morolo Italy

*International Journal of Physics*.

**2014**, 2(6), 267-276

**DOI:**10.12691/ijp-2-6-10

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Sandro Antonelli. Outstanding Outcomes from a Recent Theory of Gravity.

*International Journal of Physics*. 2014; 2(6):267-276. doi: 10.12691/ijp-2-6-10.

Correspondence to: Sandro Antonelli, via Madonna del Piano 41, Morolo Italy. Email: antonelli41@live.it

## Abstract

## Keywords

## References

[1] | Ferrarese, G.: Lezioni di Relatività Generale, chap.1,, §5 and §7. Pitagora Editrice, Bologna, 2001; also for details.: Ferrarese, G.., Stazi, L.: Lezioni di Meccanica Razionale vol.1 Ch.1,4.7 Pitagora Ed., Bologna, 1989. | ||

[2] | Cattaneo, C., Introduction à la Théorie Macroscopique des Fluides Relativistes, Lectures held at the Collège de France, italian translation, Pitagora Ed. Bologna, 1980. | ||

[3] | Ferrarese, G., “Compatibility Conditions in Relativistic Continuum Dynamics”, in “Advances in modern continuum dynamics, Proc. of the Int. Conf. At Elba Island””, G.Ferrarese Ed., Bologna, Pitagora, 1992, pp.161-172. | ||

[4] | Ferrarese, G., Stazi, L., Lezioni di Meccanica Razionale vol 2 chap.VIII, §1.9-10, Pitagora Ed., Bologna, 1989, pp. 591-598.(cf. also Ferrarese,G.: Lezioni di Meccanica superiore, Veschi. Roma, 1968-off printing.) | ||

[5] | Ferrarese, G., Stazi, L., “Il teorema di Lagrange nei fluidi perfetti relativistici”, Rendiconti di Matematica 3, 1989, pp. 409-421. | ||

[6] | Ferrarese, G., Stazi, L., Lezioni di Meccanica Razionale vol 2 chap.VIII, §3.2, Pitagora Ed., Bologna, 1989, pp. 616-619. | ||

[7] | Sokolnikoff, I.S., Tensor Analysis, Chap. 6, §105, Wiley, New York, 1951. | ||

[8] | Tailherer, M., “A Critical reading on the theory of gravitational wave propagation”, Journal of Physical & Natural Sciences, Vol.1, Issue 1, 2007 . [Online]. www.scientificjournals.org/journals2007/articles/1085.pdf. | ||

[9] | Ohanian, H.C., Ruffini, R., Gravitation and Spacetime, Chap. 6.6; 5.2. W.W. Norton & Company, 1994. | ||

[10] | Weisberg J. M., Taylor, J. H., “Relativistic binary pulsar B1913+16: thirty years of observations and analysis”, arXiv: astro-ph/0407149 v1, 2004. [Online]. | ||

[11] | Peters, P.C., Mathews, J., “Gravitational radiation for point masses in a keplerian orbit”, Physical Review, 131, 1963, 435-440. | ||

[12] | Herzog,T.H.,Kwiat,P.G., et al., Phys. Rev. Letters, 75: 3034, 1995. | ||

[13] | Gasiorowicz,S., Quantum Physics, 3th edition, Ch. 20.2 , Wiley, N.Y., 2003. | ||

[14] | Loinger, A., “GW’s towards fundamental principles of GR”, arXiv:physics/0709.0490 v1,2007, and references therein. See also arXiv:astro-ph/9904207 ,1999. [Online]. | ||

[15] | Maggiore, M., Gravitational Waves, vol. 1, §6.2.3, OUP Oxford, 2007, pp. 313.322-326. | ||

[16] | Kar, S., Sengupta, S.: The Raychaudhuri equations: A brief review, arXiv:gr-qc/061123 v1, 2006. [Online]. | ||

## Article

# Cubic Atom and Crystal Structures

^{1}Wayne State University, 42 W Warren Ave, Detroit

^{2}Shanghai Jiaotong University, Shanghai, China

^{3}Northwestern University, 633 Clark St, Evanston, IL 60208

*International Journal of Physics*.

**2014**, 2(6), 277-281

**DOI:**10.12691/ijp-2-6-11

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Zhiliang Cao, Henry Gu Cao. Cubic Atom and Crystal Structures.

*International Journal of Physics*. 2014; 2(6):277-281. doi: 10.12691/ijp-2-6-11.

Correspondence to: Zhiliang Cao, Wayne State University, 42 W Warren Ave, Detroit. Email: williamcao12252000@yahoo.com

## Abstract

## Keywords

## References

[1] | Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Configuration of Particles.” International Journal of Physics 1.6 (2013): 151-161. | ||

[2] | Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and Topology of Nuclei.” International Journal of Physics 2, no. 1 (2014): 15-22. | ||

[3] | Zhiliang Cao, Henry Gu Cao, Wenan Qiang, Unified Field Theory and Topology of Atom, American Journal of Modern Physics. Vol. 4, No. 4, 2015, pp. 1-7. | ||

[4] | Zhiliang Cao, Henry Gu Cao. Unified Field Theory. American Journal of Modern Physics. Vol. 2, No. 6, 2013, pp. 292-298. | ||

[5] | Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Hierarchical Universe.” International Journal of Physics 1.6 (2013): 162-170. | ||

[6] | Cao, Zhiliang, and Henry Gu Cao. “Non-Scattering Photon Electron Interaction.” Physics and Materials Chemistry 1, no. 2 (2013): 9-12. | ||

[7] | Cao, Zhiliang, and Henry Gu Cao. “SR Equations without Constant One-Way Speed of Light.” International Journal of Physics 1.5 (2013): 106-109. | ||

[8] | Cao, Henry Gu, and Zhiliang Cao. “Drifting Clock and Lunar Cycle.” International Journal of Physics 1.5 (2013): 121-127. | ||

[9] | Mehul Malik, Mohammad Mirhosseini, Martin P. J. Lavery, Jonathan Leach, Miles J. Padgett & + et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nature Communications, 2014, 5. | ||

[10] | H. T. Yuan, M. B. Saeed, K. Morimoto, H. Shimotani, K. Nomura, R. Arita, Ch. Kloc, N. Nagaosa, Y. Tokura, and Y. Iwasa. Zeeman-Type Spin Splitting Controlled with an External Electric Field. Nat. Phys. 2013, 9, 563-569. | ||

[11] | A. Rahimi-Iman, C. Schneider, J. Fischer, S. Holzinger, M. Amthor, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel. “Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field.” Phys. Rev. B 84, 165325-2011, October. | ||

[12] | D. Kekez, A. Ljubiic & B. A. Logan. An upper limit to violations of the Pauli exclusion principle. Nature 348, 224-224 (1990). | ||

[13] | Zoran Hadzibabic. Quantum gases: The cold reality of exclusion. Nature Physics 6, 643-644 (2010). | ||

[14] | June Kinoshita. Roll Over, Wolfgang? Scientific American 258, 25-28 (1988). | ||

[15] | Tony Sudbery. Exclusion principle still intact. Nature 348, 193-194 (1990). | ||

[16] | R. C. Liu, B. Odom, Y. Yamamoto & S. Tarucha. Quantum interference in electron collision. Nature 391, 263-265 (1998). | ||

[17] | George Gamow. The Exclusion Principle. Scientific American 201, 74-86 (1959). | ||

[18] | B. Poirier, Chem. Phys. 370, 4 (2010). | ||

[19] | A. Bouda, Int. J. Mod. Phys. A 18, 3347 (2003). | ||

[20] | P. Holland, Ann. Phys. 315, 505 (2005). | ||

[21] | P. Holland, Proc. R. Soc. London, Ser. A 461, 3659 (2005). | ||

[22] | G. Parlant, Y.-C. Ou, K. Park, and B. Poirier, “Classical-like trajectory simulations for accurate computation of quantum reactive scattering probabilities,” Comput. Theor. Chem. (in press). | ||

[23] | D. Babyuk and R. E. Wyatt, J. Chem. Phys. 124, 214109 (2006). | ||

[24] | Jeremy Schiff and Bill Poirier. Quantum mechanics without wavefunctions. THE JOURNAL OF CHEMICAL PHYSICS 136, 031102 (2012). | ||

[25] | J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1932). | ||

[26] | D. Bohm, Phys. Rev. 85, 166 (1952). | ||

[27] | P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, England, 1993). | ||

[28] | R. E. Wyatt, Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (Springer, New York, 2005). | ||

[29] | H. Everett III, Rev. Mod. Phys. 29, 454 (1957). | ||

[30] | M. F. González, X. Giménez, J. González, and J. M. Bofill, J. Math. Chem. 43, 350 (2008). | ||

[31] | Oganessian, Yu. T. et al. (2002). Results from the first 249Cf+48Ca experiment. JINR Communication (JINR, Dubna). http://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf. | ||

[32] | Nash, Clinton S. (2005). “Atomic and Molecular Properties of Elements 112, 114, and 118”. Journal of Physical Chemistry A 109 (15): 3493-3500. | ||

[33] | K.Umemoto, S.Saito, Electronic configurations of superheavy elements, Journal of the physical society of Japan, vol.65, no.10, 1996, p.3175-3179. | ||

[34] | Hartmut M. Pilkuhn, Relativistic Quantum Mechanics, Springer Verlag, 2003. | ||

[35] | E.Loza, V.Vaschenko. Madelung rule violation statistics and superheavy elements electron shell prediction. http://arxiv-web3.library.cornell.edu/abs/1206.4488 | ||

[36] | Froese Fischer, Charlotte (1987). “General Hartree-Fock program”. Computer Physics Communication 43 (3): 355-365. | ||

[37] | Abdulsattar, Mudar A. (2012). “SiGe superlattice nanocrystal infrared and Raman spectra: A density functional theory study”. J. Appl. Phys. 111 (4): 044306. | ||

[38] | Hinchliffe, Alan (2000). Modelling Molecular Structures (2nd ed.). Baffins Lane, Chichester, West Sussex PO19 1UD, England: John Wiley & Sons Ltd. p. 186. | ||

[39] | Szabo, A.; Ostlund, N. S. (1996). Modern Quantum Chemistry. Mineola, New York: Dover Publishing. | ||

[40] | Levine, Ira N. (1991). Quantum Chemistry (4th ed.). Englewood Cliffs, New Jersey: Prentice Hall. p. 403. | ||

[41] | Christophe L. Guillaume, Eugene Gregoryanz, Olga Degtyareva, Malcolm I. McMahon, Michael Hanfland, Shaun Evans, Malcolm Guthrie, Stanislav V. Sinogeikin & H-K. Mao. Cold melting and solid structures of dense lithium. Nature Physics 7, 211-214 (2011). | ||

[42] | Neaton, J. B. & Ashcroft, N. W. Pairing in dense lithium. Nature 400, 141-144 (1999). | ||

[43] | Hanfland, M., Syassen, K., Christensen, N. E. & Novikov, D. L. New high-pressure phases of lithium. Nature 408, 174-178 (2000). | ||

[44] | Shimizu, K., Ishikawa, H., Takao, D., Yagi, T. & Amaya, K. Superconductivity in compressed lithium at 20?K. Nature 419, 597-599 (2002). | ||

[45] | Tamblyn, I., Raty, J. & Bonev, S. Tetrahedral clustering in molten lithium under pressure. Phys. Rev. Lett. 101, 075703 (2008). | ||

[46] | Matsuoka, T. & Shimizu, K. Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature 458, 186-189 (2009). | ||

[47] | Lazicki, A., Fei, Y. & Hemley, R. High pressure differential thermal analysis measurements of the melting curve of lithium. Solid State Commun. 150, 625-627 (2010). | ||

[48] | Hernández, E., Rodriguez-Prieto, A., Bergara, A. & Alfè, D. First-principles simulations of lithium melting: Stability of the bcc phase close to melting. Phys. Rev. Lett. 104, 185701 (2010). | ||

[49] | Datchi, F., Loubeyre, P. & LeToullec, R. Extended and accurate determination of the melting curves of argon, helium, ice (H2O), and hydrogen (H2). Phys. Rev. B 61, 6535-6546 (2000). | ||

[50] | Gregoryanz, E., Goncharov, A. F., Matsuishi, K., Mao, H. K & Hemley, R. J. Raman spectroscopy of hot dense hydrogen. Phys. Rev. Lett. 90, 175701 (2003). | ||

[51] | Börje Johansson, Wei Luo,Sa Li & Rajeev Ahuja. Cerium; Crystal Structure and Position in The Periodic Table. Scientific Reports 4, Article number: 6398. | ||

[52] | Koskenmaki, D. C. & Gschneidner, K. A., Jr Cerium in: Handbook on the physics and chemistry of rare earths, Vol. 1, eds Gschneidner K. A., & Eyring L. (Amsterdam, North-Holland), pp 337-377 (1978). | ||

[53] | Johansson, B. The a-? transition in cerium is a Mott transition. Philos. Mag. 30, 469-482 (1974). | ||

[54] | Gustafson, D. R., McNutt, J. D. & Roellig, L. O. Positron annihilation in ?- and a-cerium. Phys. Rev. 183, 435-440 (1969). | ||

[55] | Kornstädt, U., Lässer, R. & Lengeler, B. Investigation of the?-a phase transition in cerium by Compton scattering. Phys. Rev. B 21, 1898-1901 (1980). | ||

[56] | Rueff, J. P. et al. F-state occupancy at the ?-a phase transition of Ce-Th and Ce-Sc alloys. Phys. Rev. Lett. 93, 067402 (2004). | ||

[57] | Loa, I., Isaev, E. I., McMahon, M. I., Kim, D. Y. & Johansson, B. Lattice dynamics and superconductivity in cerium at high pressure. Phys. Rev. Lett. 108, 045502 (2012). | ||

[58] | Lashley, J. C. et al. Tricritical phenomena at the? right arrow a transition in Ce0.9-xLaxTh0.1 alloys. Phys. Rev. Lett. 97, 235701 (2006). | ||

[59] | Allen, J. W. & Martin, R. M. Kondo volume collapse and the ? right arrow a transition in Cerium. Phys. Rev. Lett. 49, 1106-1110 (1982). | ||

[60] | Szotek, Z., Temmerman, W. M. & Winter, H. Self-interaction corrected, local spin density description of the? right arrow a transition in Ce. Phys. Rev. Lett. 72, 1244-1247 (1994). | ||

[61] | Peng Tan, Ning Xu & Lei Xu. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization. Nature Physics 10, 73-79 (2014). | ||

[62] | Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 22, 289-330 (1897). | ||

[63] | Alexander, S. & McTague, J. Should all crystals be bcc? Landau theory of solidification and crystal nucleation. Phys. Rev. Lett. 41, 702-705 (1978). | ||

[64] | Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75, 2714-2717 (1995). | ||

[65] | Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, 9932-9947 (1996). | ||

[66] | Shen, Y. C. & Oxtoby, D. W. bcc symmetry in the crystal-melt interface of Lennard-Jones fluids examined through density functional theory. Phys. Rev. Lett. 77, 3585-3588 (1996). | ||

[67] | Auer, S. & Frenkel, D. Crystallization of weakly charged colloidal spheres: A numerical study. J. Phys. Condens. Matter 14, 7667-7680 (2002). | ||

[68] | Moroni, D., ten Wolde, P. R. & Bolhuis, P. G. Interplay between structure and size in a critical crystal nucleus. Phys. Rev. Lett. 94, 235703 (2005). | ||

[69] | Russo, J. & Tanaka, H. Selection mechanism of polymorphs in the crystal nucleation of the Gaussian core model. Soft Matter 8, 4206-4215 (2012). | ||

[70] | Pusey, P. N. & van Megen, W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340-342 (1986). | ||