International Journal of Physics

ISSN (Print): 2333-4568

ISSN (Online): 2333-4576

Editor-in-Chief: B.D. Indu




On the Origin of Magnetism and Gravitation and on the Nature of Electricity and Matter

1Donaustr. 22, 30519 Hannover, Germany

International Journal of Physics. 2016, 4(4), 85-105
doi: 10.12691/ijp-4-4-3
Copyright © 2016 Science and Education Publishing

Cite this paper:
Hans-Joerg Hochecker. On the Origin of Magnetism and Gravitation and on the Nature of Electricity and Matter. International Journal of Physics. 2016; 4(4):85-105. doi: 10.12691/ijp-4-4-3.

Correspondence to: Hans-Joerg  Hochecker, Donaustr. 22, 30519 Hannover, Germany. Email:


This is a significantly improved resumption of my previous paper on gravitation [40]. I can show in a improved way that gravitation is an electric effect. To this, it is necessary to better understand the qualities of the electric charges and their forces. I start by showing that the magnetic field can be represented as an angled electric field. To this, the electric field must have two qualities: the dependence of the electric force on the velocity, and the electric anti-field. All previous cognitions on electrodynamics stay with it untouched. Then, I apply these two new qualities to gravitation, and it turns out that gravitation is an electric effect if a third quality applies to the electric field: the quantization of the energy transfer of the electric field. These three new qualities complete our picture of electrodynamics. Finally, I go to the origins of the three new qualities with the help of the early quantum mechanics. This turns out well by representing the electric charge as a space time wave, in which its frequency corresponds to its mass.



[1]  A. Einstein, Zur Elektrodynamik bewegter Körper Annalen der Physik 17, 891-921 (1905).
[2]  PAM Dirac: The Quantum Theory of the Electron. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. A, Nr.778, 1928, S.610-624.
[3]  Dieter Meschede: Gerthsen Physik. 23. Auflage, Springer, Berlin/Heidelberg/New York 2006, ISBN 3-540-25421-8.
[4]  James Clerk Maxwell, A Dynamical Theory of the Electromagnetic Field, Royal Society Transactions 155, 1865, Seiten 459-512.
[5]  Introduction to Electrodynamics (3rd Edition), D.J. Griffiths, Pearson Education, Dorling Kindersley, 2007.
Show More References
[6]  Electromagnetism (2nd Edition), I.S. Grant, W.R. Phillips, Manchester Physics, John Wiley & Sons, 2008.
[7]  Dirac, Paul (1996), General Theory of Relativity, Princeton University Press.
[8]  Einstein, Albert (1916), “Die Grundlage der allgemeinen Relativitätstheorie”, Annalen der Physik 49.
[9]  Hartle, James B. (2003), Gravity: an Introduction to Einstein's General Relativity, San Francisco: Addison-Wesley.
[10]  M. Planck: Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. In: Verhandlungen der Deutschen physikalischen Gesellschaft. 2, Nr. 17, 1900, S. 245, Berlin (vorgetragen am 14. Dezember 1900).
[11]  Roger Bach, Damian Pope, Sy-Hwang Liou, Herman Batelaan Controlled double-slit electron diffraction In: New Journal of Physics, Roger Bach et al 2013 New J. Phys.15 033018.
[12]  JoernBleck-Neuhaus: ElementareTeilchen. Von den Atomenüber das Standard-Modell biszum Higgs-Boson. 2., überarbeitete Auflage. Springer, Berlin Heidelberg 2013.
[13]  J. Baez. What´s the energy density of the vacuum?, 2006.
[14]  M. Gell-Mann: A Schematic Model of Baryons and Mesons in Phys. Lett. 8, 1964, 214-215.
[15]  Moshe Carmeli, John G. Hartnett, Firmin J. Oliveira On the anomalous acceleration of Pioneer spacecraft Int.J.Theor.Phys. 45 (2006) 1074-1078.
[16]  Albert Einstein: Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. In: Sitzungsberichte der Preußischen Akademie der Wissenschaften.
[17]  Chandrasekhar Roychoudhuri, Rajarshi Roy: The nature of light: What is a photon? In: Optics and Photonics News. 14, Nr. 10, 2003, ISSN 1047-6938, Supplement, S. 49-82.
[18]  Harry Paul: Photonen: Eine Einführung in die Quantenoptik. 2. Auflage. Teubner, Stuttgart 1999, ISBN 3-519-13222-2. (Teubner-Studienbücher Physik).
[19]  Klaus Hentschel: Einstein und die Lichtquantenhypothese. In: Naturwissenschaftliche Rundschau. 58(6), 2005, ISSN 0028-1050, S. 311-319.
[20]  Liang-Cheng Tu, Jun Luo, George T. Gillies: The mass of the photon. In: Reports on Progress in Physics. 68, Nr. 1, 2005, S. 77-130.
[21]  J D Franson Apparent correction to the speed of light in a gravitational potential In: New Journal of Physics, J D Franson 2014 New J. Phys.16 065008.
[22]  Berestetskii V B, Lifshitz E M and Pitaevskii L P 1980 Quantum Electrodynamics (Oxford: Pergamon).
[23]  H. Grote: On the possibility of vacuum QED measurements with gravitational wave detectors In: Phys. Rev. D 91, 0220022 - 7 January 2015.
[24]  Max Born, Albert Einstein: Albert Einstein, Max Born. Briefwechsel 1916-1955. München (Nymphenburger) 1955, S. 210.
[25]  Simon Gröblacher, Tomasz Paterek, Rainer Kaltenbaek, Caslav Brukner, Marek Zukowski, Markus Aspelmeyer, Anton Zeilinger: An experimental test of non-local realism. In: Nature. 446, 2007, S. 871-875. (Abstract).
[26]  Jacob Biemond The MagneticFfield of Pulsars and the Gravito-Magnetic Theory Trends in Pulsar Research (Ed. Lowry, J. A.), Nova Science Publishers, New York, Chapter 2 (2007).
[27]  Shervgi S. Shahverdiyev Unification of Electromagnetism and Gravitation in the Framework of General Geometry Proceedings of the workshop in “Fizika” N 12, 2004.
[28]  Friedrich W. Hehl An Assesment of Evans´Uunified Field Theory Foundations of Physics 38 (2008) 7-37.
[29]  Bahram Mashhoon, Frank Gronwald and Herbert I.M. Lichtenegger Gravitomagnetism and the Clock Effect Lect.Notes Phys. 562 (2001) 83-108.
[30]  Sumana Bhadra Electromagnetic Mass Models in General Theory of Relativity Ph.D. thesis, Sambalpur University, Jyoti Vihar, Burla – 768019, Orissa, India (2007).
[31]  J.H. Field Forces Between Electric Charges in Motion: Rutherford Scattering, Circular Keplerian Orbits, Action-at-a-Distance and Newton’s Third Law in Relativistic Classical Electrodynamics arXiv:physics/0507150v3 (2007).
[32]  Weinberg, S. (1995). The Quantum Theory of Fields, Volume 1: Foundations. Cambridge University Press.
[33]  M. Tajmar and C. J. de Matos Extended Analysis of Gravitomagnetic Fields in Rotating Superconductors and Superfluids ARC Seibersdorf research GmbH, A-2444 Seibersdorf, Austria and ESA-HQ, European Space Agency, 8-10 rue Mario Nikis, 75015 Paris, France.
[34]  M. Tajmar, F. Plesecu, B. Seifert and K. Marhold Measurement of Gravitomagnetic and Acceleration Fields Around Rotating Superconducters AIP Conf. Proc. 880, 1071 (2007).
[35]  Martin Tajmar, Florin Plesescu, Klaus Marhold and Clovis J. Matos Experimental Detection of the Gravitomagnetic London Moment Space Propulsion, ARC Seibersdorf research GmbH, A-2444 Seibersdorf, Austria and ESA-HQ, European Space Agency, 8-10 rue Mario Nikis, 75015 Paris, France (2006).
[36]  V.V. Roschin and S. M. Godin Experimental Research of the Magnetic-Gravity Effects Institute for High Temperatures, Russian Academy of Science.
[37]  Misner, C. W.; Thorne, K. S.; Wheeler, J. A. (1973). Gravitation. W. H. Freeman.
[38]  Einstein, A (1918). “Ueber Gravitationswellen”. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin. part 1: 154-167.
[39]  H.-J. Hochecker Theory of Objects of Space At:
[40]  Hans-Joerg Hochecker Magnetism as an Electric Angle-effect and Gravitation as an Electric Effect International Journal of Physics Vol. 3, No. 4, 2015, pp 175-201.
Show Less References


Scattering Events and Heat Conductivity of Layered La2-x SrxCuO4 Superconductors

1Department of Physics, Gurukula Kangari Vishwavidyalaya, Haridwar-249401, India

2Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, India

International Journal of Physics. 2016, 4(4), 106-112
doi: 10.12691/ijp-4-4-4
Copyright © 2016 Science and Education Publishing

Cite this paper:
Rakhi Sharma, B. D. Indu, Pawan Kumar. Scattering Events and Heat Conductivity of Layered La2-x SrxCuO4 Superconductors. International Journal of Physics. 2016; 4(4):106-112. doi: 10.12691/ijp-4-4-4.

Correspondence to: B.  D. Indu, Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, India. Email:


The problem of heat conduction in layered La2-x SrxCuO4 superconductor has been investigated in a new frame work of in-plane and cross-plane concepts with the help of modified Callaway model of thermal conductivity based on relaxation time approximation. Using the many body quantum dynamical theory of the expressions for thermal conductivity in context of in-plane and cross plane have been obtained and results are found in excellent agreement with experimental observations for layered La2-x SrxCuO4 cuprate superconductors. The theory explores the possibility of device fabrication cold in one direction and hot in the other.



[1]  Bardeen, J., Rickayazen G. and Tewordt L., Theory of the thermal conductivity of superconductors, Phys. Rev. B, 113, 982-994, 1959.
[2]  Callaway, J., Model for lattice thermal conductivity at low temperatures, Phys. Rev., 113, 1046-1051, 1959.
[3]  Parrott, J. E. and Stukes, A. D., Thermal conductivity of solids, Pion Limited, London, 1975.
[4]  Klemens, P. G., Thermal conductivity and lattice vibrational modes, Sol. Stat. Phys., 7, 1-98, 1958.
[5]  Uher, C., Thermal conductivity of High Tc Superconductors, J. Superconductivity, 3, 337-389, 1990.
Show More References
[6]  Cahill, D. G., Goodson, K., and Majumdar, A., Thermometry and Thermal Transport in Micro/ Nanoscale Solid-State Devices and Structures, J. Heat Trans., 124, 223-241, 2002.
[7]  Cahill, D. G., Ford, W. K., Goodson, K.E., Mahan, G. D., Majumdar, A., Maris H. J., Merlin, R., and Phillpot, S. R., Nanoscale Thermal Transport, J. Appl. Phys., 93, 793-818, 2003.
[8]  Mahan, G.D., Thermal Conductivity, edited by Terry M. Trit, Kluwer Academic/Plenum Publishers, New York, 1-285, 2004.
[9]  Narayanamurti, V., Stormer, H. L., Chin, M. A., Gossard, A.C., and Wiegmann, W., Selective Transmission of High-Frequency Phonons by a Superlattice: The dielectric Phonon Filter, Phys. Rev. Lett., 43, 2012-2016, 1979.
[10]  Varshney, D., Chaudhry, K. K. and Singh, R. K., Analysis of in-plane thermal conductivity anomalies in cuprate Superconductors, New J. Phys., 5, 72.1-72.17, 2003.
[11]  Klemens, P. G., The scattering of low-frequency lattice waves by static imperfections, Proc. Phys. Soc. A, 68, 1113-1128, 1955.
[12]  Carruthers, P., Theory of thermal conductivity of solids at low temperatures, Rev. Mod. Phys., 33, 92-138, 1961.
[13]  Ziman, J. M., Electrons and Phonons, Clarendon Press, Oxford, U. K., 1962.
[14]  De Hass, W. J., Biermasz, T., Thermal conductivity in diamond and potassium chloride, Physica 5 , 47-53, 1938.
[15]  Casimir, H. B. G., Note on the Conduction of Heat in Crystals, Physica, 5, 495-500, 1938.
[16]  Hyldgaard, P., and Mahan, G. D., Phonon Superlattice Transport, Phys. Rev. B, 56, 10754-10757, 1997.
[17]  Chen, G., Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures, J. Heat Trans., 119, 220-229 1997.
[18]  Saini Richa, Ashokan Vinod, Indu, B.D., Phonon conduction in superlattices, Superlattices and Microstructures, 82, 574-583, 2015.
[19]  Erdos, P., and Halley, S. B., Low-Temperature Thermal Cond--uctivity of Impure Insulators, Phys. Rev.,184 , 951-967, 1969.
[20]  Gairola, R. P., Low-Temperature Lattice Thermal Conductivity of Nonmetallic Solids with Isotopic Impurities, Phys. State Solidi B, 125, 65-74, 1984.
[21]  Bahuguna, B.P., Painuli, C. P. , and Indu, B. D., Phonon Heat Con-ductivity of Garnets Containing Rare Earth Ions, Acta Phys. Pol. A, 80, 527-554, 1991.
[22]  Ward, A., and Broido, D. A., Intrinsic lattice thermal conductivity of Si/Ge and GaAs/AlAs superlattice, Phys. Rev. B, 77, 245328-1-7, 2008.
[23]  Broido, D. A., Ward, A. and Mingo, N., Lattice thermal conductivity of silicon from empirical interatomic potentials, Phys. Rev. B, 72 , 014308-1-8, 2005.
[24]  Ward, A., Ab initio theory of the lattice thermal conductivity in diamond, Phys. Rev. B, 80, 125203-1-8, 2009.
[25]  Pathak, K. N., Theory of anharmonic crystals., Phys. Rev., 139, A1569-A1580, 1965.
[26]  Sharma, P.K., and Bahadur, R., Thermal Conductivity for Phonon Scattering by Substitutional Defects in Crystals, Phys. Rev. B, 12, 1522-1530, 1975.
[27]  Indu, B. D, Theory of lattice specific heat of an isotopically disordered anharmonic crystal, Int. J. Mod. Phys. B, 4, 1379-1393, 1990.
[28]  Indu, B. D, Enhanced phonon density of states in impure anharmonic crystals, Mod. Phys. Lett. B, 6, 1665-1672, 1992.
[29]  Frohlich, H., New perspective in modern physics, edited by R. E. Marshak , John Wiley, New York, 1966.
[30]  Fan, H. Y., Elements of solid state physics, John Wiley, New York, 1987.
[31]  Ashokan, V., Indu, B. D. and A. Kr. Dimri, Signature of electron phonon interaction in high temperature superconductors, AIP Advances, 1, 032101-1-032101-16, 2011.
[32]  Indu, B. D., Low temperature lattice thermal conductivity of Mg2 Sn, Mg2Si, and Mg2Ge, Nuovo Cimento B, 58, 345-350, 1980.
[33]  Hochbaum, A., Chen, R., Delgado, R., W., Liang, Garnett, E., Najarian, M., Majumdar, A., and Yang, P., “Enhanced Thermoelectric Performance of Rough Silicon Nanowires", Nature, 451, 163-167, 2008.
[34]  Pohl, R. O., Thermal Conductivity and Phonon Resonance Scattering, Phys. Rev. Lett., 8, 481-483, 1962.
[35]  Holland, M.G., Analysis of thermal conductivity, Phys. Rev., 132, 2461-2471, 1963.
[36]  Kristoffel, N. and Rubin, P., Localized electron levels of cuo2 planes perturbed by detects in high-Tc superconductors, Rev. Solid State Sci., 5, 449-460,1991.
[37]  Ashokan, V. and Indu, B.D., Theory of thermal conductivity of high temperature superconductors: a new approach, Mod. Phys. Letters B, 25, 663-678, 2011.
Show Less References


Effects of Magnetic Flux Density on the Population of Escherichia coli in River Njoro Water

1Department of Physics, Faculty of Science, Egerton University, P.O. BOX 536 Njoro, Kenya

2Department of Physical Sciences, Chuka University, P.O. BOX 109 Chuka, Kenya

International Journal of Physics. 2016, 4(4), 113-118
doi: 10.12691/ijp-4-4-5
Copyright © 2016 Science and Education Publishing

Cite this paper:
Thirika Anne, Ndiritu Francis, Kiruki Silas. Effects of Magnetic Flux Density on the Population of Escherichia coli in River Njoro Water. International Journal of Physics. 2016; 4(4):113-118. doi: 10.12691/ijp-4-4-5.

Correspondence to: Thirika  Anne, Department of Physics, Faculty of Science, Egerton University, P.O. BOX 536 Njoro, Kenya. Email:


In this study, the experimental results of the concentration of Escherichia coli in water exposed to magnetic flux density are presented. Water samples were collected from River Njoro, Nakuru County, Kenya. The initial Escherichia coli (E.coli) counts for the samples were obtained using Membrane Filtration techniques. The samples were then exposed to different magnetic flux densities (2mT, 6mT and 10mT) at time intervals of 6 hours and 18 hours for each magnetic flux. Membrane filtration was also done after magnetic treatment of the samples. The data obtained was photographed and presented in tables and bar graphs. The maximum disinfection efficiency was 82.2% for bacteria exposed to a magnetic flux of 10 mT for 6 hours. This study proved that magnetic field can be used as inhibitory factor against the E.coli.



[1]  World Water Assessment Program, “Kenya National Water Development Report. Case study”, UNESCO VOL.12, pp 1-244, 2006.
[2]  Kiruki, S, Mageto, OK, Ncene, WB and Gikuru, SK. “Prevalence of multidrug resistant enteropathogenic bacteria causing diarrhea in Kibera community in Nairobi, Kenya”, Journal of Tropical Microbiology and Biotechnology, VOL 2: 24-30, 2006.
[3]  World Health Organization. The World Health Report. World health Organization, 2012.
[4]  World Health Organization. The World Health Statistics. World health Organization, 2011.
[5]  Abel, PD. Water Pollution Biology. Taylor and Francis, pp.179-184, 2002.
Show More References
[6]  Vesilind PA, Peirce, JJ and Weiner, RF. Environmental Pollution and Control. 3rd ed. Butter WorthHeinmann, Bosten, pp. 77-83, 1990.
[7]  United States Environmental Protection Agency, Current Drinking Water Standards. United States Environmental Protection Agency: Washington, DC, May, 2016.
[8]  Rubenowitz-Lundin, E and Hiscock, K. Water hardness and health effects. Essential of Medical Geology, Elsevier Academic Press, pp. 331-345, 2005.
[9]  Jenkins, MW and Lelo, FK and Chiuri, W and Shivoga, WA and Miller, SN, “World Water and Environmental Resources Congress: Community Perceptions and Priorities for Managing Water and Environmental Resources in the River Njoro Watershed in Kenya”, Environmental Resources Congress, Salt Lake City, Utah, June 27-July 1, 2004.
[10]  America Public Health Association. Standard Methods for the Examination of water and Wastewater. American Public Health Association/American Water Works Association/Food safety and Inspection Services: Washington, DC, 2008.
[11]  United States Department of Agriculture Food Safety and Inspection Service. Most probable number procedures and tables: Laboratory Guide Book. pp. 5-8, United States Department of Agriculture Food Safety and Inspection Service, Washington, June 2014.
[12]  Ma, H, Zhongli, P, Mengxiang, G and Lin, L. “Efficacy in Microbial Sterilization of Pulsed Magnetic Field Treatment” International Journal of Food Engineering, Berkeley Electronic Press, Vol. 4 2008.
[13]  Li, M, Qu, J and Peng, Y. “Sterilization of Escherichia coli cells by the application of pulsed magnetic field”. Journal of Environmental Science, VOL 16, pp. 348-352, 2004.
[14]  Molouk, MKA and Amna, ANS. “The effect of magnetic field on the physical, chemical and microbiological properties of the lake water in Saudi Arabia”. .Journal of Evolutionary Biology Research, VOL 2, pp. 7-14, 2010.
[15]  Johan, S, Fadil, O and Zularisham, A. Effect of Magnetic Fields on Suspended Particles in Sewage. Malaysian Journal of Science, 23: 141-148, 2004.
[16]  Maheshwari, BL and Grewal, HS. Magnetic treatment of irrigation water: its effects on vegetable crop yield and water productivity. Agriculture and Water Management, 96: 1229-1236, 2009.
[17]  Tomska, A, Wolny, L. Enhancement of biological wastewater treatment by magnetic field exposure. Desalination 222, 368-373, 2007.
[18]  Smothers KW, Curtiss CD, Gard BT, Strauss RH and Hock VF. Magnetic Water Treatment Public Works Technical Bulletin, 420:34-449, 2001.
Show Less References