You are here

International Journal of Physics

**ISSN (Print):**
2333-4568

**ISSN (Online):**
2333-4576

**Editor-in-Chief:**
B.D. Indu

**Website:**
http://www.sciepub.com/journal/IJP

### Article

**An IBM-2 Calculation of E2/M1 Multipole Mixing Ratios of Transitions in**

^{90-96}Sr^{1}Department of Physics, College of Science, AL-Nahrain University, Baghdad, IRAQ

^{2}Department of Physics, College of Science, Mosul University, Mosul, IRAQ

*International Journal of Physics*. 2016, 4(1), 5-10

doi: 10.12691/ijp-4-1-2

Copyright © 2016 Science and Education Publishing

**Cite this paper:**

Saad Naji Abood, Laith Ahmed Najim. An IBM-2 Calculation of E2/M1 Multipole Mixing Ratios of Transitions in

^{90-96}Sr.

*International Journal of Physics*. 2016; 4(1):5-10. doi: 10.12691/ijp-4-1-2.

Correspondence to: Laith Ahmed Najim, Department of Physics, College of Science, Mosul University, Mosul, IRAQ. Email: Prof.lai2014@gmail.com

### Abstract

^{90-96}Sr. Excitation energies, electromagnetic transition strengths, quadrupole and δ(E2/M1) multipole mixing ratios have been described systematically. It is seen that the properties of low-lying levels in these isotopes, for which the comparison between experiment and theory is possible, can be epistemologically satisfied by the Interacting Boson Model-2 (IBM-2).

### Keywords

### References

[1] | F. Iachello and A. Arima, The Interacting Boson Model, (Camb. Univ. Press, (1987). | ||

[2] | A. Arima and F. Iachello, Ann. Phys. NY, 99 (1976) 253. | ||

[3] | A. Arima and F. Iachello, Ann. Phys. NY, 111 (1978) 201. | ||

[4] | A. Arima and F. Iachello, Ann. Phys. NY, 123 (1979) 468. | ||

[5] | R. F. Casten, Nucl. Phys., A 347 (1980) 173. | ||

[6] | C. K. Nair, A. Ansari and L. Satpathy, Phys. Lett., 71B, (1977), 257-261. | ||

[7] | A. Sevrin, K. Heyde, and J. Jolie, Phys. Rev. C 36, (1987) 2631-2638. | ||

[8] | M. Sambataro, O. Scholten, A. E. L.Dieperink and G. Piccitto, Nucl. Phys. A423 (19984) 333. | ||

[9] | A. Bohr and B. Mottelson, “Nuclear Structure^{'}, Vol. II (Benjamin), New York, (1969). | ||

[10] | O. Schoten, A. Arima and F. Iachello, Interacting Ann. Phys. (N.Y.), 99 (1976) 468-473. | ||

[11] | K. Hayde, P. Van Isacker, M. Waroquier and J. Moreau, Phys. Rev., C 29, (1984), 1420-1426. | ||

[12] | J. Y. Zhang, R. F. Casten, and N. V. Zamfir, Phys. Lett. B 407, (1997) 201-206. | ||

[13] | A. E. L. Dieperink and R. Bijker, Phys. Lett., 116B, (1982), 77-81. | ||

[14] | A. E. L. Dieperink, Progress in Particle and Nuclear Physics, edited by D. Wilkinson, Plenum, New York, 9, (1983). | ||

[15] | A. Arima, T. Otsuka, F. Iachello, T. Talmi, Phys.Lett., 66B, (1977), 205-209. | ||

[16] | T. Tagziria, M. Elahrash, W. D. Hamilton, M. Finger, J. John, and V. N. Pavlov, J. Phys. G: Nucl. Part. Phys., 16 (1990) 1323-1328. | ||

[17] | Van Isacker and G. Puddu, Nucl. Phys A348 (1980) 125. | ||

[18] | Y. X. Liu, G. L. Long and H. Z. Sun, J. Phys. G: Nucl. Part. Phys., 17 (1991) 877-880. | ||

[19] | T. Otsuka and N. Yoshida, the IBA-2 computer program NPBOS, University of Tokyo (1985), and Japan Atomic Energy Research Institute Report,(1985) JAERI-M85-094. | ||

[20] | Long Gulilu, Zhang Jinyu and Tian Lin, Commun. Theor. Phys. 29 (1998) 249. | ||

[21] | D. Hirata, H. Taki, I. Tanihata and P. Ring, Phys. Lett. B 314 (1993) 168. | ||

[22] | ENSDF, http:// www.nndc.bnl.gov/ensdf (Nuclear data sheet) (2011). | ||

[23] | A. R. Subber, P. Park, W. D. Hamilton, K. Kumar, K. Schreckenbash and G. Colvin, J. Phys. G: Nucl. Phys. 12 (1986) 881 | ||

[24] | H. Mach et al., Nucl. Phys. A 523 (1991) 197. | ||

[25] | C. M. Baglin, Nucl. Data Sheets 66 (1962) 347. | ||

[26] | J. K. Tuli. Nucl. Data Sheets 66 (1992) 1. | ||

[27] | J. Lang, K. Kumar and J. H. Hamilton, Rev. Mod. Phys. Vol.54 No. 1 (1982). | ||

### Article

**Transmission of Information and Interaction in the Mutual Motion of Two Physical Bodies MSR (Motion Shapes Reality)**

^{1}Mihailo Jeremić, independent Researcher, Mladenovac, Serbia

*International Journal of Physics*. 2016, 4(1), 11-20

doi: 10.12691/ijp-4-1-3

Copyright © 2016 Science and Education Publishing

**Cite this paper:**

Mihailo M. Jeremić. Transmission of Information and Interaction in the Mutual Motion of Two Physical Bodies MSR (Motion Shapes Reality).

*International Journal of Physics*. 2016; 4(1):11-20. doi: 10.12691/ijp-4-1-3.

Correspondence to: Mihailo M. Jeremić, Mihailo Jeremić, independent Researcher, Mladenovac, Serbia. Email: nacrtmika@gmail.com

### Abstract

_{0}depends on the relationship between the masses of these bodies m

_{A}and m

_{B}, so light signal travel time from the body A to the body B differs from the light signal travel time from the body B to the body A. In accordance with this, the following notions are defined: the relationship of the time difference (interval) between two successively emitted light signals from one body and the time difference (interval) of receiving these two signals by the other body, as well as the intensity and relationship between the relative velocities v of the two bodies measured from one body and from the other body. In addition, the expressions are derived for the Doppler shift in the function of velocity v

_{0 }of the mutual motion of two bodies A and B and the relationship between the masses of these bodies m

_{A}and m

_{B}. The results of this study prove that the formulae of the special theory of relativity (STR) have not been duly derived (since they disregard the masses of the bodies in mutual motion) and that they do not offer correct results.

### Keywords

### References

[1] | Einstein, Albert (1905), “Zur Elektrodynamik bewegter Körper”, Annalen der Physik 322 (10): 891-921. | ||

[2] | Feynman, R. P.; Leighton, R. B.; and Sands, M. “The Feynman Lectures on Physics, Vol. 1. Redwood City, CA: Addison-Wesley, pp. 10-1-10-9, 1989. | ||

[3] | Newton, Isaac. “The Principia: Mathematical Principles of Natural Philosophy”. University of California Press, (1999). 974 pp. | ||

[4] | Rosen, Joe; Gothard, Lisa Quinn (2009). “Encyclopedia of Physical Science”. Infobase Publishing. p. 155. | ||

[5] | Landau, L.D.; Lifshitz, E.M. (2005). “The Classical Theory of Fields. Course of Theoretical Physics: Volume 2”. Trans. Morton Hamermesh (Fourth revised English ed.). Elsevier Butterworth-Heinemann. pp. 1-3. | ||

[6] | Anderson et al, “Study of the anomalous acceleration of Pioneer 10 and 11”, Phys. Rev. D 65, 082004 (2002). | ||

[7] | Garner, C. L., Captain (retired) (April 1949). “A Geodetic Measurement of Unusually High Accuracy”. U.S. Coast and Geodetic Survey Journal (Coast and Geodetic Survey): 68-74. Retrieved August 13, 2009. | ||

### Article

**Universe, a Spacetime Harmonic Oscillator**

^{1}Department of Physics, Adelphi University, New York, USA

*International Journal of Physics*. 2016, 4(1), 21-25

doi: 10.12691/ijp-4-1-4

Copyright © 2016 Science and Education Publishing

**Cite this paper:**

M. Khoshsima. Universe, a Spacetime Harmonic Oscillator.

*International Journal of Physics*. 2016; 4(1):21-25. doi: 10.12691/ijp-4-1-4.

Correspondence to: M. Khoshsima, Department of Physics, Adelphi University, New York, USA. Email: mkhoshsima@adelphi.edu

### Abstract

### Keywords

### References

[1] | D. Simpson, “A Mathematical Derivation of the General Relativistic Schwarzschild Metric,” 2007 | ||

[2] | S. Hawking, “A Brief History of Time,” New York: Bantam Books, 1988. | ||

[3] | R.L. Faber, “Differential Geometry and Relativity Theory,”: An Introduction. New York: Marcel Dekker, Inc., 1983. | ||

[4] | T. Marsh, “General Relativity,” class notes, 2009 | ||

[5] | “S. Chandrasekhar, “The Mathematical Theory of Black Holes”. Clarendon Press (1983) | ||

[6] | C.W. Misner, K.S. Thorne, and J.A. Wheeler, “Gravitation”. Freeman (1973). | ||

[7] | S. Weinberg, “Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity”. Wiley (1972) | ||

[8] | G. ‘t Hooft, “ Introduction To General Relativity,” Institute for Theoretical Physics; Utrecht University (2002) | ||

[9] | Poul Olesen, “General Relativity and Cosmology,” The Niels Bohr Institute (2008). | ||

[10] | M. Kachelrieb, “Gravitation and Cosmology,” Institute for fysikk; NTNU (2010). | ||

[11] | M. Khoshsima, “Black Hole Spacetime Equation in Special Relativity.” International Journal of Astronomy, Astrophysics and Space Science; Vol. 2, No. 4, 2015, pp. 30-33. | ||