Biomedical Science and Engineering

ISSN (Print): 2373-1257

ISSN (Online): 2373-1265

Website: http://www.sciepub.com/journal/BSE

Article

Biological Characterization of Crude Extract & Pure Compound Isolated from Swertia chirata Ham

1Department of Materials Science & Engineering, Rajshahi University, Rajshahi, Bangladesh

2Department of Pharmacy, Rajshahi Science & Technology University, Natore, Bangladesh


Biomedical Science and Engineering. 2014, 2(1), 1-4
DOI: 10.12691/bse-2-1-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Mst.Jesmin Sultana, Fazle Rabbi Shakil Ahmed. Biological Characterization of Crude Extract & Pure Compound Isolated from Swertia chirata Ham. Biomedical Science and Engineering. 2014; 2(1):1-4. doi: 10.12691/bse-2-1-1.

Correspondence to: Mst.Jesmin  Sultana, Department of Materials Science & Engineering, Rajshahi University, Rajshahi, Bangladesh. Email: jssumi8@gmail.com

Abstract

The fresh stem of the plant Swertia chirata Ham was extracted by rectified spirit. The crude rectified spirit extract was fractionated by using standard chromatographic techniques, on alumina gave several fractions (A, B, C, D, E & F). Fraction D, when subjected to column chromatographic analysis on neutral alumina, yielded a pure compound X-1 m.p. 180°C. X-1 was screened for its antibacterial activities against 12 pathogenic bacteria, 6 Gram positive and 6 Gram negative, by disc diffusion method at a concentration of 200 μg/disc. The results obtained were compared with those for a standard antibiotic Kanamycin. X-1 showed significant activity against Bacillus megaterium (13 mm), Bacillus subtilis (11 mm), Salmonella typhi-A (12 mm), Shigella flexeneriae (12 mm) and Klebsiella sp (13 mm) but a little activity against Staphylococcus aureus. The Minimum Inhibitory Concentrations (MIC) of X-1 determined against Bacillus megaterium and Salmonella typhi-A were 128 μg/ml and 132 μg/ml, respectively when tested in a nutrient broth medium. X-1 also showed significant activity against the brine shrimp (Artemia salina) nauplii (LC50 value of 10 μg/ml), in which the mortality rate increased with the increasing concentration of the compound, suggesting a positive correlation between brine shrimp toxicity and cytotoxicity.

Keywords

References

[1]  Bhattacharjee S. 1980. Chirangib Banaushodhi 2nd edn. (in Bengali). Anand Publishers Pvt. Ltd., Calcutta, India. 3, pp. 169-170.
 
[2]  Chopra RN. 1982. Indigenous Drugs of India. Academic Publishers, Calcutta, India.250 pp.
 
[3]  Dalall SR, Shah RG. 1956. Chemistry and Industry. Academic Publishers, Calcutta, India. 664 pp.
 
[4]  Hooker JD. 1885. Flora of British India, Reeve and Co. Ltd. 5, pp. 78-79.
 
[5]  Korte F, Schicke HG. 1956. Methods and compositions for rapid in vitro propagation of Swertia chirata Chem Ber 89, 2404 pp.
 
Show More References
[6]  Korte F. 1955. Methods and compositions for rapid in vitro propagation of Swertia chirata Chem Ber 88, 704 pp.
 
[7]  Mayer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE,
 
[8]  McLaughlin JL. 1982. Brine Shrimp: a convenient bioassay for active plant constituents. Planta Medica 45, pp. 31-34.
 
[9]  McLaughlin JL 1990. Bench Top Bioassays for the Discovery of Bioactive Compounds in Higher Plants. Brenesa, pp. 1-29.
 
[10]  McLaughlin JL, Anderson JE. 1988. Brine Shrimp and CrownGall Tumors: Simple bioassays for the discovery of plant antitumor agents. Proc NTH Workshop. Bioassays forDiscovery of Antitumor and Antiviral Agents from Natural Sources, Bethesda, October 18-19, 1988. 220 pp.
 
[11]  Nadkarni KM. 1976. Indian Materia Medica (3rd edn). PopularPrakashan, Bombay, India. 1074 pp.
 
[12]  Persoon G. 1980. Proceeding of the International Symposium on Brine Shrimp, Artemia salina, Universa Wilteren, Belgium, pp. l-3.
 
[13]  Roland R. 1982. Antibiotics: An Introduction. F. Hoffman La Roche and Co. Basle, Switzerland. pp. 70-71.
 
Show Less References

Article

Different in Vitro Activation Methods for Latent Transforming Growth Factors (TGF)–β: Considerable Exogenous Factors to Promote Higher Mesenchymal-Origin Cell Proliferation in a Bioprocessing Platform

1Department of Biomedical Sciences, Faculty of Medicine, University of Leuven (KU Leuven), Leuven, Belgium

2School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia


Biomedical Science and Engineering. 2014, 2(1), 5-12
DOI: 10.12691/bse-2-1-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Partha S. Saha, Michael Doran. Different in Vitro Activation Methods for Latent Transforming Growth Factors (TGF)–β: Considerable Exogenous Factors to Promote Higher Mesenchymal-Origin Cell Proliferation in a Bioprocessing Platform. Biomedical Science and Engineering. 2014; 2(1):5-12. doi: 10.12691/bse-2-1-2.

Correspondence to: Partha  S. Saha, Department of Biomedical Sciences, Faculty of Medicine, University of Leuven (KU Leuven), Leuven, Belgium. Email: p.s.saha.11@aberdeen.ac.uk

Abstract

Regenerative medicine includes two efficient techniques, namely tissue-engineering and cell-based therapy in order to repair tissue damage efficiently. Most importantly, huge numbers of autologous cells are required to deal these practices. Nevertheless, primary cells, from autologous tissue, grow very slowly while culturing in vitro; moreover, they lose their natural characteristics over prolonged culturing period. Transforming growth factors-beta (TGF-β) is a ubiquitous protein found biologically in its latent form, which prevents it from eliciting a response until conversion to its active form. In active form, TGF-β acts as a proliferative agent in many cell lines of mesenchymal origin in vitro. This article reviews on some of the important activation methods-physiochemical, enzyme-mediated, non-specific protein interaction mediated, and drug-induced- of TGF-β, which may be established as exogenous factors to be used in culturing medium to obtain extensive proliferation of primary cells.

Keywords

References

[1]  Serra M, Brito C and Alves PM. “Bioengineering strategies for stem cell expansion and differentiation.” Canal Bioquímica; 7: 30‐38. 2010.
 
[2]  Castro-Malaspina H, Gay RE, Resnick G, Kapoor N, Meyers P, Chiarieri D, McKenzie S, Broxmeyer HE, Moore MA. “Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny.” Blood; 56 (2): 289-301. 1980.
 
[3]  Fehrer C and Lepperdinger G. “Mesenchymal stem cell aging.” Experimental Gerontology; 40: 926-930. 2005.
 
[4]  Todaro GJ. “Autocrine secretion of peptide growth factors by tumor cells.” Natl. Cancer Inst. Monogr; 60: 139-147. 1982.
 
[5]  Lyons RM, Keski-Oja J, and Moses HL. “Proteolytic Activation of Latent Transforming Growth Factor-β from Fibroblast-conditioned Medium.” The Journal of Cell Biology; 106: 1659-1665. 1988.
 
Show More References
[6]  Alliston T, Piek E and Derynck R. The TGF-β family in skeletal development and maintenance. In Derynck R, and Miyazono K. The TGF-β Family. Cold Spring Harbor Press, San Francisco, 2008. 667-723.
 
[7]  Bonewald LF. “Regulation and regulatory activities of transforming growth factor β.” Crit. Rev. Eukaryot. Gene Expr.; 9: 33-44. 1999.
 
[8]  Marra F, Bonewald LF, Park-Snyder S, Park IS, Woodruff KA, and Abboud HE. “Characterization and regulation of the latent transforming growth factor-β complex secreted by vascular pericytes.” J. Cell Physiol.; 166: 537-546. 1996.
 
[9]  Dallas SL, Alliston T, Bonewald LF. Transforming Growth Factor-β. In: Bilezikian JP, Raisz LG, Martin TJ. Principles of Bone Biology, 3rd ed. Academic Press, USA, 2008, 1145-65.
 
[10]  Taylor AW. “Review of the activation of TGF-β in immunity”. Journal of Leukocyte Biology; 85: 29-35. 2009.
 
[11]  Annes JP, Munger JS and Rifkin DB. “Making sense of latent TGFb activation”. Journal of Cell Science; 116: 217-224. 2003.
 
[12]  Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB. “Transforming growth factor-β in human platelets. Identification of a major storage site, purification, and characterization.” J. Biol. Chem.; 258: 7155-7160. 1983.
 
[13]  Seyedin SM, Thomas TC, Thompson AY, Rosen DM, Piez KA. “Purification and characterization of two cartilage-inducing factors from bovine demineralized bone.” Proc. Natl. Acad. Sci. USA; 82: 2267-227. 1985.
 
[14]  Janssens K, Dijke P, Janssens S, and Van Hul W. “Transforming growth factor-β 1 to the bone.” Endocr. Rev.; 26, 743-774. 2005.
 
[15]  Mimura S, Kimura N, Hirata M, Tateyama D, Hayashida M, Umezawa A, Kohara A, Nikawa H, Okamoto T, Furue MK. “Growth factor-defined culture medium for human mesenchymal stem cells.” International Journal of Developmental Biology; 55 (2): 181-187. 2011.
 
[16]  Jung S, Sen A, Rosenberg L, Behie LA. “Identification of growth and attachment factors for the serum-free isolation and expansion of human mesenchymal stromal cells.” Cytotherapy; 12 (5): 637-657. 2010.
 
[17]  Vater C, Kasten P, and Stiehler M. “Culture media for the differentiation of mesenchymal stromal cells.” Acta Biomaterialia; 7: 463-477. 2011.
 
[18]  James D, Levine AJ, Besser D, Hemmati-Brivanlou A. “TGFb activing nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells.” Development; 132: 1273-1282. 2005.
 
[19]  Zhou S. “TGF-β Regulates b-Catenin Signaling and Osteoblast Differentiation in Human Mesenchymal Stem Cells.” Journal of Cellular Biochemistry; 112: 1651-1660. 2011.
 
[20]  Koli K, Ryynänen MJ, Keski-Oja J. “Latent TGF-β binding proteins (LTBPs)-1 and -3 coordinate proliferation and osteogenic differentiation of human mesenchymal stem cells”. Bone; 43: 679-688. 2008.
 
[21]  Jian H, Shen X, Liu I, Semenov M, He X, Wang XF. “Smad3-dependent nuclear translocation of β-catenin is required for TGF-β1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells.” Genes Dev; 20: 666-74. 2006.
 
[22]  DuBose KB, Zayzafoon M and Murphy-Ullrich JE. “Thrombospondin-1 inhibits osteogenic differentiation of human mesenchymal stem cells through latent TGF-b activation.” Biochemical and Biophysical Research Communications; 422: 488-493. 2012.
 
[23]  Centrella M, Mccarthy TL and Canalis E. “Transforming growth factor β is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone”. J. Biol. Chem.; 262: 2869-2874. 1987.
 
[24]  Pfeilschifte J, D’Souza RSM and Mundy GR. “Effects of transforming growth factor-β on osteoblastic osteosarcoma cells.” Endocrinology; 121: 212-218. 1987.
 
[25]  Mundy GR and Bonewald LF. “Role of TGF-β in bone remodelling.” Annals New York Academy of Sciences; 593 (1): 97-100. 2006.
 
[26]  Hock JM, Canalis E, and Centrella M. “Transforming growth factor-β stimulates bone matrix apposition and bone cell replication in cultured fetal rat calvariae.” Endocrinology; 126: 421-426. 1990.
 
[27]  Chen TL, and Bates RL. “Recombinant human transforming growth factor β-1 modulates bone remodeling in a mineralizing bone organ culture.” J. Bone Miner. Res. 8; 423-434. 1993.
 
[28]  Takeuchi Y, Nakayama K, and Matsumoto T. “Differentiation and cell surface expression of transforming growth factor-β receptors are regulated by interaction with matrix collagen in murine osteoblastic cells.” J. Biol. Chem.; 271: 3938-3944. 1996.
 
[29]  Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, and Suda T. “Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage.” J. Cell Biol.; 127: 1755-1766. 1994.
 
[30]  Lawrence DA. “Transforming growth factor β: a general review.” Eur. Cytokine Netw; 7: 363-374. 1996.
 
[31]  Sporn MB, Roberts AB, Wakefield LM, and Crombrugghe BD. “Some Recent Advances in the Chemistry and Biology of Transforming Growth Factor-Β”. The Journal of Cell Biology; 105: 1039-1045. 1987.
 
[32]  Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N, Saksela O and Alitalo K. “Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells.” J Biol Chem; 269: 6271-6274. 1994.
 
[33]  Kay EP, Lee MS, Seong GJ and Lee YG. “TGF-βs stimulate cell proliferation via an autocrine production of FGF-2 in corneal stromal fibroblasts.” Curr Eye Res; 17: 286-293. 1998.
 
[34]  Brownh PD, Wakefield LM, Levinson AD and Sporn MB. “Physicochemical activation of recombinant latent transforming growth factor-βs 1, 2, and 3.” Growth Factors; 3: 35-43. 1990.
 
[35]  Khalil N. “TGF-β: from latent to active. Microbes and Infection”; 1: 1255-1263. 1999.
 
[36]  Barcellos-Hoff MH, Dix TA. “Redox-mediated activation of latent transforming growth factor-β1.” Mol Endocrinol 10: 1079-1083. 1996.
 
[37]  Schultz-Cherry S, Lawler J, Murphy-Ullrich JE. “The type 1 repeats of thrombospondin 1 activate latent transforming growth factor-b.” J Biol Chem; 269: 26783-26788. 1994.
 
[38]  Schultz-Cherry S, Chen H, Moser D, Misenheimer TM, Krutzsch HC, Roberts DD, Murphy-Ullrich JE. “Regulation of transforming growth factor-â activation by discrete sequence of thrombospondin-1” J. Biol. Chem.; 270: 7304-7310. 1995.
 
[39]  Munger JS, Harpel JG, Gleizes P, Mazzieri R, Nunes I, and Rifkin DB. “Latent transforming growth factor-n: Structural features and mechanisms of activation.” Kidney International; 51: 1376-1382. 1997.
 
[40]  Jullien P, Berg TM, Lawrence DA. “Acidic cellular environments: activation of latent TGF-β and sensitization of cellular responses to TGF-β and EGF.” Int J Cancer.; 43 (5): 886-91. 1989.
 
[41]  Lawrence DA, Pircher R, and Julien P. “Conversion of a high molecular weight latent [I-TGF from chicken embryo fibroblasts into a low molecular weight active [3-TGF under acidic conditions.” Biochem. Biophys. Res. Commun.; 133: 1026-1034. 1985.
 
[42]  Brown PD, Wakefield LM, Levinson AD et al. “Physicochemical activation of recombinant latent transforming growth factor-βs 1, 2, and 3.” Growth Factors; 3: 35-43. 1990.
 
[43]  Moses HL, Shipley GD, Leof EB, Halper J, Coffey RJ, and Tucker RF. “Transforming growth factors. In Control of Animal Cell Proliferation.” In: Boynton AL and Leffert HL, editors. Academic Press, Inc., New York, 1987, 75-92.
 
[44]  Barcellos-Hoff MH. “Radiation-induced Transforming Growth Factor β and Subsequent Extracellular Matrix Reorganization in Murine Mammary Gland” Cancer Research; 53: 3880-3886. 1993.
 
[45]  Yang Y, Dignam JD, and Gentry LE. “Role of Carbohydrate Structures in the Binding of β1-Latency-Associated Peptide to Ligands.” Biochemistry; 36: 11923-11932. 1997.
 
[46]  Vodovotz Y, Chesler L, Chong H, Kim S, Simpson JT, DeGraff W, Cox GW, Roberts AB, Wink DA, and Barcellos-Hoff MH. “Regulation of Transforming Growth Factor β1 by Nitric Oxide.” Cancer Research; 59: 2142-2149. 1999.
 
[47]  Zamora H, Barclay D, Vodovotz YY. Differential Activation of Recombinant Human Latent Transforming Growth Factor-β1 (Tgf-β1) by acid.” Revista; 15 (2): 177-179. 2007.
 
[48]  Abe M, Oda N, and Sato Y. “Cell-Associated Activation of Latent Transforming Growth Factor-B By Calpain.” Journal of Cellular Physiology; 174: 186-193. 1998.
 
[49]  Miyazono K and Heldin C. “Role for carbohydrate structures in TGF-b1 latency.” Nature; 338: 158-60. 1989.
 
[50]  Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D. “The integrin alphav β 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis.” Cell; 96: 319-328. 1999.
 
[51]  Breuss JM, Gillett N, Lu L, Sheppard D and Pytela R. “Restricted distribution of integrin β6 mRNA in primate epithelial tissues.” J. Histochem. Cytochem; 41, 1521-1527. 1993.
 
[52]  Mu D, Cambier S, Fjellbirkeland L, Baron JL, Munger JS, Kawakatsu H, Sheppard D, Broaddus VC and Nishimura SL. “The integrin {alpha}v{β}8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-{β}1.” J. Cell Biol.; 157: 493-507. 2002.
 
[53]  Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R, and Dickson RB. “Evidence That Transforming Growth Factor-β is a Hormonally Regulated Negative Growth Factor in Human Breast Cancer Cells.” Cell, Vol. 48, 417-428. 1987.
 
[54]  Glick AB, Flanders KC, Danielpour D, Yuspa SH, Sporn MB. “Retinoic acid induces transforming growth factor-fl2 in cultured keratinocytes and mouse epidermis.” Cell Regulation; 1: 87-97. 1989.
 
[55]  Oursler M, Riggs B, Spelsberg T. “Glucocorticoid-induced activation of latent transforming growth factor-b by normal hormone osteoblast-like cell.” Endocrinology; 133: 2187-96. 1993.
 
Show Less References

Article

QRS Detection and Heart Rate Variability Analysis: A Survey

1Biomedical Engineering Department, Faculty of Engineering, Jordan University of Science and Technology, Irbid, Jordan


Biomedical Science and Engineering. 2014, 2(1), 13-34
DOI: 10.12691/bse-2-1-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
Rami J. Oweis, Basim O. Al-Tabbaa. QRS Detection and Heart Rate Variability Analysis: A Survey. Biomedical Science and Engineering. 2014; 2(1):13-34. doi: 10.12691/bse-2-1-3.

Correspondence to: Rami  J. Oweis, Biomedical Engineering Department, Faculty of Engineering, Jordan University of Science and Technology, Irbid, Jordan. Email: oweis@just.edu.jo

Abstract

Cardiac-related diseases have been one major cause of death for an ever increasing number of patients over the last few decades throughout the world. In response, automatic classification of cardiac rhythms using Heart Rate Variability analysis as an effective diagnostic tool has recently emerged as an important field of research. Previous researches has proved that translating and transforming HRV data into numbers can introduce highly accurate assessments of rhythm disorders. However, to obtain reliable HRV interpretation, accurate QRS detection approaches must be utilized. This work, as motivated by the arguments just presented, reviews in detail the most recent and efficient techniques related to QRS feature extraction and HRV determination all classified and presented in a convenient fashion to facilitate coverage. The study also presents a state-of-the-art updated review on QRS detection and heart rate variability analyses that could serve as a handy future reference in this field of research based on more than 200 articles reviewed in this effort.

Keywords

References

[1]  Kovács, P. (2012, February). ECG signal generator based on geometrical features. In Annales Univ. Sci. Budapest., Sect. Comp (Vol. 37, pp. 247-260).
 
[2]  Mark, R. G. (2004). HST. 542J/2.792 J/BE. 371J/6.022 J Quantitative Physiology: Organ Transport Systems.
 
[3]  Reisner, A. T., Clifford, G. D., & Mark, R. G. (2007). The physiological basis of the electrocardiogram.
 
[4]  Aldersons, A., & Buikis, A. (2011, August). Mathematical algorithm for heart rate variability analysis. In Proceedings of the 11th WSEAS international conference on applied informatics and communications, and Proceedings of the 4th WSEAS International conference on Biomedical electronics and biomedical informatics, and Proceedings of the international conference on Computational engineering in systems applications (pp. 381-386).
 
[5]  Camm, A. J., Malik, M., Bigger, J. T., Breithardt, G., Cerutti, S., Cohen, R. J., & Singer, D. H. (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 93(5), 1043-1065.
 
Show More References
[6]  Kaplan, D. T., Furman, M. I., Pincus, S. M., Ryan, S. M., Lipsitz, L. A., & Goldberger, A. L. (1991). Aging and the complexity of cardiovascular dynamics.Biophysical Journal, 59(4), 945-949.
 
[7]  Pikkujämsä, S. M., Mäkikallio, T. H., Sourander, L. B., Räihä, I. J., Puukka, P., Skyttä, J., & Huikuri, H. V. (1999). Cardiac interbeat interval dynamics from childhood to senescence comparison of conventional and new measures based on fractals and chaos theory. Circulation, 100(4), 393-399.
 
[8]  Phyllis, K., Kleiger, M. D., Robert, E., Rottman, M. D., & Jeffrey, N. (1997). Differing effects of age on heart rate variability in men and women. The American journal of cardiology, 80(3), 302-305.
 
[9]  Sinnreich, R., Kark, J. D., Friedlander, Y., Sapoznikov, D., & Luria, M. H. (1998). Five minute recordings of heart rate variability for population studies: repeatability and age–sex characteristics. Heart, 80(2), 156-162.
 
[10]  Zhang, J. (2007). Effect of age and sex on heart rate variability in healthy subjects. Journal of manipulative and physiological therapeutics, 30(5), 374-379.
 
[11]  Carter, J. B., Banister, E. W., & Blaber, A. P. (2003). The effect of age and gender on heart rate variability after endurance training. Medicine and science in sports and exercise, 35(8), 1333-1340.
 
[12]  Huikuri, H. V., Pikkuja, S. M., Airaksinen, K. J., Ika, M. J., Rantala, A. O., Kauma, H., & Kesa, Y. A. (1996). Sex-related differences in autonomic modulation of heart rate in middle-aged subjects. Circulation, 94(2), 122-125.
 
[13]  Ramaekers, D., Ector, H., Aubert, A. E., Rubens, A., & Van de Werf, F. (1998). Heart rate variability and heart rate in healthy volunteers. Is the female autonomic nervous system cardioprotective?. European Heart Journal, 19(9), 1334-1341.
 
[14]  De La Cruz Torres, B., López, C. L., & Orellana, J. N. (2008). Analysis of heart rate variability at rest and during aerobic exercise: a study in healthy people and cardiac patients. British journal of sports medicine, 42(9), 715-720.
 
[15]  Bernardi, L., Ricordi, L., Lazzari, P., Solda, P., Calciati, A., Ferrari, M. R., & Fratino, P. (1992). Impaired circadian modulation of sympathovagal activity in diabetes. A possible explanation for altered temporal onset of cardiovascular disease. Circulation, 86(5), 1443-1452.
 
[16]  Guzzetti, S. T. E. F. A. N. O., Cogliati, C. H. I. A. R. A., Broggi, C. A. R. O. L. A., Carozzi, C. A. R. L. A., Caldiroli, D., Lombardi, F. E. D. E. R. I. C. O., & Malliani, A. L. B. E. R. T. (1994). Influences of neural mechanisms on heart period and arterial pressure variabilities in quadriplegic patients. American Journal of Physiology-Heart and Circulatory Physiology, 266(3), H1112-H1120.
 
[17]  Koh, J., Brown, T. E., Beightol, L. A., Ha, C. Y., & Eckberg, D. L. (1994). Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects.The Journal of physiology, 474(3), 483-495.
 
[18]  Garrido Esquivel, A., de la CruzTorres, B., Garrido Salazar, M. A., Medina Corrales, M., & Naranjo Orellana, J. (2009). Variabilidad de la frecuencia cardiaca en un deportista juvenil durante una competición de bádminton de máximo nivel. Revista Andaluza de Medicina del Deporte, 2(2), 70-74.
 
[19]  Saa, Y. D., Sarmiento, S., Martín González, J. M., Rodríguez Ruiz, D., Quiroga, M. E., & García Manso, J. M. (2009). Aplicación de la variabilidad de la frecuencia cardiaca en la caracterización de deportistas de élite de lucha canaria con diferente nivel de rendimiento. Archivos de medicina del deporte,2(4), 120-125.
 
[20]  Aubert, A. E., Seps, B., & Beckers, F. (2003). Heart rate variability in athletes.Sports Medicine, 33(12), 889-919.
 
[21]  Aubert, A. E., Beckers, F., & Ramaekers, D. (2000). Short-term heart rate variability in young athletes. Journal of cardiology, 37, 85-88.
 
[22]  Bonnemeier, H., Wiegand, U. K., Brandes, A., Kluge, N., Katus, H. A., Richardt, G., & Potratz, J. (2003). Circadian profile of cardiac Journal of cardiovascular electrophysiology, 14(8), 791-799.
 
[23]  Hall, M., Thayer, J. F., Germain, A., Moul, D., Vasko, R., Puhl, M., & Buysse, D. J. (2007). Psychological stress is associated with heightened physiological arousal during NREM sleep in primary insomnia. Behavioral sleep medicine, 5(3), 178-193.
 
[24]  Montano, N., Porta, A., Cogliati, C., Costantino, G., Tobaldini, E., Casali, K. R., & Iellamo, F. (2009). Heart rate variability explored in the frequency domain: a tool to investigate the link between heart and behavior. Neuroscience & Biobehavioral Reviews, 33(2), 71-80.
 
[25]  De Boer, R. W., Karemaker, J. M., & Strackee, J. (1985). Relationships between short-term blood-pressure fluctuations and heart-rate variability in resting subjects I: a spectral analysis approach. Medical and Biological Engineering and Computing, 23(4), 352-358.
 
[26]  Rothschild, M., Rothschild, A., & Pfeifer, M. (1988). Temporary decrease in cardiac parasympathetic tone after acute myocardial infarction. The American journal of cardiology, 62(9), 637-639.
 
[27]  Rossinen, M. D., Viitasalo, M. D., Partanen, M. D., Koskinen, M. D., Kupari, M. D., Nieminen, M. D., & Markku, S. (1997). Effects of acute alcohol ingestion on heart rate variability in patients with documented coronary artery disease and stable angina pectoris. The American journal of cardiology, 79(4), 487-491.
 
[28]  Carney, R. M., Blumenthal, J. A., Stein, P. K., Watkins, L., Catellier, D., Berkman, L. F., & Freedland, K. E. (2001). Depression, heart rate variability, and acute myocardial infarction. Circulation, 104(17), 2024-2028.
 
[29]  Carney, R. M., Blumenthal, J. A., Freedland, K. E., Stein, P. K., Howells, W. B., Berkman, L. F., & Jaffe, A. S. (2005). Low heart rate variability and the effect of depression on post-myocardial infarction mortality. Archives of internal medicine, 165(13), 1486.
 
[30]  Pfeifer, M. A., Cook, D., Brodsky, J., Tice, D., Reenan, A., Swedine, S., & Porte, D. (1982). Quantitative evaluation of cardiac parasympathetic activity in normal and diabetic man. Diabetes, 31(4), 339-345.
 
[31]  Singh, J. P., Larson, M. G., O’Donnell, C. J., Wilson, P. F., Tsuji, H., Lloyd-Jones, D. M., & Levy, D. (2000). Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). The American journal of cardiology, 86(3), 309-312.
 
[32]  Wheeler, T., & Watkins, P. J. (1973). Cardiac denervation in diabetes. British Medical Journal, 4(5892), 584.
 
[33]  Forsström, J., Forsström, J., Heinonen, E., Välimäki, I., & Antila, K. (1986). Effects of haemodialysis on heart rate variability in chronic renal failure.Scandinavian journal of clinical & laboratory investigation, 46(7), 665-670.
 
[34]  Zoccali, C., Ciccarelli, M., & Maggiore, Q. (1982). Defective reflex control of heart rate in dialysis patients: evidence for an afferent autonomic lesion. Clinical Science, 63, 285-292.
 
[35]  Lerma, C., Minzoni, A., Infante, O., & José, M. V. (2004). A mathematical analysis for the cardiovascular control adaptations in chronic renal failure.Artificial organs, 28(4), 398-409.
 
[36]  Ewing, D. J., & Winney, R. (1975). Autonomic function in patients with chronic renal failure on intermittent haemodialysis. Nephron, 15(6), 424-429.
 
[37]  Nagy, E., Orvos, H., Bárdos, G., & Molnár, P. (2000). Gender-related heart rate differences in human neonates. Pediatric Research, 47(6), 778-780.
 
[38]  Spallone, V., Bernardi, L., Ricordi, L., Soldà, P., Maiello, M. R., Calciati, A., & Menzinger, G. (1993). Relationship between the circadian rhythms of blood pressure and sympathovagal balance in diabetic autonomic neuropathy.Diabetes, 42(12), 1745-1752.
 
[39]  van Ravenswaaij-Arts, C., Hopman, J. C., Kollée, L. A., van Amen, J. P., Stoelinga, G., & van Geijn, H. P. (1991). Influences on heart rate variability in spontaneously breathing preterm infants. Early human development, 27(3), 187-205.
 
[40]  Bekheit, S., Tangella, M., el-Sakr, A., Rasheed, Q., Craelius, W., & El-Sherif, N. (1990). Use of heart rate spectral analysis to study the effects of calcium channel blockers on sympathetic activity after myocardial infarction. American heart journal, 119(1), 79-85.
 
[41]  Coumel, P., Hermida, J. S., Wennerblöm, B., Leenhardt, A., Maison-Blanche, P., & Cauchemez, B. (1991). Heart rate variability in left ventricular hypertrophy and heart failure, and the effects of beta-blockade a non-spectral analysis of heart rate variability in the frequency domain and in the time domain. European heart journal, 12(3), 412-422.
 
[42]  Guzzetti, S., Piccaluga, E., Casati, R., Cerutti, S., Lombardi, F., Pagani, M., & Malliani, A. (1988). Sympathetic predominance an essential hypertension: a study employing spectral analysis of heart rate variability. Journal of hypertension, 6(9), 711-717.
 
[43]  Lucini, D., Bertocchi, F., Malliani, A., & Pagani, M. (1996). A controlled study of the autonomic changes produced by habitual cigarette smoking in healthy subjects. Cardiovascular research, 31(4), 633-639.
 
[44]  Hayano, J., Yamada, M., Sakakibara, Y., Fujinami, T., Yokoyama, K., Watanabe, Y., & Takata, K. (1990). Short-and long-term effects of cigarette smoking on heart rate variability. The American journal of cardiology, 65(1), 84-88.
 
[45]  Kamath, M. V., & Fallen, E. L. (1995). Correction of the heart rate variability signal for ectopics and missing beats. Heart rate variability. Armonk: Futura, 75-85.
 
[46]  Zeskind, P. S., & Gingras, J. L. (2006). Maternal cigarette-smoking during pregnancy disrupts rhythms in fetal heart rate. Journal of pediatric psychology,31(1), 5-14.
 
[47]  Webster, J. G. Medical instrumentation: application and design. 1998. John Wiley&Sons, NY.
 
[48]  Manolakis, D. G., Ingle, V. K., & Kogon, S. M. (2000). Statistical and adaptive signal processing: spectral estimation, signal modeling, adaptive filtering, and array processing (pp. 378-387). Boston: McGraw-Hill.
 
[49]  Li, Q., Mark, R. G., & Clifford, G. D. (2008). Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter. Physiological measurement, 29(1), 15.
 
[50]  Goutas, A., Ferdi, Y., Herbeuval, J. P., Boudraa, M., & Boucheham, B. (2005). Digital fractional order differentiation-based algorithm for P and T-waves detection and delineation. ITBM-RBM, 26(2), 127-132.
 
[51]  Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm.Biomedical Engineering, IEEE Transactions on, (3), 230-236.
 
[52]  Okada, M. (1979). A digital filter for the ors complex detection. Biomedical Engineering, IEEE Transactions on, (12), 700-703.
 
[53]  Menrad, A. (1981). Dual microprocessor system for cardiovascular data acquisition, processing and recording. Proc. 1981 IEEE Inr. Con5 Industrial Elect. Contr. Instrument, 64-69.
 
[54]  Holsinger, W. P., Kempner, K. M., & Miller, M. H. (1971). A QRS preprocessor based on digital differentiation. Biomedical Engineering, IEEE Transactions on, (3), 212-217.
 
[55]  Morizet-Mahoudeaux, P., Moreau, C., Moreau, D., & Quarante, J. J. (1981). Simple microprocessor-based system for on-line ECG arrhythmia analysis.Medical and Biological Engineering and Computing, 19(4), 497-500.
 
[56]  Fraden, J., & Neuman, M. R. (1980). QRS wave detection. Medical and Biological Engineering and computing, 18(2), 125-132.
 
[57]  Balda, R. A., Diller, G., Deardorff, E., Doue, J., & Hsieh, P. (1977). The HP ECG analysis program. Trends in Computer-Processed Electrocardiograms, 197-205.
 
[58]  Ahlstrom, M. L., & Tompkins, W. J. (1983). Automated high-speed analysis of Holter tapes with microcomputers. Biomedical Engineering, IEEE Transactions on, (10), 651-657.
 
[59]  Engelse, W. A. H., & Zeelenberg, C. (1979). A single scan algorithm for QRS detection and feature extraction. Computers in cardiology, 6(1979), 37-42.
 
[60]  Trahanias, P., & Skordalakis, E. (1989). Bottom-up approach to the ECG pattern-recognition problem. Medical and Biological Engineering and Computing, 27(3), 221-229.
 
[61]  Zhang, F., & Lian, Y. (2007, August). Electrocardiogram QRS detection using multiscale filtering based on mathematical morphology. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE (pp. 3196-3199). IEEE.
 
[62]  Arzeno, N. M., Deng, Z. D., & Poon, C. S. (2008). Analysis of first-derivative based QRS detection algorithms. Biomedical Engineering, IEEE Transactions on, 55(2), 478-484.
 
[63]  Benitez, D. S., Gaydecki, P. A., Zaidi, A., & Fitzpatrick, A. P. (2000). A new QRS detection algorithm based on the Hilbert transform. In Computers in Cardiology 2000 (pp. 379-382). IEEE.
 
[64]  Sufi, F., Fang, Q., & Cosic, I. (2007, August). Ecg rr peak detection on mobile phones. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE (pp. 3697-3700). IEEE.
 
[65]  Zhang, F., & Lian, Y. (2007, November). Novel QRS detection by CWT for ECG sensor. In Biomedical Circuits and Systems Conference, 2007. BIOCAS 2007. IEEE (pp. 211-214). IEEE.
 
[66]  Friesen, G. M., Jannett, T. C., Jadallah, M. A., Yates, S. L., Quint, S. R., & Nagle, H. T. (1990). A comparison of the noise sensitivity of nine QRS detection algorithms. Biomedical Engineering, IEEE Transactions on, 37(1), 85-98..
 
[67]  Christov, I. I. (2004). Real time electrocardiogram QRS detection using combined adaptive threshold. BioMedical Engineering OnLine, 3(1), 28.
 
[68]  Kohler, B. U., Hennig, C., & Orglmeister, R. (2002). The principles of software QRS detection. Engineering in Medicine and Biology Magazine, IEEE, 21(1), 42-57..
 
[69]  Vidal, C., Charnay, P., & Arce, P. (2009, January). Enhancement of a QRS detection algorithm based on the first derivative, using techniques of a QRS detector algorithm based on non-linear transformations. In 4th European Conference of the International Federation for Medical and Biological Engineering (pp. 393-396). Springer Berlin Heidelberg.
 
[70]  Ahlstrom, M. L., & Tompkins, W. J. (1983). Automated high-speed analysis of Holter tapes with microcomputers. Biomedical Engineering, IEEE Transactions on, (10), 651-657.
 
[71]  Macfarlane, P. W., Devine, B., & Clark, E. (2005, September). The university of Glasgow (Uni-G) ECG analysis program. In Computers in Cardiology, 2005 (pp. 451-454). IEEE.
 
[72]  Olvera, F. E. (2006). Electrocardiogram waveform feature extraction using the matched filter. ECE SIO Stat Proc.
 
[73]  Kay, S. M. (1998). Fundamentals of Statistical signal processing, Volume 2: Detection theory (pp. 345-349). Prentice Hall PTR.
 
[74]  Hamilton, P. S., & Tompkins, W. J. (1988, November). Adaptive matched filtering for QRS detection. In Engineering in Medicine and Biology Society, 1988. Proceedings of the Annual International Conference of the IEEE (pp. 147-148). IEEE.
 
[75]  Dobbs, S. E., Schmitt, N. M., & Ozemek, H. S. (1984). QRS detection by template matching using real-time correlation on a microcomputer. Journal of clinical engineering, 9(3), 197-212.
 
[76]  Ebenezer, D., & Krishnamurthy, V. (1993). Wave digital matched filter for electrocardiogram preprocessing. Journal of biomedical engineering, 15(2), 132-134.
 
[77]  Kaplan, D. T. (1990, September). Simultaneous QRS detection and feature extraction using simple matched filter basis functions. In Computers in Cardiology 1990, Proceedings. (pp. 503-506). IEEE.
 
[78]  Ruha, A., Sallinen, S., & Nissila, S. (1997). A real-time microprocessor QRS detector system with a 1-ms timing accuracy for the measurement of ambulatory HRV. Biomedical Engineering, IEEE Transactions on, 44(3), 159-167.
 
[79]  Rangayyan, R. M. (2002). Biomedical signal analysis (pp. 55-91). New York: IEEE press.
 
[80]  Xue, Q., Hu, Y. H., & Tompkins, W. J. (1992). Neural-network-based adaptive matched filtering for QRS detection. Biomedical Engineering, IEEE Transactions on, 39(4), 317-329.
 
[81]  Lu, Y., Xian, Y., Chen, J., & Zheng, Z. (2008, May). A comparative study to extract the diaphragmatic electromyogram signal. In BioMedical Engineering and Informatics, 2008. BMEI 2008. International Conference on (Vol. 2, pp. 315-319). IEEE.
 
[82]  Gupta, R., Chatterjee, H. K., & Mitra, M. (2012). An online ECG QRS Detection Technique. Int. J. on Recent Trends in Engineering and Technology, 7(2).
 
[83]  Mehta, S. S., & Lingayat, N. S. (2007). Comparative study of QRS detection in single lead and 12-lead ecg based on entropy and combined entropy criteria using support vector machine. Journal of Theoretical and Applied Information Technology, 3(2), 8-18.
 
[84]  Mehta, S. S., & Lingayat, N. S. (2009). Identification of QRS complexes in 12-lead electrocardiogram. Expert Systems with Applications, 36(1), 820-828.
 
[85]  Nouira, I., Abdallah, A. B., Bedoui, M. H., & Dogui, M. A Robust R Peak Detection Algorithm Using Wavelet Transform for Heart Rate Variability Studies, International Journal on Electrical Engineering and Informatics - Volume 5,Number 3, September 2013.
 
[86]  Hamilton, P. S., & Tompkins, W. J. (1986). Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. Biomedical Engineering, IEEE Transactions on, (12), 1157-1165.
 
[87]  Hargittai, S. (2005, September). Savitzky-Golay least-squares polynomial filters in ECG signal processing. In Computers in Cardiology, 2005 (pp. 763-766). IEEE.
 
[88]  Luo, J., Ying, K., & Bai, J. (2005). Savitzky–Golay smoothing and differentiation filter for even number data. Signal Processing, 85(7), 1429-1434.
 
[89]  Das, S., & Chakraborty, M. (2012). QRS Detection Algorithm Using Savitzky-Golay Filter. Aceee International Journal on signal & Image processing, 3(1).
 
[90]  Fira, C. M., & Goras, L. (2008). An ECG signals compression method and its validation using NNs. Biomedical Engineering, IEEE Transactions on, 55(4), 1319-1326.
 
[91]  Suppappola, S. E. T. H., & Sun, Y. (1994). Nonlinear transforms of ECG signals for digital QRS detection: a quantitative analysis. Biomedical Engineering, IEEE Transactions on, 41(4), 397-400.
 
[92]  Lin, C. C., Hu, W. C., Chen, C. M., & Weng, C. H. (2008, September). Heart rate detection in highly noisy handgrip electrocardiogram. In Computers in Cardiology, 2008 (pp. 477-480). IEEE.
 
[93]  Ulusar, U. D., Govindan, R. B., Wilson, J. D., Lowery, C. L., Preissl, H., & Eswaran, H. (2009, September). Adaptive rule based fetal QRS complex detection using Hilbert transform. In Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE (pp. 4666-4669). IEEE.
 
[94]  Clifford, G. D., & Azuaje, F. (2006). Advanced methods and tools for ECG data analysis (pp. 55-57). London: Artech house.
 
[95]  Cost, A. A., & Cano, G. G. (1989, November). QRS detection based on hidden Markov modeling. In Engineering in Medicine and Biology Society, 1989. Images of the Twenty-First Century., Proceedings of the Annual International Conference of the IEEE Engineering in (pp. 34-35). IEEE.
 
[96]  Petrutiu, S., Ng, J., Nijm, G. M., Al-Angari, H., Swiryn, S., & Sahakian, A. V. (2006). Atrial fibrillation and waveform characterization. Engineering in Medicine and Biology Magazine, IEEE, 25(6), 24-30.
 
[97]  Coast, D. A., Stern, R. M., Cano, G. G., & Briller, S. A. (1990). An approach to cardiac arrhythmia analysis using hidden Markov models. Biomedical Engineering, IEEE Transactions on37(9), 826-836.
 
[98]  Krimi, S., Ouni, K., & Ellouze, N. (2008, April). An Approach Combining Wavelet Transform and Hidden Markov Models for ECG Segmentation. InInformation and Communication Technologies: From Theory to Applications, 2008. ICTTA 2008. 3rd International Conference on (pp. 1-6). IEEE.
 
[99]  Oppenheim, A. V., Schafer, R. W., & Buck, J. R. (1999). Discrete-time signal processing (Vol. 5). Upper Saddle River: Prentice Hall.
 
[100]  Li, C., Zheng, C., & Tai, C. (1995). Detection of ECG characteristic points using wavelet transforms. Biomedical Engineering, IEEE Transactions on, 42(1), 21-28.
 
[101]  Taubin, G., Zhang, T., & Golub, G. (1996). Optimal surface smoothing as filter design (pp. 283-292). Springer Berlin Heidelberg.
 
[102]  Chu, C. H., & Delp, E. J. (1989). Impulsive noise suppression and background normalization of electrocardiogram signals using morphological operators.Biomedical Engineering, IEEE Transactions on, 36(2), 262-273.
 
[103]  Chen, Y., & Duan, H. (2006, January). A QRS complex detection algorithm based on mathematical morphology and envelope. In Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the (pp. 4654-4657). IEEE.
 
[104]  Zhang, F., & Lian, Y. (2007, August). Electrocardiogram QRS detection using multiscale filtering based on mathematical morphology. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE  (pp. 3196-3199). IEEE.
 
[105]  Zhang, F., & Lian, Y. (2011). QRS detection based on morphological filter and energy envelope for applications in body sensor networks. Journal of Signal Processing Systems, 64(2), 187-194.
 
[106]  Zhang, C. F., & Bae, T. W. (2012). VLSI friendly ECG QRS complex detector for body sensor networks. Emerging and Selected Topics in Circuits and Systems, IEEE Journal on, 2(1), 52-59.
 
[107]  Bracewell, R. N., & Bracewell, R. N. (1986). The Fourier transform and its applications (Vol. 31999). New York: McGraw-Hill.
 
[108]  Henning, C. (2002). The Principles of Software QRS Detection. IEEE Engineering in Medicine and Biology, 21, 42-57.
 
[109]  Pantelopoulos, A., & Bourbakis, N. G. (2010). Prognosis-a wearable health-monitoring system for people at risk: methodology and modeling. IEEE transactions on information technology in biomedicine: a publication of the IEEE Engineering in Medicine and Biology Society, 14(3), 613-621.
 
[110]  Addison, P. S. (2010). The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance. CRC Press.
 
[111]  Coifman, R. R., & Donoho, D. L. (1995). Translation-invariant de-noising (pp. 125-150). Springer New York.
 
[112]  Mukhopadhyay, S., Biswas, S., Roy, A. B., & Dey, N. (2012). Wavelet Based QRS Complex Detection of ECG Signal. arXiv preprint arXiv:1209.1563.
 
[113]  Martínez, J. P., Almeida, R., Olmos, S., Rocha, A. P., & Laguna, P. (2004). A wavelet-based ECG delineator: evaluation on standard databases. Biomedical Engineering, IEEE Transactions on, 51(4), 570-581.
 
[114]  Baas, T., Gravenhorst, F., Fischer, R., Khawaja, A., & Dossel, O. (2010, September). Comparison of three t-wave delineation algorithms based on wavelet filterbank, correlation and pca. In Computing in Cardiology, 2010 (pp. 361-364). IEEE.
 
[115]  Tamil, E. B. M., Kamarudin, N. H., Salleh, R., & Tamil, A. M. (2008, January). A Review on Feature Extraction & Classification Techniques for Biosignal Processing (Part I: Electrocardiogram). In 4th Kuala Lumpur International Conference on Biomedical Engineering 2008 (pp. 107-112). Springer Berlin Heidelberg.
 
[116]  Jaswal, G., Parmar, R., & Kaul, A. (2012). QRS Detection Using Wavelet Transform. International Journal of Engineering and Advanced Technology (IJEAT), 1.
 
[117]  Ghaffari, A., Golbayani, H., & Ghasemi, M. (2008). A new mathematical based QRS detector using continuous wavelet transform. Computers & Electrical Engineering, 34(2), 81-91.
 
[118]  Reddy, G. U., Muralidhar, M., & Varadarajan, S. (2009). ECG De-Noising using improved thresholding based on Wavelet transforms. IJCSNS, 9(9), 221.
 
[119]  Chapron, B., & Bliven, L. (1989, July). Wavelet analysis introduction and application to radar scattering from water waves. In Geoscience and Remote Sensing Symposium, 1989. IGARSS'89. 12th Canadian Symposium on Remote Sensing., 1989 International (Vol. 3, pp. 1474-1477). IEEE.
 
[120]  Addison, P. S. (2005). Wavelet transforms and the ECG: a review. Physiological measurement, 26(5), R155.
 
[121]  Clifford, G. D., & Azuaje, F. (2006). Advanced methods and tools for ECG data analysis (pp. 55-57). London: Artech house.
 
[122]  Mallat, S. (1999). A wavelet tour of signal processing. Access Online via Elsevier.
 
[123]  Hongyan, X., & Minsong, H. (2008, May). A new QRS detection algorithm based on empirical mode decomposition. In Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on (pp. 693-696). IEEE.
 
[124]  Tang, J. T., Yang, X. L., Xu, J. C., Tang, Y., Zou, Q., & Zhang, X. K. (2008, October). The Algorithm of R peak detection in ECG based on empirical Mode Decomposition. In Natural Computation, 2008. ICNC'08. Fourth International Conference on (Vol. 5, pp. 624-627). IEEE.
 
[125]  Arafat, A., & Hasan, K. (2009, April). Automatic detection of ECG wave boundaries using empirical mode decomposition. In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on (pp. 461-464). IEEE.
 
[126]  Oweis, R. J., & Abdulhay, E. W. (2011). Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomedical engineering online, 10(1), 38.
 
[127]  Zhang, Q. (2010). Cuff-free blood pressure estimation using signal processing techniques (Doctoral dissertation, University of Saskatchewan).
 
[128]  Hadj Slimane, Z. E., & Naït-Ali, A. (2010). QRS complex detection using Empirical Mode Decomposition. Digital Signal Processing, 20(4), 1221-1228.
 
[129]  Kim, D. H., KIM, J., & Youn, C. H. (2009). Poincare Geometry-Characterized Arrhythmia Identification Scheme in Grid. International journal of engineering science and technology, 1(3).
 
[130]  Salahuddin, L., & Kim, D. (2006). Detection of acute stress by heart rate variability using a prototype mobile ECG sensor. Hybrid Information Technology, ICHIT, 6, 453-459.
 
[131]  Sovilj, S., Jeras, M., & Magjarevic, R. (2004, May). Real time P-wave detector based on wavelet analysis. In Electrotechnical Conference, 2004. MELECON 2004. Proceedings of the 12th IEEE Mediterranean (Vol. 1, pp. 403-406). IEEE.
 
[132]  Miranda, A. A., Le Borgne, Y. A., & Bontempi, G. (2008). New routes from minimal approximation error to principal components. Neural Processing Letters, 27(3), 197-207.
 
[133]  Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459.
 
[134]  Sörnmo, L., & Laguna, P. (2005). Bioelectrical signal processing in cardiac and neurological applications [electronic resource]. Academic Press.
 
[135]  Khawaja, A. (2006). Automatic ECG analysis using principal component analysis and wavelet transformation. Univ.-Verlag Karlsruhe.
 
[136]  Teodorescu, H. N., & Bonciu, C. (1996, August). Feedforward neural filter with learning in features space. Preliminary results. In Neuro-Fuzzy Systems, 1996. AT'96., International Symposium on (pp. 17-24). IEEE.
 
[137]  Costa, E. V., & Moraes, J. C. T. B. (2000). QRS feature discrimination capability: quantitative and qualitative analysis. In Computers in Cardiology 2000 (pp. 399-402). IEEE.
 
[138]  Stamkopoulos, T., Diamantaras, K., Maglaveras, N., & Strintzis, M. (1998). ECG analysis using nonlinear PCA neural networks for ischemia detection.Signal Processing, IEEE Transactions on, 46(11), 3058-3067.
 
[139]  Vargas, F., Lettnin, D., de Castro, M. C. F., & Macarthy, M. (2002). Electrocardiogram pattern recognition by means of MLP network and PCA: A case study on equal amount of input signal types. In Neural Networks, 2002. SBRN 2002. Proceedings. VII Brazilian Symposium on (pp. 200-205). IEEE.
 
[140]  Fatemian, S. Z., & Hatzinakos, D. (2009, July). A new ECG feature extractor for biometric recognition. In Digital Signal Processing, 2009 16th International Conference on (pp. 1-6). IEEE.
 
[141]  Martis, R. J., Chakraborty, C., & Ray, A. K. (2009). A two-stage mechanism for registration and classification of ECG using Gaussian mixture model. Pattern Recognition, 42(11), 2979-2988.
 
[142]  Upasani, D. E., & Kharadkar, R. D. Automated ECG Diagnosis. IOSR Journal of Engineering Vol.2(5), pp: 1265-1269, May. 2012.
 
[143]  Yeh, Y. C., Wang, W. J., & Chiou, C. W. (2009). Heartbeat case determination using fuzzy logic method on ECG signals. International Journal of Fuzzy Systems, 11(4), 250-261.
 
[144]  Qidwai, U., & Shakir, M. (2012). Filter Bank Approach to Critical Cardiac Abnormalities Detection using ECG data under Fuzzy Classification. in International Journal of Computer Information Systems & Industrial Management Applications (July 2012) ISSN, 2150-7988.
 
[145]  Hasnain, S. K. U., & Asim, S. M. (1999). Artificial Neural network in Cardiology-ECG Wave Analysis and Diagnosis Using Backpropogation Neural network.
 
[146]  Nocedal, J., & Wright, S. (2006). Numerical optimization, series in operations research and financial engineering. Springer, New York.
 
[147]  Jing-tian, T., Qing, Z., Yan, T., Bin, L., & Xiao-kai, Z. (2007, July). Hilbert-Huang transform for ECG de-noising. In Bioinformatics and Biomedical Engineering, 2007. ICBBE 2007. The 1st International Conference on (pp. 664-667). IEEE.
 
[148]  Levenberg, K. (1944). A method for the solution of certain problems in least squares. Quarterly of applied mathematics, 2, 164-168.
 
[149]  Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial & Applied Mathematics, 11(2), 431-441.
 
[150]  Jadhav, S. M., Nalbalwar, S. L., & Ghatol, A. A. (2011). Modular neural network based arrhythmia classification system using ECG signal data. International Journal of Information Technology and Knowledge Management, 4(1), 205-209.
 
[151]  George Qi Gao. Computerized detection and classification of five cardiac conditions. Thesis submitted in partial fulfillment of the degree of master of engineering, Auckland university of technology, New Zealand, May, 2003.
 
[152]  Gupta, K. O., & Chatur, D. P. (2012). ECG Signal Analysis and Classification using Data Mining and Artificial Neural Networks. Int. J. Emerg. Technol. Adv. Eng, 2, 56-60.
 
[153]  Golpayegani, G. N., & Jafari, A. H. (2009). A novel approach in ECG beat recognition using adaptive neural fuzzy filter. Journal of Biomedical Science and Engineering, 2(2), 80-85.
 
[154]  Bogdanova Vandergheynst, I., Vallejos, R., Javier, F., & Atienza Alonso, D. A Multi-Lead ECG Classification Based on Random Projection Features. 37th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2012), pp. 625-628 New York: IEEE Press.
 
[155]  Bailón, R., Laguna, P., Mainardi, L., & Sornmo, L. (2007, August). Analysis of heart rate variability using time-varying frequency bands based on respiratory frequency. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE (pp. 6674-6677). IEEE.
 
[156]  Seyd, P. A., Ahamed, V. T., Jacob, J., & Joseph, P. (2008). Time and frequency domain analysis of heart rate variability and their correlations in diabetes mellitus. International Journal of Biological and Life Sciences, 1.
 
[157]  Camm, A. J., Malik, M., Bigger, J. T., Breithardt, G., Cerutti, S., Cohen, R. J., & Singer, D. H. (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 93(5), 1043-1065.
 
[158]  Kleiger, R. E., Miller, J. P., Bigger Jr, J. T., & Moss, A. J. (1987). Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. The American journal of cardiology, 59(4), 256-262.
 
[159]  Kleiger, R. E., Stein, P. K., Bosner, M. S., & Rottman, J. N. (1992). Time domain measurements of heart rate variability. Cardiology clinics, 10(3), 487.
 
[160]  Nolan, J., Batin, P. D., Andrews, R., Lindsay, S. J., Brooksby, P., Mullen, M., & Fox, K. A. (1998). Prospective study of heart rate variability and mortality in chronic heart failure results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-Heart). Circulation, 98(15), 1510-1516.
 
[161]  Corrales, M. M., de la Cruz Torres, B., Esquivel, A. G., Salazar, M. A. G., & Orellana, J. N. (2012). Normal values of heart rate variability at rest in a young, healthy and active Mexican population. Health, 4(7), 377-385.
 
[162]  Uehara, A., Kurata, C., Sugi, T., Mikami, T., & Shouda, S. (1999). Diabetic cardiac autonomic dysfunction: parasympathetic versus sympathetic. Annals of nuclear medicine, 13(2), 95-100.
 
[163]  Cugini, P., Bernardini, F., Cammarota, C., Cipriani, D., Curione, M., De Laurentis, T., & Napoli, A. (2001). Is a Reduced Entropy in Heart Rate Variability an Early Finding of Silent Cardiac Neurovegetative Dysautonomia in Type 2 Diabetes Mellitus? Journal of Clinical and Basic Cardiology, 4(4), 289-294.
 
[164]  Jelinek, H., Flynn, A., & Warner, P. (2004). Automated assessment of cardiovascular disease associated with diabetes in rural and remote health care practice. In The national SARRAH conference (pp. 1-7).
 
[165]  Tian, L., & Tompkins, W. J. (1997, November). Time domain based algorithm for detection of ventricular fibrillation. In Engineering in Medicine and Biology society, 1997. Proceedings of the 19th Annual International Conference of the IEEE (Vol. 1, pp. 374-377). IEEE.
 
[166]  Najarian, K., & Splinter, R. (2012). Biomedical signal and image processing. CRC press.
 
[167]  Manikandan, M. S., & Soman, K. P. (2012). A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomedical Signal Processing and Control, 7(2), 118-128.
 
[168]  Farrell, T. G., Bashir, Y., Cripps, T., Malik, M., Poloniecki, J., Bennett, E. D., & Camm, A. J. (1991). Risk stratification for arrhythmic events in postinfarction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal-averaged electrocardiogram.Journal of the American College of Cardiology, 18(3), 687-697.
 
[169]  Malik, M., Farrell, T., Cripps, T., & Camm, A. J. (1989). Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques. European heart journal, 10(12), 1060-1074.
 
[170]  Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., & Kurths, J. (2002). Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Physical Review E, 66(2), 026702.
 
[171]  Majercak, I. (2002). The use of heart rate variability in cardiology. Bratislavske lekarske listy, 103(10), 368-377.
 
[172]  EK, F. S., & jakovljević, m. (2002). Heart rate variability-a shape analysis of Lorenz plots. cell. mol. biol. lett, 7(1), 160.
 
[173]  Sevšek, F., & Gomiščcek, G. (2004). Shape determination of attached fluctuating phospholipid vesicles. Computer methods and programs in biomedicine, 73(3), 189-194.
 
[174]  Woo, M. A., Stevenson, W. G., Moser, D. K., Trelease, R. B., & Harper, R. M. (1992). Patterns of beat-to-beat heart rate variability in advanced heart failure.American heart journal, 123(3), 704-710.
 
[175]  Kamen, P. W., Krum, H., & Tonkin, A. M. (1996). Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clinical science, 91(Pt 2), 201-208.
 
[176]  Tulppo, M. P., Makikallio, T. H., Takala, T. E., Seppanen, T. H. H. V., & Huikuri, H. V. (1996). Quantitative beat-to-beat analysis of heart rate dynamics during exercise. American Journal of Physiology-Heart and Circulatory Physiology, 271(1), H244-H252.
 
[177]  Bogaert, C., Beckers, F., Ramaekers, D., & Aubert, A. E. (2001). Analysis of heart rate variability with correlation dimension method in a normal population and in heart transplant patients. Autonomic Neuroscience, 90(1), 142-147.
 
[178]  Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., & Doyne Farmer, J. (1992). Testing for nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear Phenomena, 58(1), 77-94.
 
[179]  Small, M., Yu, D., & Harrison, R. G. (2001). Surrogate test for pseudoperiodic time series data. Physical Review Letters, 87(18), 188101.
 
[180]  Cohen, M. E., Hudson, D. L., & Deedwania, P. C. (1996). Applying continuous chaotic modeling to cardiac signal analysis. Engineering in Medicine and Biology Magazine, IEEE, 15(5), 97-102.
 
[181]  Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena, 9(1), 189-208.
 
[182]  Judd, K. (1992). An improved estimator of dimension and some comments on providing confidence intervals. Physica D: Nonlinear Phenomena, 56(2), 216-228.
 
[183]  Rosenstein, M. T., Collins, J. J., & De Luca, C. J. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena, 65(1), 117-134.
 
[184]  Uzun, I. S., Asyali, M. H., Celebi, G., & Pehlivan, M. (2001). Nonlinear analysis of heart rate variability. In Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE (Vol. 2, pp. 1581-1584). IEEE.
 
[185]  Sun, Y., Chan, K. L., & Krishnan, S. M. (2000). Arrhythmia detection and recognition in ECG signals using nonlinear techniques. Ann. Biomed. Eng, 28, 32-37.
 
[186]  Eckmann, J. P., & World Scientific Series on Nonlinear Science Series A, 16, 365-404.
 
[187]  Gomes, M. E. D., Souza, A. V. P., Guimaraes, H. N., & Aguirre, L. A. (2000). Investigation of determinism in heart rate variability. Chaos: An Interdisciplinary Journal of Nonlinear Science, 10(2), 398-410.
 
[188]  Grassberger, P., & Procaccia, I. (1983). Characterization of strange attractors.Physical review letters, 50(5), 346-349.
 
[189]  Mandelbrot, B. B. (1983). The fractal geometry of nature/Revised and enlarged edition. New York, WH Freeman and Co., 1983, 495 p., 1.
 
[190]  Backes, A. R., & Bruno, O. M. (2008). Fractal and Multi-Scale Fractal Dimension analysis: a comparative study of Bouligand-Minkowski method.image, 11, 8.
 
[191]  Karim, N., Hasan, J. A., & Ali, S. S. (2011). Heart rate variability–a review. J. Basic Appl. Sci, 7, 71-77.
 
[192]  Schroeder, M. R. (2012). Fractals, chaos, power laws: Minutes from an infinite paradise. Courier Dover Publications.
 
[193]  C Tricot, C. (1995). Curves and fractal dimension. Springer.
 
[194]  Costa, L. D. F. D., & Cesar Jr, R. M. (2000). Shape analysis and classification: theory and practice. CRC Press, Inc..
 
[195]  Higuchi, T. (1988). Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenomena, 31(2), 277-283.
 
[196]  Katz, M. J. (1988). Fractals and the analysis of waveforms. Computers in biology and medicine, 18(3), 145-156.
 
[197]  Kraft, R. (1995). Fractals and dimensions. Munich University of Technology.
 
[198]  Krstacic, G., Krstacic, A., Martinis, M., Vargovic, E., Knezevic, A., Smalcelj, A., & Smuc, T. (2002, September). Non-linear analysis of heart rate variability in patients with coronary heart disease. In Computers in Cardiology, 2002 (pp. 673-675). IEEE.
 
[199]  Acharya, R., Kannathal, N., & Krishnan, S. M. (2004). Comprehensive analysis of cardiac health using heart rate signals. Physiological measurement, 25(5), 1139.
 
[200]  Acharya, U. R., Kannathal, N., Sing, O. W., Ping, L. Y., & Chua, T. (2004). Heart rate analysis in normal subjects of various age groups. Biomed Eng Online, 3(1), 24.
 
[201]  Pincus, S. M., & Viscarello, R. R. (1992). Approximate entropy: a regularity measure for fetal heart rate analysis. Obstetrics & Gynecology, 79(2), 249-255.
 
[202]  Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297-2301.
 
[203]  Goldberger, A. L., Mietus, J. E., Rigney, D. R., Wood, M. L., & Fortney, S. M. (1994). Effects of head-down bed rest on complex heart rate variability: response to LBNP testing. Journal of Applied Physiology, 77(6), 2863-2869.
 
[204]  Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049.
 
[205]  Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049.
 
[206]  Huikuri, H. V., Mäkikallio, T. H., Peng, C. K., Goldberger, A. L., Hintze, U., & Møller, M. (2000). Fractal correlation properties of RR interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation, 101(1), 47-53.
 
[207]  Peng, C. K., Havlin, S., Hausdorff, J. M., Mietus, J. E., Stanley, H. E., & Goldberger, A. L. (1995). Fractal mechanisms and heart rate dynamics: long-range correlations and their breakdown with disease. Journal of electrocardiology, 28, 59-65.
 
[208]  Mäkikallio, T. H., Høiber, S., Køber, L., Torp-Pedersen, C., Peng, C. K., Goldberger, A. L., & Huikuri, H. V. (1999). Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. The American journal of cardiology,83(6), 836-839.
 
[209]  Eckmann, J. P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence plots of dynamical systems. Europhys. Lett, 4(9), 973-977.
 
[210]  Chua, K. C., Chandran, V., Acharya, U. R., & Lim, C. M. (2008). Computer-based analysis of cardiac state using entropies, recurrence plots and Poincare geometry. Journal of medical engineering & technology, 32(4), 263-272.
 
[211]  Kobayashi, M., & Musha, T. (1982). 1/f fluctuation of heartbeat period.Biomedical Engineering, IEEE Transactions on, (6), 456-457.
 
[212]  Saul, J. P., Albrecht, P., Berger, R. D., & Cohen, R. J. (1987). Analysis of long term heart rate variability: methods, 1/f scaling and implications. Computers in cardiology, 14, 419-422.
 
[213]  Lombardi, F. (2000). Chaos theory, heart rate variability, and arrhythmic mortality. Circulation, 101(1), 8-10.
 
[214]  Bigger, J. T., Steinman, R. C., Rolnitzky, L. M., Fleiss, J. L., Albrecht, P., & Cohen, R. J. (1996). Power law behavior of RR-interval variability in healthy middle-aged persons, patients with recent acute myocardial infarction, and patients with heart transplants. Circulation, 93(12), 2142-2151.
 
Show Less References

Article

Technical Fabric as Health Care Material

1Department of Textile Engineering, KIOT, Wollo University, Ethiopia

2Department of Chemical Engineering, KIOT Wollo University, Ethiopia


Biomedical Science and Engineering. 2014, 2(2), 35-39
DOI: 10.12691/bse-2-2-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Alhayat Getu, Omprakash Sahu. Technical Fabric as Health Care Material. Biomedical Science and Engineering. 2014; 2(2):35-39. doi: 10.12691/bse-2-2-1.

Correspondence to: Omprakash  Sahu, Department of Chemical Engineering, KIOT Wollo University, Ethiopia. Email: ops0121@gmail.com

Abstract

The objective of the study is to expose the achievements of advance application of textile material. Previously textiles are only used as normally wound care products, diapers, braces, prostheses and outhouses, wipes, breathing masks, bedding and covers, ropes and belts etc but the technology has been upgraded. Textile materials and products that have been engineered to meet particular needs are suitable for many applications as well as medical and surgical application in which a combination of strength, flexibility, and sometimes moisture- and air-permeability is required. Materials used include monofilament and multifilament yarns, woven, knitted, and nonwoven fabrics, and composite structures. The applications are many and diverse, ranging from a single-thread suture to the complex composite structures used for bone replacement, and from the simple cleaning wipe to the advanced barrier fabrics used in operating rooms. Although textile materials have been widely adopted in medical and surgical applications for many years, new uses are still being found. Research utilising new and existing fibres and fabric-forming techniques has led to the advancement of medical and surgical textiles. At the forefront of these developments is absorbency, tenacity, flexibility, softness, or biodegradability.

Keywords

References

[1]  D. Höfer, M. Swerev, ‘The Future of Medical Textiles: High-tech For the Well-being of the Patient’, Journal of Textiles and Apparel, Technology and Management, 2003.
 
[2]  Global Harmonisations Task Force (GHTF)’, AHWP Technical Committee Meeting and Workshop, Malaysia, 2001.
 
[3]  GHTF Summary Technical Documenta¬tion, Asia Harmonization Working Party Technical Committee, Bangkok, 2002.
 
[4]  ‘Risk-based Classification of Medical Devices in the European Union (GHTF): Point of View from a Notified Body’, 3rd AHWP Technical Committee Meeting, Taipei, Chinese Taipei (Taiwan), 2004.
 
[5]  S. Anand, ‘Medical Textiles’, Woodhead Publishing Ltd, Abington, 2001.
 
Show More References
[6]  Opportunities for healthcare and medical textiles growth, Technical Textiles Inter¬national, 2003.
 
[7]  ‘Technical Textiles and Industrial Nonwo¬vens: World Market Forecast to 2001’, article taken from DRA Service http://www.davidrigbyassociates.com
 
[8]  A. Fischer, G. Fischer, ’Composite ma¬terials in healthcare and wound mana¬gement’ Technical Textiles International, Vol. 12, 2003.
 
[9]  S. Rajendran and S.C. Anand, ‘Development in Medical Textiles’, Textile Progress, 2002, pp. 10-13.
 
[10]  A.J. Rigby, S.C. Anand, and A.R. Horrocks Textile Materials for Medical and Healthcare Applications, Journal of Text. Inst., 1997. 88.
 
[11]  B.K. Kandola and A.R. Horrocks, ‘Complex char formation in flame-retarded fibre-intumescent combinations- II. Thermal analytical studies’, Polymer Degradation and Stability, 54, 289-303, 1996.
 
[12]  www.uahealth.com/library/sections/article/abdominal-aortic-aneurysm
 
[13]  http://textually.org/3DPrinting/cat_printable_organs.html
 
[14]  http://www.newscientist.com/blog/invention/labels/health.html
 
[15]  D.S. Varma, ‘High performance organic fibres for industrial applications’, Man-made Textiles in India, 380-386, August, 1986.
 
[16]  A.R. Horrocks and J.A. D’souza, ‘Degradation of polymers in geomembranes and geotextiles’, Handbook of Polymer Degradation, S H Hamid, M B Amin and A G Maadhah (eds), Marcel Dekker, New York, 1992, 433-501.
 
[17]  A.S. Hoffman, ‘Medical applications of polymeric fibres’, Appl Polym Symp 31, 313-334 J. Wiley and Sons, New York, 1977.
 
Show Less References

Article

Monte Carlo Based Algorithms Are More Accurate for Dose Calculations in Radiotherapy

1Suncheon, Jeollanam-do, South Korea


Biomedical Science and Engineering. 2014, 2(2), 40-41
DOI: 10.12691/bse-2-2-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Jung-ho Park, Chunho Kung. Monte Carlo Based Algorithms Are More Accurate for Dose Calculations in Radiotherapy. Biomedical Science and Engineering. 2014; 2(2):40-41. doi: 10.12691/bse-2-2-2.

Correspondence to: Jung-ho  Park, Suncheon, Jeollanam-do, South Korea. Email: jho.park11@yahoo.com

Abstract

Monte Carlo (MC) is considered as gold standard for dose calculations in radiotherapy. MC dose calculations often require sophisticated computing services with long processing time and this has been an issue for the busy cancer centers. Hence, majority of the treatment planning system include faster dose calculation engines for the daily clinical routine. Due to advancement in technology and computing power, it is now possible to implement MC based dose calculation algorithms in the clinical environment. This report summarizes the major findings of various researchers who have investigated Acuros XB algorithm, which is the MC based dose calculation algorithm commercially available for dose calculations in radiotherapy.

Keywords

References

[1]  Lu L. Dose calculation algorithms in external beam photon radiation therapy. Int J Cancer Ther Oncol 2013; 1 (2): 01025.
 
[2]  Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W. Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations. Med Phys 2011; 38: 2208-2221.
 
[3]  Han T, Followill D, Mikell J, Repchak R, Molineu A, Howell R, Salehpour M, Mourtada F. Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer. Med Phys. 2013; 40 (5): 051710.
 
[4]  Kan MW, Leung LH, So RW, Yu PK. Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma. Med Phys. 2013 Mar; 40 (3): 031714.
 
[5]  Stathakis S, Esquivel C, Quino L, Myers P, Calvo O, Mavroidis P, Gutiérrez A and Papanikolaou P. Accuracy of the Small Field Dosimetry Using the Acuros XB Dose Calculation Algorithm within and beyond Heterogeneous Media for 6 MV Photon Beams. Int Jour of Med Phys Clin Eng Radiat Onc 2012; 1 (3): 78-87.
 
Show More References
[6]  Rana S, Rogers K, Pokharel S, Cheng C. Evaluation of Acuros XB algorithm based on RTOG 0813 dosimetric criteria for SBRT lung treatment with RapidArc. J Appl Clin Med Phys 2014; 15:4474.
 
[7]  Ojala JJ, Kapanen MK, Hyödynmaa SJ, Wigren TK, Pitkänen MA. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions. J Appl Clin Med Phys. 2014; 15 (2): 4662.
 
[8]  Kroon PS, Hol S, Essers M. Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans. Radiat Oncol. 2013; 8 (1): 149.
 
[9]  Kathirvel M, Subramanian S, Clivio A, et al. Critical appraisal of the accuracy of Acuros-XB and Anisotropic Analytical Algorithm compared to measurement and calculations with the compass system in the delivery of Rapid Arc clinical plans. Radiat Oncol 2013; 8: 140.
 
[10]  Liu HW, Nugent Z, Clayton R, Dunscombe P, Lau H, Khan R. Clinical impact of using the deterministic patient dose calculation algorithm Acuros XB for lung stereotactic body radiation therapy. Acta Oncol. 2013 Aug 19. [Epub ahead of print]
 
[11]  Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments. Int J Radiat Oncol Biol Phys. 2012; 83 (5): 1587-95.
 
[12]  Rana S. Clinical dosimetric impact of Acuros XB and analytical anisotropic algorithm (AAA) on real lung cancer treatment plans: review. Int J Cancer Ther Oncol 2014; 2 (1): 02019.
 
[13]  Chetty IJ, Curran B, Cygler JE, et al. Report of the AAPM Task Group 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007; 34 (12): 4818-53.
 
[14]  Mavroidis P. Clinical implementation of radiobiological measures in treatment planning. Why has it taken so long? Int J Cancer Ther Oncol 2013; 1: 01019.
 
[15]  Oyewale S. Dose prediction accuracy of collapsed cone convolution superposition algorithm in a multi-layer inhomogenous phantom. Int J Cancer Ther Oncol 2013; 1 (1): 01016.
 
[16]  Chaikh A, Giraud J, Balosso J. A method to quantify and assess the dosimetric and clinical impact resulting from the heterogeneity correction in radiotherapy for lung cancer. Int J Cancer Ther Oncol 2014; 2 (1): 020110.
 
[17]  Pokharel S. Dosimetric impact of mixed-energy volumetric modulated arc therapy plans for high-risk prostate cancer. Int J Cancer Ther Oncol 2013; 1 (1): 01011.
 
[18]  Hawke S, Torrance A, Tremethick L. Evaluation of planned dosimetry when beam energies are substituted for a fraction of the treatment course. Int J Cancer Ther Oncol 2013; 1 (2): 01024.
 
Show Less References

Article

The Promising Future in Medicine: Nanorobots

1Department of Biotechnology, Sapthagiri College of Engineering, Bangalore, India


Biomedical Science and Engineering. 2014, 2(2), 42-47
DOI: 10.12691/bse-2-2-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
Apoorva Manjunath, Vijay Kishore. The Promising Future in Medicine: Nanorobots. Biomedical Science and Engineering. 2014; 2(2):42-47. doi: 10.12691/bse-2-2-3.

Correspondence to: Vijay  Kishore, Department of Biotechnology, Sapthagiri College of Engineering, Bangalore, India. Email: vijaykishore@sapthagiri.edu.in

Abstract

Nanorobotics is an emerging field of nanotechnology which deals with design and construction of devices at an atomic, molecular or cellular level. These hypothetical nanorobots will be extremely small and would transverse inside the human blood. As these nanorobots would have special sensors to detect the target molecules, it can be programmed to diagnosis and treat various vital diseases. The nanorobots such as respirocytes, microbivores and clottocytes are been designed to act as artificial substitutes of blood. The respirocytes are intend designed to mimic all the important functions of red blood cells and also used in treatment of anaemia, heart attack, lung diseases etc where as the clottocyte mimics the natural process of hemostasis and microbivore follows the process of phagocytosis to destroy the blood borne pathogens. This paper will look at how the recent advancements in nanorobotics that have led to the designing and development of these nanorobots which will act as the most efficient blood substitutes.

Keywords

References

[1]  NSTC, "National Nanotechnology Initiative: Leading to the Next Industrial Revolution" A Report by the Interagency Working Group on Nanoscience", Engineering and Technology Committee on Technology, National Science and Technology Council, Washington, D.C, 2000.
 
[2]  Ummat, A., Dubey, A., and C. Mavroidis, “Bio-Nanorobotics — A Field Inspired by Nature” in Yoseph Bar-Cohen, Biomimetics: Biologically Inspired Technologies, CRC Press, 201-226, 2005.
 
[3]  Uriarte, S. L., “Nanorobots [online] Technical report Escuela Superior De Ingenieros De Bilbao, Bilboko Ingeniarien Goi Eskola, Universidad Del País Vasco / Euskal Herriko Unibersitatea. 2011, http://nano-bio.ehu.es/files/nanorobots_work.pdf
 
[4]  Drexler, E. K., “Engines of Creation 2.0: The Coming Era of Nanotechnology”, 20th anniversary ed., Oxford University Press, Oxford, 2006.
 
[5]  Robert, A. F. J., “Exploratory design in medical nanotechnology: A mechanical artificial red cell.” Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 26: 411-430, 1998.
 
Show More References
[6]  Robert, A. F. J., “Microbivores: Artificial Mechanical Phagocytes using Digest and Discharge Protocol”, Journal of Evolution and Technology, 14: 1-52, 2005.
 
[7]  Robert, A. F. J., “Clottocytes: Artificial Mechanical Platelets [online] IMM Report Number 18: Nanomedicine, 2011, http://www.imm.org/publications/reports/rep018/
 
[8]  Boonrong, P., and B., Kaewkamnerdpong, “Canonical PSO based Nanorobot Control for Blood Vessel Repair”, World Academy of Science, Engineering and Technology, 5: 428-433, 2011.
 
[9]  Abeer, S., “Future Medicine: Nanomedicine”, Journal of International Medical Science Academy, 25 (3): 187-192, 2012.
 
[10]  Robert, A. F. J., Nanomedicine, Volume I: Basic Capabilities, Landes Bioscience, Georgetown, TX, 1999.
 
[11]  Robert, A. F. J., Nanomedicine, Volume IIA: Biocompatibility, Landes Bioscience, Georgetown, TX, 2003.
 
[12]  Robert, A. F. J., “The Ideal Gene Delivery Vector: Chromallocytes, Cell Repair Nanorobots for Chromosome Replacement Therapy”, Journal of Evolution and Technology, 16 (1): 1-97, 2007.
 
[13]  Kharwade, M., M., Nijhawan, and S., Modani, “Nanorobots: A Future Medical Device in Diagnosis and Treatment”, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4 (2): 1299-1307, 2013.
 
[14]  Sujatha, V., M., Suresh, and Mahalaxmi, “Nanorobotics - a futuristic approach”, Indian journal of Dentistry, 1(1):86-90, 2010.
 
[15]  Mishra, J., A. K., Dash, and R., Kumar, “Nanotechnology Challenges: Nanomedicine: Nanorobots”, Journal of Pharmaceuticals, 2 (4): 112-119, 2012.
 
[16]  Venkatesan, M., and B., Jolad, “Nanorobots in cancer treatment” Emerging Trends in Robotics and Communication Technologies (INTERACT), International Conference, IEEE, 258-264, 2010.
 
[17]  Merina, R. M., “Use of nanorobots in heart transplantation”, Emerging Trends in Robotics and Communication Technologies (INTERACT), International Conference, IEEE, 265-268, 2010.
 
[18]  Sharma, N. N, and R. K., Mittal, “Nanorobot movement: challenges and biologically inspired solutions” International journal on smart sensing and intelligent systems, 1 (1): 88-109, 2008.
 
[19]  Robert, A. F. J., “Current Status of Nanomedicine and Medical Nanorobotics”, Journal of Computational and Theoretical Nanoscience 2: 1-25, 2005.
 
[20]  Robert, A. F. J., “Medical Nanorobotics: The Long-Term Goal for Nanomedicine”. in Mark J. Schulz, Vesselin N. Shanov, eds., Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices, Artech House, Norwood MA, 367-392, 2009.
 
[21]  Jaiswal, A., H., Thakar, B., Atanukumar, T., Krunali, and D. B., Meshram, “Nanotechnology revolution: respirocytes and its application in life sciences” Innovare journal of life sciences, 1 (1): 8-13, 2013.
 
[22]  Wilner, M.E., Bio-Inspired and Nanoscale Integrated Computing. John Wiley & Sons, Inc., 2009.
 
[23]  Kannan T. T. M., A. Hussain Lal, M. Ganesan, and R. Baskaran, “Study and Overview About Molecular Manufacturing System” International Journal of Mechanical Engineering and Robotics Research 2 (1): 193-201, 2013.
 
[24]  Bhat A.S., “Nanobots: The Future of Medicine” International Journal of Management and Engineering Sciences, 5 (1): 44-49, 2014.
 
[25]  Abhilash M., “Nanorobots”, International Journal of Pharma and Bio Sciences, 1 (1): 1-10, 2010.
 
[26]  Nandkishor K., P. Swapnil, K. Rajeshwar, W.Anita, and B. Anil, “Review on Application of Nanorobots in Health Care” World Journal Of Pharmacy And Pharmaceutical Sciences 3 (5): 472-480, 2014.
 
Show Less References

Article

Relation between Planck Length and Origin of Consciousness in Life Sciences-A Mathematical Proof

1Independent Researcher, Bheemunipatnam, India


Biomedical Science and Engineering. 2014, 2(3), 48-52
DOI: 10.12691/bse-2-3-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Siva Prasad Kodukula. Relation between Planck Length and Origin of Consciousness in Life Sciences-A Mathematical Proof. Biomedical Science and Engineering. 2014; 2(3):48-52. doi: 10.12691/bse-2-3-1.

Correspondence to: Siva  Prasad Kodukula, Independent Researcher, Bheemunipatnam, India. Email: sivkod@gmail.com

Abstract

A novel attempt has been made to define the difference between living and non living things in terms of physics. This is the relation between the bio energy in the form of consciousness associated to any living thing and Planck length of quantum physics. Consciousness, a parameter which differentiates living and non living thing has been explained by physics with the use of ‘Siva’s equation of consciousnes’. ‘Planck length’ of Quantum physics has been derived by substituting the value of ‘d’ mass of ‘K-Suryon’ in ‘Siva’s equation of consciousness’. The final result is a substantial mathematical proof says that the consciousness wave originates from a point in our four dimensional space time continuum whose diameter is 1.6 times higher than ‘Planck length’ of physics. This consciousness wave obeys all the definitions of electromagnetic wave without collapsing in to Planck hole. This will be useful in making substantial theories of consciousness and ‘Neuro Quantology’.

Keywords

References

[1]  Kodukula, S.P. Double Relativity Effect & Film Theory of the Universe. ISBN9780557077120). Raleigh, NorthCorolina: Lulu.com, 2009, 13-32, 50.
 
[2]  Kodukula S.P, Heart of the God with Grand proof Equation - A classical approach to quantum theory (ISBN9780557089956). Raleigh, NorthCorolina: Lulu.com, 2009,3-9.
 
[3]  Kodukula S P, “Space Time Equivalence -A New Concept”. International journal of Scientific Research and Publications, 2(10).Oct.2012.Weblink: http://www.ijsrp.org/researchpaper1012.php?rp=P10232.
 
[4]  Kodukula S P, “Siva's Theory of Quantum Gravity”. American Journal of Modern Physics, 3(1). 16-19. Jan. 2014.
 
[5]  Kodukula, S.P, “New Discovery about Prediction of a Particle ‘K-Suryon’ as Basic Building Block of Mass”. International Journal of physics, 2(1). 12-14. Jan. 2014.
 
Show More References
[6]  C.King, “Cosmological Foundations of Consciousness”. Journal of Cosmology, (volume14). 3706-3725, 2011.
 
[7]  Kodukula,S.P, “Equation for Consciousness in terms of Physics”, International Journal of Advancements in Research & Technology’, 1(6). Nov.212.
 
[8]  Kodukula,S.P, “Siva’s Classical Equation for Space Time and Matter”, International Journal of Advancements in Research & Technology, 2(8). Aug. 2013.
 
[9]  Malik, M. & Hipolito, M., “Time and its Relationship to Consciousness”, Journal of Consciousness Exploration & Research, 1(5). 578. 2010.
 
[10]  Oktar, C.H, “On Quantum Consciousness Mechanics”, Journal of Consciousness Exploration & Research, 3(9).1052-1063.2012.
 
[11]  Max Tegmark, “The Importance of Quantum Decoherence in Brain Processes, Phys Rev E 1999. Available: Xiv:quant-ph/9907009v2 10 Nov 1999 [ Accessed on July16,2014]
 
[12]  S. Hameroff., “Consciousness, the Brain, and Space-time Geometry”, ‘Annals of Newyork Academy of Sciences’ 1996, www.quantumconsciousness.org/penrose-hameroff/cajal.pdf [ Accessed on July16,2014]
 
[13]  Wikipedia website; en.wikipedia.org/wiki/Planck_constant.
 
Show Less References

Article

Review Article: Non-Invasive Fetal Heart Rate Monitoring Techniques

1Biomedical Engineering Department, Faculty of Engineering, Jordan University of Science and Technology, Irbid, Jordan


Biomedical Science and Engineering. 2014, 2(3), 53-67
DOI: 10.12691/bse-2-3-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Enas W. Abdulhay, Rami J. Oweis, Asal M. Alhaddad, Fadi N. Sublaban, Mahmoud A. Radwan, Hiyam M. Almasaeed. Review Article: Non-Invasive Fetal Heart Rate Monitoring Techniques. Biomedical Science and Engineering. 2014; 2(3):53-67. doi: 10.12691/bse-2-3-2.

Correspondence to: Rami  J. Oweis, Biomedical Engineering Department, Faculty of Engineering, Jordan University of Science and Technology, Irbid, Jordan. Email: oweis@just.edu.jo

Abstract

Fetal heart rate monitoring is a process carried out during pregnancy and/or labor to keep track of the fetal heart rate and in some devices the uterine contractions. A variety of techniques has been studied and is used on a daily basis in many hospitals. This review discusses and compares the operating principle, the key signal processing techniques, advantages and drawbacks of five of those techniques: fetal electrocardiography (FECG) using abdominal surface electrodes, photoplethysmography (PPG) using near infrared (NIR) light, Doppler ultrasound, ultrasound based cardiotocography (CTG) known as electronic fetal monitoring and fetal magnetocardiography (FMCG). The review leads to the conclusion that the PPG overcomes almost all of the drawbacks of the other methods and thus deserves the most attention in future biomedical research.

Keywords

References

[1]  Ungureanu, G. M., Gussi, I., Wolf, W., Taralunga, D., Pasca, S., & Strungaru, R. (2011). Prenatal Telemedicine-Advances in Fetal Monitoring. Advances in Telemedicine: Applications in Various Medical Disciplines and Geographical Regions, 97-120.
 
[2]  Hasan, M. A., Reaz, M. B. I., Ibrahimy, M. I., Hussain, M. S., & Uddin, J. (2009). Detection and processing techniques of FECG signal for fetal monitoring. Biological procedures online, 11 (1), 263-295.
 
[3]  Chez, B. F., & Baird, S. M. (2011). Electronic Fetal Heart Rate Monitoring: Where Are We Now?. The Journal of Perinatal & Neonatal Nursing, 25 (2), 180-192. [10] Pildner von Steinburg, S., Boulesteix, A., Lederer, C., Grunow, S., Schiermeier, S., Hatzmann, W., .. & Daumer, M. (2012). What is the “normal” fetal heart rate? PeerJ, 1.
 
[4]  Neilson, J. P. (2006). Fetal electrocardiogram (ECG) for fetal monitoring during labour. Cochrane Database Syst Rev, 3.
 
[5]  Freeman, R. K., Garite, T. J., Nageotte, M. P., & Miller, L. A. (2012). Fetal heart rate monitoring. Lippincott Williams & Wilkins.
 
Show More References
[6]  Peters, C. H., ten Broeke, E. D., Andriessen, P., Vermeulen, B., Berendsen, R. C., Wijn, P. F., & Oei, S. G. (2004). Beat-to-beat detection of fetal heart rate: Doppler ultrasound cardiotocography compared to direct ECG cardiotocography in time and frequency domain. Physiological measurement, 25 (2), 585.
 
[7]  Vullings, R., Peters, C., Mischi, M., Oei, G., & Bergmans, J. (2006, August). Maternal ECG removal from non-invasive fetal ECG recordings. In Engineering in Medicine and Biology Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE (pp. 1394-1397). IEEE.
 
[8]  Hon, E. H. (1960). Apparatus for continuous monitoring of the fetal heart rate. The Yale Journal of Biology and Medicine, 32 (5), 397.
 
[9]  Feinstein, N., Torgersen, K. L., & Atterbury, J. (1993). Fetal Heart Monitoring: Principles and Practices. Kendall Hunt.
 
[10]  Jezewski, J., Roj, D., Wrobel, J., & Horoba, K. (2011). A novel technique for fetal heart rate estimation from Doppler ultrasound signal. Biomedical engineering online, 10 (1), 1-17.
 
[11]  Black, R. S., & Campbell, S. (1997). Cardiotocography versus Doppler. Ultrasound in Obstetrics & Gynecology, 9 (3), 148-151.
 
[12]  Peters, M., Crowe, J., Piéri, J. F., Quartero, H., Hayes-Gill, B., James, D. & Shakespeare, S. (2001). Monitoring the fetal heart non-invasively: a review of methods. Journal of perinatal medicine, 29 (5), 408-416.
 
[13]  Strasburger, J. F., Cheulkar, B., & Wakai, R. T. (2008). Magnetocardiography for fetal arrhythmias. Heart rhythm: the official journal of the Heart Rhythm Society, 5 (7), 1073.
 
[14]  Sameni, R., & Clifford, G. D. (2010). A review of fetal ECG signal processing; issues and promising directions. The open pacing, electrophysiology & therapy journal, 3, 4.
 
[15]  Pildner von Steinburg, S., Boulesteix, A., Lederer, C., Grunow, S., Schiermeier, S., Hatzmann, W. & Daumer, M. (2012). What is the “normal” fetal heart rate?. PeerJ, 1.
 
[16]  Adam, J. (2012). The Future of Fetal Monitoring. Reviews in Obstetrics and Gynecology, 5 (3-4), e132.
 
[17]  Clifford, G., Sameni, R., Ward, J., Robinson, J., & Wolfberg, A. J. (2011). Clinically accurate fetal ECG parameters acquired from maternal abdominal sensors. American journal of obstetrics and gynecology, 205 (1), 47-e1.
 
[18]  Graatsma, E. M., Jacod, B. C., Van Egmond, L. A. J., Mulder, E. J. H., & Visser, G. H. A. (2009). Fetal electrocardiography: feasibility of long‐term fetal heart rate recordings. BJOG: An International Journal of Obstetrics & Gynaecology, 116 (2), 334-338.
 
[19]  Graatsma, E. M. (2010). Monitoring of fetal heart rate and uterine activity.
 
[20]  Algunaidi, M. S. M., Ali, M. M., Gan, K. B., & Zahedi, E. (2009). Fetal heart rate monitoring based on adaptive noise cancellation and maternal QRS removal window. European Journal of Scientific Research, ISSN, 565-575.
 
[21]  Goell, P., Rai, S., Chandra, M., & Gupta, V. K. (2013). Analysis of LMS Algorithm in Wavelet Domain.
 
[22]  Unser, M., & Aldroubi, A. (1996). A review of wavelets in biomedical applications. Proceedings of the IEEE, 84 (4), 626-638.
 
[23]  Karvounis, E. C., Papaloukas, C., Fotiadis, D. I., & Michalis, L. K. (2004, September). Fetal heart rate extraction from composite maternal ECG using complex continuous wavelet transform. In Computers in Cardiology, 2004 (pp. 737-740). IEEE.
 
[24]  Ghodsi, M., Hassani, H., & Sanei, S. (2010). Extracting fetal heart signal from noisy maternal ECG by singular spectrum analysis. Journal of Statistics and its Interface, Special Issue on the Application of SSA, 3 (3), 399-411.
 
[25]  Zhongliang, L. U. O. (2012). Fetal Electrocardiogram Extraction using Blind Source Separation and Empirical Mode Decomposition⋆. Journal of Computational Information Systems, 8 (12), 4825-4833.
 
[26]  Taylor, M. J., Smith, M. J., Thomas, M., Green, A. R., Cheng, F., Oseku‐Afful, S.,. .. & Gardiner, H. M. (2003). Non‐invasive fetal electrocardiography in singleton and multiple pregnancies. BJOG: An International Journal of Obstetrics & Gynaecology, 110 (7), 668-678.
 
[27]  Zheng, W., Liu, H., He, A., Ning, X., & Cheng, J. (2010). Single-lead fetal electrocardiogram estimation by means of combining R-peak detection, resampling and comb filter. Medical engineering & physics, 32 (7), 708-719.
 
[28]  Sun, Y., Hu, S., Azorin-Peris, V., Greenwald, S., Chambers, J., & Zhu, Y. (2011). Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise. Journal of Biomedical Optics, 16 (7), 077010-077010.
 
[29]  Sree, T. H., Garimella, M., Bandari, A., & Patel, I. Microcontroller Based Fetal Heart Rate Monitoring using Intelligent Biosystem.
 
[30]  Nitzan, M., Khanokh, B., & Slovik, Y. (2002). The difference in pulse transit time to the toe and finger measured by photoplethysmography. Physiological measurement, 23 (1), 85.
 
[31]  Gan, K. B., Zahedi, E., & Ali, M. M. (2011). Investigation of optical detection strategies for transabdominal fetal heart rate detection using three-layered tissue model and Monte Carlo simulation. Optica Applicata, 41 (4), 885-896.
 
[32]  Gan, K. B., Zahedi, E., & Ali, M. A. M. (2009). Transabdominal fetal heart rate detection using NIR photopleythysmography: instrumentation and clinical results. Biomedical Engineering, IEEE Transactions on, 56 (8), 2075-2082.
 
[33]  Gan, K. B., Zahedi, E., & Ali, M. A. M. (2011). Application of Adaptive Noise Cancellation in Transabdominal Fetal Heart Rate Detection Using Photoplethysmography.
 
[34]  Apolinário Jr, J. A., & Netto, S. L. (2009). Introduction to Adaptive Filters. InQRD-RLS Adaptive Filtering (pp. 1-27). Springer US.
 
[35]  Gan, K. B., Zahedi, E., & Ali, M. M. (2007, January). Feasibility of Fetal Photoplethysmography Signal Extraction using Adaptive Noise Cancelling. In3rd Kuala Lumpur International Conference on Biomedical Engineering 2006 (pp. 387-390). Springer Berlin Heidelberg.
 
[36]  Zourabian, A., Siegel, A., Chance, B., Ramanujam, N., Rode, M., & Boas, D. A. (2000). Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry. Journal of biomedical optics, 5 (4), 391-405.
 
[37]  Ramanujam, N., Vishnoi, G., Hielscher, A. H., Rode, M., Forouzan, I., & Chance, B. (2000). Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies. Journal of Biomedical Optics, 5 (2), 173-184.
 
[38]  Gan, K. B., Ali, M. M., & Zahedi, E. (2008, January). Two Channel Abdominal PPG Instrumentation. In 4th Kuala Lumpur International Conference on Biomedical Engineering 2008 (pp. 691-693). Springer Berlin Heidelberg.
 
[39]  Jumadi, N. A., Gan, K. B., Ali, M. M., & Zahedi, E. (2011, January). Determination of reflectance optical sensor array configuration using 3-layer tissue model and monte carlo simulation. In 5th Kuala Lumpur International Conference on Biomedical Engineering 2011 (pp. 424-427). Springer Berlin Heidelberg.
 
[40]  Oweis, R. J., As' ad, H., Aldarawsheh, A., Al-Khdeirat, R., & Lwissy, K. (2013). A PC-aided optical foetal heart rate detection system. Journal of medical engineering & technology, (0), 1-9.
 
[41]  Cesarelli, M., Romano, M., Bifulco, P., Fedele, F., & Bracale, M. (2007). An algorithm for the recovery of fetal heart rate series from CTG data. Computers in biology and medicine, 37 (5), 663-669.
 
[42]  Williams, B., & Arulkumaran, S. (2004). Cardiotocography and medicolegal issues. Best Practice & Research Clinical Obstetrics & Gynaecology, 18 (3), 457-466.
 
[43]  Taylor, J., Hayes-Gill, B. R., Crowe, J. A., & Paull, C. J. (1999). Towards multi-patient leadless and wireless cardiotocography via RF telemetry. Medical engineering & physics, 20 (10), 764-772.
 
[44]  Ugwumadu, A. (2013). Understanding cardiotocographic patterns associated with intrapartum fetal hypoxia and neurologic injury. Best Practice & Research Clinical Obstetrics & Gynaecology.
 
[45]  Alfirevic, Z., Devane, D., & Gyte, G. M. (2006). Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database Syst Rev, 3.
 
[46]  External and Internal Heart Rate Monitoring of the Fetus hopkinsmedicine.org/healthlibrary/test_procedures/gynecology/external_and_internal_heart_rate_monitoring_of_the_fetus_92,P07776/
 
[47]  Liston, R., Sawchuck, D., & Young, D. (2007). Fetal health surveillance: antepartum and intrapartum consensus guideline. Journal of obstetrics and gynaecology Canada: JOGC= Journal d'obstétrique et gynécologie du Canada: JOGC, 29 (9 Suppl 4), S3.
 
[48]  Daly, N., Brennan, D., Foley, M., & O’Herlihy, C. (2011). Cardiotocography as a predictor of fetal outcome in women presenting with reduced fetal movement.European Journal of Obstetrics & Gynecology and Reproductive Biology,159 (1), 57-61.
 
[49]  Salamalekis, E., Siristatidis, C., Vasios, G., Saloum, J., Giannaris, D., Chrelias, C.,. .. & Koutsouris, D. (2006). Fetal pulse oximetry and wavelet analysis of the fetal heart rate in the evaluation of abnormal cardiotocography tracings. Journal of Obstetrics and Gynaecology Research, 32 (2), 135-139.
 
[50]  Tekin, A., Özkan, S., Çalışkan, E., Özeren, S., Çorakçı, A., & Yücesoy, İ. (2008). Fetal pulse oximetry: correlation with intrapartum fetal heart rate patterns and neonatal outcome. Journal of Obstetrics and Gynaecology Research, 34 (5), 824-831.
 
[51]  Arulkumaran, S., & Chua, S. (1996). Cardiotocograph in labour. Current Obstetrics & Gynaecology, 6 (4), 182-188.
 
[52]  Schiermeier, S., Pildner von Steinburg, S., Thieme, A., Reinhard, J., Daumer, M., Scholz, M., & Schneider, K. T. M. (2008). Sensitivity and specificity of intrapartum computerised FIGO criteria for cardiotocography and fetal scalp pH during labour: multicentre, observational study. BJOG: An International Journal of Obstetrics & Gynaecology, 115 (12), 1557-1563.
 
[53]  Nurani, R., Chandraharan, E., Lowe, V., Ugwumadu, A., & Arulkumaran, S. (2012). Misidentification of maternal heart rate as fetal on cardiotocography during the second stage of labor: the role of the fetal electrocardiograph. Acta Obstetricia et Gynecologica Scandinavica, 91 (12), 1428-1432.
 
[54]  Dixon, J. C., Penman, D. M., & Soothill, P. W. (2000). The influence of bowel atresia in gastroschisis on fetal growth, cardiotocograph abnormalities and amniotic fluid staining. BJOG: An International Journal of Obstetrics & Gynaecology, 107 (4), 472-475.
 
[55]  Gebeh, A., Yulia, A., & Ayuk, P. (2010). Intrapartum cardiotocograph interpretation by midwives and trainee obstetricians using a modified definition of a fetal heart rate deceleration. Journal of Obstetrics & Gynaecology, 30 (7), 671-674.
 
[56]  Devane, D., & Lalor, J. (2005). Midwives’ visual interpretation of intrapartum cardiotocographs: intra‐and inter‐observer agreement. Journal of advanced nursing, 52 (2), 133-141.
 
[57]  Sinclair, M. (2001). Midwives’ attitudes to the use of the cardiotocograph machine. Journal of Advanced Nursing, 35 (4), 599-606.
 
[58]  McKevitt, S., Gillen, P., & Sinclair, M. (2011). Midwives’ and doctors’ attitudes towards the use of the cardiotocograph machine. Midwifery, 27 (6), e279-e285.
 
[59]  Jeżewski, J., Wróbel, J., Horoba, K., Cholewa, D., Gacek, A., Kupka, T., & Matonia, A. (2002). Monitoring of mechanical and electrical activity of fetal heart: The nature of signals. Archives of Perinatal Medicine, 8 (1), 40-46.
 
[60]  Karlsson, B., Foulquière, K., Kaluzynski, K., Tranquart, F., Fignon, A., Pourcelot, D.,. .. & Berson, M. (2000). The DopFet system: a new ultrasonic Doppler system for monitoring and characterization of fetal movement.Ultrasound in medicine & biology, 26 (7), 1117-1124.
 
[61]  JF Guerrero-Martínez, M Martínez-Sober, M Bataller-Mompean, JR Magdalena-Benedito. New Algorithm for Fetal QRS Detectionin Surface Abdominal Records.
 
[62]  Divon, M. Y., Torres, F. P., Yeh, S. Y., & Paul, R. H. (1985). Autocorrelation techniques in fetal monitoring. American journal of obstetrics and gynecology, 151 (1), 2.
 
[63]  Muhammad I.I., Firoz A., Mohd Ali M.A., Zahedi E.: Real-Time Signal Processing for Fetal HeartRate Monitoring IEEE Trans. on Biomed. Eng., 2003, 50, 2, 258-252.
 
[64]  Misiti M., Misiti Y., Oppenheim G., Poggi J.M.: Wavelet toolbox for use with MatlabR Mathworks 2000.
 
[65]  JEŻEWSKI, J., WRÓBEL, J., KUPKA, T., MATONIA, A., HOROBA, K., & WIDERA, M. Reliability and quality of ultrasound measurements of fetal heart rate variability. Journal of Medical Informatics.
 
[66]  Chris H L Peters, Edith D M ten Broeke, Peter Andriessen, Barbara Vermeulen, Ralph C M Berendsen1, Pieter F FWijn and S Guid Oei. Beat-to-beat detection of fetal heart rate: Dopplerultrasound cardiotocography compared to direct ECG cardiotocography in time and frequency domain. Physiol. Meas. 25 (2004) 585-593.
 
[67]  Strasburger, J. F., Cheulkar, B., & Wakai, R. T. (2008). Magnetocardiography for fetal arrhythmias. Heart rhythm: the official journal of the Heart Rhythm Society, 5 (7), 1073.
 
[68]  Van Leeuwen, P. (2000). Future topics in fetal magnetocardiography. In Biomag (pp. 587-590).
 
[69]  Van Leeuwen, P., Bettermann, H., Schüßler, M., & Lange, S. (1996). Magnetocardiography in the determination of fetal heart rate complexity. InProceedings of the Tenth International Conference on Biomagnetism.v.
 
[70]  Lewis, M. J. (2003). Review of electromagnetic source investigations of the fetal heart. Medical engineering & physics, 25 (10), 801-810.
 
[71]  Ruffo, M., Cesarelli, M., Jin, C., Gargiulo, G., McEwan, A., Sullivan, C.,. .. & van Schaik, A. (2011). Non-Invasive Foetal Monitoring with Combined ECG-PCG System. Biomedical Engineering, Trends, Researches and Technologies", To be published by INTECH.
 
[72]  Gutiérrez, D., Nehorai, A., McKenzie, D., Eswaran, H., Lowery, C. L., & Preissl, H. (2004). On-line fetal heart rate monitoring using SQUID sensor arrays. In Proc. 14th Biennial BIOMAG Conf (pp. 315-316).
 
[73]  Brazdeikis, A., & Padhye, N. S. Biomagnetic Measurements for Assessment of Fetal Neuromaturation and Well 丁 Being.
 
[74]  ZHANG ShuLin, ZHANG GuoFeng, WANG YongLiang, ZENG Jia, QIU Yang, LIU Ming, KONG XiangYan & XIE XiaoMing. A novel superconducting quantum interference device for bio magnetic measurements, (August 2013).
 
[75]  Wilson, J. D., Govindan, R. B., Hatton, J. O., Lowery, C. L., & Preissl, H. (2008). Integrated approach for fetal QRS detection. Biomedical Engineering, IEEE Transactions on, 55 (9), 2190-2197.
 
[76]  Shu-Lin, Z., Guo-Feng, Z., Yong-Liang, W., Ming, L., Hua, L., Yang, Q., & Xiao-Ming, X. (2013). Multichannel fetal magnetocardiography using SQUID bootstrap circuit.
 
[77]  Stinstra, J. G. (2001). The reliability of the fetal magnetocardiogram. Universiteit Twente.
 
[78]  Stinstra, J. G., Peters, M. J., & Quartero, H. W. P. (2000). Extracting reliable data from the fetal MCG. In Proc. Int. Conf. on Biomagnetism (pp. 591-4).
 
[79]  Comani, S., Mantini, D., Alleva, G., Gabriele, E., Liberati, M., & Romani, G. L. (2005). Simultaneous monitoring of separate fetal magnetocardiographic signals in twin pregnancy. Physiological measurement, 26 (3), 193.
 
[80]  D. Geue, H. Zavala-Fernandez, S. Lange, M. Burghoff, R. Orglmeister, D. Gronemeyer, P. van Leeumen. processing the magnetocardiographic signal in the identification of fetal and maternal heart beats in triplet pregnancy, (2007).
 
[81]  Arvinti, B., Isar, A., Stolz, R., & Costache, M. (2011, May). Performance of Fourier versus Wavelet analysis for magnetocardiograms using a SQUID-acquisition system. In Applied Computational Intelligence and Informatics (SACI), 2011 6th IEEE International Symposium on (pp. 69-74). IEEE.
 
[82]  Adamopoulos, A. V., Boutsinas, B., Vrahatis, M. N., & Anninos, P. (2001, December). Analysis of Normal and Pathological Fetal Magnetocardiograms Using Clustering Algorithms. In Proceedings of European Symposium on Intelligent Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems (eunite 2001), Special Session-Adaptive Systems and Hybrid CI in Medicine, Tenerife, Spain.
 
Show Less References

Article

Sample Entropy based HRV: Effect of ECG Sampling Frequency

1Department of Electronics and Communication Engineering, Guru Nanak Dev University, Regional Campus, Jalandhar, India

2Research Scholar Punjab Technical University Jalandhar and Department of Electronics and Communication Engineering, Guru Nanak Dev University Regional Campus, Jalandhar, India

3Amrirtsar College of Engineering and Technology, Amritsar, India


Biomedical Science and Engineering. 2014, 2(3), 68-72
DOI: 10.12691/bse-2-3-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
Butta Singh, Manjit Singh, Vijay Kumar Banga. Sample Entropy based HRV: Effect of ECG Sampling Frequency. Biomedical Science and Engineering. 2014; 2(3):68-72. doi: 10.12691/bse-2-3-3.

Correspondence to: Butta  Singh, Department of Electronics and Communication Engineering, Guru Nanak Dev University, Regional Campus, Jalandhar, India. Email: bsl.khanna@gmail.com

Abstract

Biomedical signals carry important information about the behaviour of the living systems under study. A proper processing of these signals in principle enhances their physiological and clinical information. Analysis of variations in the instantaneous heart rate time series using the beat to-beat RR intervals (the RR tachogram) is known as heart rate variability (HRV) analysis. Sample entropy (SampEn), refined version of approximate entropy (ApEn), is a nonlinear complexity measure used to quantify the irregularity of a RR interval time series without biasing. An increase in SampEn is an indicator of increases in complexity. Linear HRV parameters are very sensitive to ECG sampling frequency and low sampling frequency may result in clinically misinterpretation of HRV. In this study consequences of errors in SampEn based HRV induced by ECG sampling frequency have been investigated. The error induced in SampEn based HRV was found to be a function of ECG sampling frequency and RR interval data length. The relative error in SampEn was approximately 3.5%.for medium and long term data (N=500, 1000 respectively) and less than 2% for short term data (N=200) at low ECG sampling frequency of 125 Hz with respect to reference values at 2000 Hz. Therefore the SampEn based HRV indices computed from RR interval time series with low ECG sampling should be regarded with caution. The finding of this study can be partly used as a reference for the optimal ECG sampling frequency for the SampEn-based HRV assessment.

Keywords

References

[1]  Karim, N., Hasan, J.A. and Syed, S.A, “Heart rate variability-A review,” Journal of Basic and Applied Sciences, 7(1).71-77. 2011.
 
[2]  Acharya, U.R., Kannathal. N. and Krishnan, S.M., “Comprehensive analysis of cardiac health using heart rate signals,” Physiological Measurement, 25. 1130-1151. 2004.
 
[3]  Acharya, U.R., Joseph, K.P., Kannathal, N., Lim C.M. and Suri J.S, “Heart rate variability: a review,” Medical and Biological Engineering and Computing, 44. 1031-1051. 2006.
 
[4]  Kurths, J., Voss, A., Witt, A., Saparin, P., Kleiner, H.J. and Wessel N, “Quantitative analysis of heart rate variability,” Chaos, 5(1). 88-94. 1995.
 
[5]  Task Force of European society of Cardiology and the North American Society of Pacing and Electrophysiology, “Heart rate variability, standard of measurement, physiological interpretations and clinical use,” circulation 93(5). 1043-1065. 1996.
 
Show More References
[6]  Pincus S.M., “Approximate entropy as a measure of system complexity”, Proceeding of National Academy of Sciences, USA, 88(6). 2297-2301. 1991.
 
[7]  Goldberger A.L, “Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside,” The Lancet, 347.1312-1314. 1996.
 
[8]  Lee, B., Jang, J., Lee, J. and Lee M, “Relationship between autonomic nervous system activity and chaotic attractor on biological signal,” Proceedings of IEEE Engineering in Medicine and Biolog , 16th Conf, 1256-1257. 1994.
 
[9]  Loun, W.A., “Variability analysis of physiological signals using nonlinear time series analysis techniques,” Ph.D Thesis PIEAS, Pakistan. 2006.
 
[10]  Pincus S.M., Goldberger A.L., “Physiological time-series analysis: What does Regularity Quantify?” American Journal of Physiology (Heart Circ Physiol), 35.1643-656. 1994.
 
[11]  Singh, B., Singh, D., Jaryal, A.K. and Deepak K.K, “Ectopic beats in approximate entropy and sample entropy-based HRV assessment,” International Journal of Systems Science, 43(5). 884-893. 2012.
 
[12]  Chen, X., Solomon, I.C. and Chon K.H., “Comparison of the use of approximate entropy and sample entropy: application to neural respiratory signal,” Proceedings of IEEE Engineering in Medicine and Biology, 27th International Conf, sanghai, China, 4212-4215. 2005.
 
[13]  Lake, D.E., Richman, J.S., Grin, M.P. and Moorman, J.R, “Sample entropy analysis of neonatal heart rate variability,” American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 283. 789-797. 2002.
 
[14]  Hejjel, L. and Rooth, E., “What is the adequate sampling interval of ECG signal for heart rate variability analysis in time domain,” Physiological Measurements, 25. 1405-1411. 2004.
 
[15]  Ziemsseen, T., Gascg, Z. and Ruediger, H, “Influence of ECG sampling frequency on spectral analysis of RR intervals and baroreflex sensitivity using eurobarvar data,” Journal of Clinical Monitoring and Computing, 22. 159-168. 2008.
 
[16]  Abboud, S. and Barnea O., “Errors due to sampling frequency of electrocardiogram in spectral analysis of heart rate signals with low variability,” Proceedings of IEEE Computers in Cardiology, 461-463. 1995.
 
[17]  Kolmogorov, A.N., “A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces,” Dokl. Akad. Nauk SSSR (N.S.), 119.61-864. 1958.
 
Show Less References

Article

Multi-dimensional Analysis, Information Mining and Numerical Modeling for Small Samples of Biomedical Microfluidic Droplets

1School of life science, Zhengzhou Univ. 100 Science Avenue, Zhengzhou, P.R.China

2Henan institute of pharmaceutical science, Zhengzhou University, Zhengzhou, P.R.China


Biomedical Science and Engineering. 2015, 3(1), 1-3
DOI: 10.12691/bse-3-1-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Peiyuan He, Liguo Zhang. Multi-dimensional Analysis, Information Mining and Numerical Modeling for Small Samples of Biomedical Microfluidic Droplets. Biomedical Science and Engineering. 2015; 3(1):1-3. doi: 10.12691/bse-3-1-1.

Correspondence to: Peiyuan  He, School of life science, Zhengzhou Univ. 100 Science Avenue, Zhengzhou, P.R.China. Email: hepeiyuan@live.com

Abstract

Information mining has turned to be increasingly important in the modern digital world. The mining results lead to the essential advances in not only information technology, but general natural science, such as life science, mechanics, numerical analysis, calculation technology, etc. These innovations permitted for the manipulation of biomicrofluidic droplets at micrometer-scale. Through the acquisition of raw data and the multidimensional analysis, numerical modeling can possibly be established and the further optimization can be processed. This work was focused on the multi-dimensional analysis based on small samples of the biomicrofludic droplet generation. Then numerical modeling was used to describe the fabrication of microdroplets in complex circumstances. Both linear modeling and nonlinear optimization were performed while the artificial intelligence technology was applied. Although the linear model presented the rough descriptive capacities of microdroplets variation, non-linear optimization improved its descriptive properties. Artificial neural network was established to depict the microfluidic droplets and its accuracy was validated satisfactorily.

Keywords

References

[1]  L. Alison Phillips, Michael A. Diefenbach, Ian M. Kronish, Rennie M. Negron, Carol R. Horowitz, “The Necessity-Concerns Framework: a Multidimensional Theory Benefits from Multidimensional Analysis” Annals of Behavioral Medicine, Volume 48, pp 7, 2014.
 
[2]  Michal C. Moskowitz, Briana L. Todd, Rusan Chen, Michael Feuerstein, “Function and friction at work: a multidimensional analysis of work outcomes in cancer survivors” Journal of Cancer Survivorship Volume 8, pp 173, 2014.
 
[3]  Marisa Mariani, Shiquan He, Mark McHugh, Mirko Andreoli, Deep Pandya, Steven Sieber, Zheyang Wu, Paul Fiedler, Shohreh Shahabi, Cristiano Ferlini, “Integrated Multidimensional Analysis Is Required for Accurate Prognostic Biomarkers in Colorectal Cancer” Plos one, Volume 9, pp 101065, 2014.
 
[4]  Peiyuan He, Xue Lexun, Qi Yuanming, Zhang Liguo, Lu Yumin, Zhang erliang: “Numerical Information Retrieval and Modeling for Small Droplet Samples.” WIT transactions on engineering science. Volume 86, pp 371-376, 2014.
 
[5]  Peiyuan He, D.Barthes-Biesel, E. Leclerc. “Flow of two immiscible liquids in Y-shaped microfluidic systems: effect of geometry.” Microfluidics and nanofluidics. Volume 9, pp 293, 2010.
 
Show More References
[6]  Petra S. Dittrich and Andreas Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nature Reviews Drug Discovery, Volume 5, pp 210, 2006.
 
[7]  George A. van Aken, “Relating Food Emulsion Structure and Composition to the Way It Is Processed in the Gastrointestinal Tract and Physiological Responses: What Are the Opportunities?” Food Biophysics, Volume 5, pp. 258, 2010.
 
[8]  Venkatachalam Chokkalingam, Jurjen Tel, Florian Wimmers, Xin Liu, Sergey Semenov, Julian Thiele, Carl G. Figdorb and Wilhelm T. S. Huck “Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics” Lab on Chip, Volume 13, pp 4740, 2013.
 
[9]  Tao Sun, Joseph Kovac, and Joel Voldman, “Image-Based Single-Cell Sorting via Dual-Photopolymerized Microwell Arrays.” Anal. Chem., Volume 86, pp 977, 2014.
 
[10]  Yong Luo, Chang Liu, Yueyang Qu and Ning Fang. “Towards single-cell analysis for pharmacokinetics.” Bioanalysis. Vol. 4, pp 453, 2012.
 
[11]  Shai S. Shen-Orr, “Challenges and Promise for the Development of Human Immune Monitoring.” Rambam Maimonides Med J. Volume 3, pp 0023, 2012.
 
[12]  Yen H. Nguyen, Xin Ma, and Lidong Qin, “Rapid identification and drug susceptibility screening of ESAT-6 secreting Mycobacteria by a NanoELIwell assay.” Science, Volume 2, pp 635, 2012.
 
[13]  Zhang Liguo, Xue Lexun, He Peiyuan, Qi Yuanming, Lu Yumin, “Intelligent numerical manipulation of micrometer-scale emulsions using polymer confinement.” Advanced Materials Research, Volume813, pp 431, 2013.
 
[14]  He Peiyuan, Xue Lexun, Zhang Liguo, Qi Yuanming, Lu Yumin, “Artificial Neural network(ANN)-BasedNonlinear Optimization of Modeling on Biomicrofluidic Vesicles Generation.” 9th International Conference on Natural Computation, IEEE, 2013.
 
[15]  Tomasz Glawdel, Caglar Elbuken, and Carolyn L. Ren, “Droplet formation in microfluidic T-junction generators operating in the transitional regime.” Phys Rev E Stat Nonlin Soft Matter Phys. Volume 85, pp 016322, 2012.
 
Show Less References