ISSN (Print): 2373-1257

ISSN (Online): 2373-1265

Editor-in-Chief: Apply for this position

Website: http://www.sciepub.com/journal/BSE

   

Article

AT1 Receptor Antagonists: Pharmacological Treatment of Hypertension in Brazil

1Bandeirante University, Sao Paulo, Brazil

2Ponta Grossa StateUniversity, Ponta Grossa Brazil

3Universityof São Paulo, Sao Paulo, Brazil


Biomedical Science and Engineering. 2015, 3(2), 41-45
doi: 10.12691/bse-3-2-3
Copyright © 2015 Science and Education Publishing

Cite this paper:
Vanessa Pepeliascov, Kleber de Magalhães Galvão, Dones Cláudio Janz Jr, Helen Dutra Leite, Felipe de Lara Janz. AT1 Receptor Antagonists: Pharmacological Treatment of Hypertension in Brazil. Biomedical Science and Engineering. 2015; 3(2):41-45. doi: 10.12691/bse-3-2-3.

Correspondence to: Felipe  de Lara Janz, Universityof São Paulo, Sao Paulo, Brazil. Email: fljanz@usp.br

Abstract

High blood pressure (HBP) is a multifactorial disease that affects millions of people around the world and contributes to a large number of deaths due to acute myocardial infarction, stroke and chronic kidney disease. Its etiology remains inconclusive, but it is known that it arises of central and peripheral catecholaminergic dysfunction. Thus, cellular mechanisms are still under investigation. Its pathophysiology is characterized by an increase in systolic and diastolic blood pressure levels. The national and international guidelines for hypertension indicate that effective pharmacotherapy provides a control in blood pressure values and mortality⁄ morbidityreduction. Classes of antihypertensive drugs available for clinical use are diuretics, beta-blockers, alpha-blockers, sympatholytic, calcium channel antagonists, angiotensin converting enzyme inhibitors and angiotensin receptor antagonists of angiotensin II (ARBs). ARBs (i.e.: candesartan, irbesartan, losartan, olmesartan, telmisartan and valsartan)represent current and often used drug class in Brazil.They have different molecular configurations with independent action mechanismsin angiotensin II AT1 receptor. The objective of this paper is to discuss the pathophysiology and pharmacotherapy of hypertension, emphasizing the antagonists of angiotensin II used in Brazil, since they constitute a class of antihypertensive drugs that has fewer side effects and greater therapeutic efficacy.

Keywords

References

[1]  Cesaretti, Mario Luis Riberio; Ginoza, Milton; Kohimann Junior, Osvaldo. Neural mechanisms: sympathetic nervous system. In: Ribeiro, Artur Beltrame; Plavnik, Frida Liane. Update on clinical hypertension, diagnostic and therapeutic: Pathophysiology of hypertension. London: Atheneu, 2008. Chapter 9, p. 79-85.
 
[2]  Krieger, Eduardo Moacyr; Irigoyen, Maria Claudia; Krieger, José Eduardo. Pathophysiology of hypertension. Journal of Cardiolologia Society of the State of São Paulo, São Paulo, P.01-7, 1999.
 
[3]  Ribeiro, José Márcio; Florencio Leonardo P.Pharmacological blockade of the renin-angiotensin-aldosterone system: converting enzyme inhibition and AT1 receptor antagonism. Brazilian Journal of Hypertension, Sao Paulo, n., P.293-302, 2000.
 
[4]  PR Vade Mecum. Vade Mecum medications. RGR 17 publications ed. São Paulo, 2011.
 
[5]  Rang, H.P; Dale, M.M, Pharmacology, 3rd ed. Publisher Koogan Guanabara, Rio de Janeiro, 1997.
 
Show More References
[6]  Guyton, AC, HallL, JE Treaty of Medical Physiology 10. Ed. Rio de Janeiro Guanabara Koogan 2002.
 
[7]  Cipullo, José Paulo et al. Prevalence and Risk Factors for Hypertension in a Brazilian Population Urbana. Brazilian Archives of Cardiology, Sao Paulo, P.520-526, 2010.
 
[8]  Franklin, Stanley S. et al. Cardiovascular Morbidity and Mortality in Hypertensive Patients with Lower Risk Higher Versus LIFE Substudy. American Heart Association, Dallas, p.492-499, 2005.
 
[9]  Gomes, Marco Antonio Mota et al. Treatment of Hypertension with olmesartan medoxomil in scheduling. Brazilian Archives of Cardiology, Sao Paulo, p.185-193, 2008.
 
[10]  Kreutz, R. Olmesartan / amlodipine: A review of its use in the management of hypertension. Vascular Health andRisk Management, Princeton, p. 183-192. 2011.
 
[11]  Lopes, Heno Ferreira; GIL, Juliana Dos Santos; Consolim-Colombo, Fernanda Marciano. Activation of the adrenergic system, renin-angiotensin-aldosterone, endothelin and adrenomedullin in hypertension. Journal of the Society of Cardiology of the State of São Paulo, São Paulo, v. 18, no. 2, p.102-107, 2008.
 
[12]  Mion Jr, Decius et al. The importance of antihypertensive medication treatment adherence. Brazilian Journal of Hypertension, Rio de Janeiro, p.55-58, 2006.
 
[13]  Neves, Francis ofAssisi; Campos, Alessandra Menezes. Renin-angiotensin-aldosterone In: Ribeiro, Arthur Beltrame; Plavnik, Frida Liane Update on clinical hypertension, diagnosis and treatment. London: Atheneu, 2008.
 
[14]  Oigman, Wille; Fritsche, Mario Toros. Drugs that intervene in the renin-angiotensin system. Brazilian Journal of Hypertension, Rio de Janeiro, v.5, p.84-90, 1998.
 
[15]  Oparil, Suzanne et al. Comparative efficacy of olmesartan, losartan, valsartan and irbesartan in the control of primary hypertension. The jornaul of Clinical Hypertension, vol. 3, no. 5, p. 202-282, 2001.
 
[16]  Tamargo, Juan et al. Pharmacological characteristics of ARB them. Son all iguales? Spanish Journal of Cardiology, vol. 6, p 10-24, 2006.
 
[17]  Trapp, Silvia Manduca, VailatiI, Maria do Carmo Fernandes, Matsubara, Beatriz Bojikian, Schwartz, Denise Saretta. Effects of angiotensin II in the cardiovascular system. Archives of Veterinary Science, North America, 14, jun. 2009.
 
[18]  Verdecchia, Paolo et al. Comparative assessment of angiotensin receptor blockers in different clinical settings. Vascular Health and Risk Management, Princeton, n., P.939-949, November 2008.
 
[19]  Rigatto, Katya Vianna, Bohlke, Maristela, Irigoyen, Maria Claudia. Renin angiotensin system: from physiology to therapy. Magazine Society of Cardiology of Rio Grande do Sul. 2004.
 
[20]  Salgado, Wilson. Control of blood pressure to prevent cardiovascular disease. In: Santos, Raul D. Manual of prevention of cardiovascular diseases. London: Atha, 2008.
 
[21]  Povoa, Rui; Bombig, Maria Teresa Nogueira. Hypertension secondarily renal and endocrine origin: diagnosis and treatment. Journal of Cardiolologia Society of the State of São Paulo, São Paulo, n., P.122-134, 2008.
 
[22]  Consolim-Colombo, Fernanda M; Krieger, Eduardo Moacyr. Sympathetic nervous system and hypertension. Brazilian Hypertension magazine, Rio de Janeiro, v 11, p. 275-278, 2004.
 
[23]  Correa, Thiago Domingos et al. Hypertension: an update on the epidemiology, diagnosis and treatment. Medical files Abc, Sao Paulo, n. 5, P.90-101, 2006.
 
[24]  Brazilian Guidelines on Hypertension, Brazilian Archives of Cardiology, vol. 95, 2010.
 
[25]  BRASIL. Ministério da Saúde. Cadernos de Atenção Básica: Hipertensão Arterial Sistêmica. n. 15. Brasília, 2006.Link: http://bvsms.saude.gov.br/bvs/publicacoes/caderno_atencao_basica15.pdf.
 
Show Less References

Article

Growth and Advancements in Neural Control of Limb

1Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India


Biomedical Science and Engineering. 2015, 3(3), 46-64
doi: 10.12691/bse-3-3-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Bablu Lal Rajak, Meena Gupta, Dinesh Bhatia. Growth and Advancements in Neural Control of Limb. Biomedical Science and Engineering. 2015; 3(3):46-64. doi: 10.12691/bse-3-3-1.

Correspondence to: Dinesh  Bhatia, Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India. Email: bhatiadinesh@rediffmail.com

Abstract

Centuries of study has unfolded our understanding regarding different bodily movement routinely performed. It has been observed that all these movements require intricate communication between the brain and associated muscles. Our sensory systems help in guiding this communication by providing information about the external environment and surroundings, thereby helping the motor system plan the different movements leading to controlled action by the muscles. Billions of neuron with quadrillion connections between them and muscles are responsible for coordinated movements that humans perform routinely. Though our knowledge and understanding about motor neuron diseases and neuro-degeneration disorders are limited, yet efforts have been made to overcome or improve the present state of these disorders either by drugs, artificial prosthetic devices, robotics, stimulation or stem cell therapy. These treatments are attempts to help relieve symptoms, improve functionality, provide support and effectively slow down the disease's progression. Furthermore, disabled individuals were aided with walking stick, wheelchair or stroller till recently; however, significant technological advancements in the past few decades have brought in more of man-machine interactive devices such as deployment of artificial prosthetics, improved brain-computer interactions and advanced neuroprosthetics for supporting activities of daily living in these patients. Additionally, new tools like computer simulations, medical imaging and computational models are being used to simulate simple movement tasks and compare the outcomes with real limb control and neural elements, thereby testing how brain signals are processed to achieve sophisticated motor control. Researchers are regularly improving existing devices for ease of use and efficiency, and new ones are being developed such that it can mimic the maneuverability of the natural limb.

Keywords

References

[1]  S. J. Bensmaia, L. E. Miller, “Restoring sensoriomotor function through intercotical interface: progress and looming challenge”, J nature reviews Neurosciences, vol. 15(5), pp. 313-315, 2014.
 
[2]  R. W. Mann, “Cybernetic Limb Prosthesis”, Annals of Biomedical Engineering, Vol. 9, pp 1-43, 1981.
 
[3]  C. Ethier, L. E. Miller, “Brain-controlled muscle stimulation for the restoration of motor function, Neurobiology of Disease” nbd, [ahead of print], Oct 14 ,2014
 
[4]  F. B. Horak, “Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age and Ageing”, pp. 35-S2 ii7-ii11, 2006.
 
[5]  J. He ,C. Ma , R. Herman, “Engineering Neural Interfaces for Rehabilitation of Lower Limb Function in Spinal Cord Injured”, Proceedings of the IEEE, vol.96. no.7. pp. 1152-1166, 2008.
 
Show More References
[6]  K.T. Manal, T. S. Buchanan, “Biomechanics of human movement”, Standard handbook of biomedical engineering and design, McGraw Hill, 2004.
 
[7]  J. M. Hollerbach, “Computers, brains and the control of movement”, Trends Neurosci, vol. 5. No 6. pp.189-92, 1982.
 
[8]  R. A. Schmidt, “Schema theory of discrete motor skill learning”, Psychol Rev, vol.82, no. 4, pp. 225-60, 1975.
 
[9]  A. G. Feldman, “Once more on the equilibrium-point hypothesis (lambda model) for motor control”, J Mot Behav vol. 18, no 1. pp.17-54, 1986.
 
[10]  E. Todorov, “Optimality principles in sensorimotor control”, Nature Neuroscience, vol.7, no.9. pp. 907–15, 2004. [PubMed: 15332089]
 
[11]  N. Dounskaia, “Control of Human Limb Movements: The Leading Joint Hypothesis and Its Practical Applications”, Exerc Sport Sci Rev. vol. 38, no. 4. pp.201-208, 2010.
 
[12]  J. L. Smith, and R. F. Zernicke, “Predictions for neural control based on limb dynamics”, Trends in Neurosciences, vol. 10, no. 3. pp. 123-128, 1987.
 
[13]  R. E. Kearney, I. W. Hunter, “System Identification of Human Joint Dynamics”, CRC Crit Rev Biomed Engin, vol. 18, pp.55-87, 1990.
 
[14]  R. Shadmehr, M. A. Arair, “A Mathematical Analysis of the Force-Stillness Characteristics of Muscles in Control of a Single Joint System”, Biol Cybern, vol. 66, pp. 463-477, 1992.
 
[15]  Y. P. Ivanenko, G. Cappellini, N. Dominici, R. E. Poppele, F. Lacquaniti, “Modular Control of Limb Movements during Human Locomotion”, J. Neurosci., vol. 27, no.41, pp. 11149-11161, 2007.
 
[16]  L. Seth, D. N. Louis, W. David, Greenfield's Neuropathology (8th ed.), London Hodder Arnold, pp. 947, 2008.
 
[17]  A. G. Reeves, R. S. Swenson, “Neuromuscular system disorders” in disorders of the nervous system 5th ed. Ch.3, sec.21. [Online] Available: http://www.dartmouth.edu/~dons/part_3/chapter_21.html.
 
[18]  K. M. Steinberg, D. C. Koboldt, “Researchers identified a new host gene variants that could make people vulnerable to sporadic motor neuron disease”, University of Sydney, March 16, 2015.
 
[19]  [Online] available: http://www.ninds.nih.gov/disorders/motor_neuron_diseases/detail_motor_neuron_diseases.htm.
 
[20]  W. N. Löscher, E. L. Feldman, “Motor Neuron Diseases”, Atlas of Neuromuscular Diseases, pp. 283-290, 2014.
 
[21]  W. Koroshetz, “Motor Neuron Diseases Fact Sheet: National Institute of Neurological Disorders and Stroke (NINDS)”. Motor neuron disease, Department of health and human services U.S., pp. 1-20, March 2012.
 
[22]  L.M Thompson, “Neurodegeneration: a question of balance”. Nature 452 (7188): pp.707-8.
 
[23]  D. C. Rubinszte, “The roles of intracellular protein-degradation pathways in neurodegeneration”. Nature, vol. 443 (7113), pp.780-6,Oct 2006.
 
[24]  S. DiMauro ,E. A. Schon, “Mitochondrial disorders in the nervous system”. Annual Review of Neuroscience, vol. 31, pp. 91-123, 2008.
 
[25]  D. E. Bredesen, R. V. Rao, P. Mehlen, “Cell death in the nervous system”. Nature, vol. 443 (7113), pp.796-802, 2006.
 
[26]  [Online] http://www.nlm.nih.gov/medlineplus/degenerativenervediseases.html.
 
[27]  Brain facts.org, “Degenerative disease”. Available: http://www.brainfacts.org/diseases-disorders/degenerative-disorders.
 
[28]  C.M Tanner, M.Brandabur, E.R.Dorsey, “Parkinson Disease: A Global View”, Rep. Parkinson, pp. 9-11, 2008.
 
[29]  [Online] available: http://www.alzheimers.net/resources/alzheimers-statistics.
 
[30]  Progress in mind, “Huntingtons disease”, Available on http://www.lundbeck.com/us/our-commitment/disease-information/huntingtons-disease-hd.
 
[31]  [Online] available: http://www.nichd.nih.gov/. Cerebral Palsy: Overview. September 5, 2014.
 
[32]  [Online] available: http://cerebralpalsy.org/about-cerebral-palsy/types-and-forms.
 
[33]  [Online] available: http://www.brainandspinalcord.org/cerebral-palsy/types/ataxic-cerebral-palsy.html.
 
[34]  A.I. Maas, N. Stocchetti, R.Bullock, “Moderate and severe traumatic brain injury in adults”. Lancet Neurology, vol. 7(8), pp. 728-41, August 2008.
 
[35]  M. Faul, L. Xu, M. M. Wald,V. G. Coronado, “Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002-2006. Atlanta (GA), Centers for Disease Control and Prevention”, National Center for Injury Prevention and Control, 2010.
 
[36]  C. Collins, J. Dean, “Acquired brain injury” in Turner, 2002. M. Foster, SE. Johnson. “Occupational Therapy and Physical Dysfunction: Principles, Skills and Practice”. Edinburgh: Churchill Livingstone. pp. 395–96.
 
[37]  P. A. Robertson, “Prediction of amputation after severe lower limb trauma.” Journal of Bone & Joint Surgery, British vol. 73, no.5. pp. 816-818., 1991.
 
[38]  U.S. National library of medicine. Medlineplus. “Amputation –trauma-causes”. [Online] Available: http://www.nlm.nih.gov/medlineplus/ency/article/000006.htm.
 
[39]  R. B.Islinger,T. R.Kulko , K. A. McHale, “A review of orthopedic injuries in the three recent US military conflicts”, Mil Med, vol. 165, pp. 463­5, 2000.
 
[40]  P. Meade, J. Mirocha, “Civilian landmine injuries”, J Trauma, in Sri Lanka, vol. 48, pp. 735-9, 2000.
 
[41]  L. J. Marks, J. W. Michael, “Artificial limbs”, British Medical Journal, vol. 323(7315), pp. 732-735, 2001.
 
[42]  L.Norgren , W. R.Hiatt, J, A.Dormandy , M. R.Nehler , et al “TASC II Working Group, Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II)”, J VascSurg, vol. 45, pp. S:S5, 2007.
 
[43]  K. Ziegler-Graham, E. J. MacKenzie, P. L. Ephraim, T. G. Travison, R. Brookmeyer, “Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050”, Archives of Physical Medicine and Rehabilitation, vol.89(3), pp.422-9, 2008.
 
[44]  A. Damir, “Why Diabetic Foot Ulcers do not heal?”, J International Medical Sciences Academy, vol. 24(4), pp. 205-206, 2011.
 
[45]  [Online] available: http://www.cdha.nshealth.ca/amputee-rehabilitation-musculoskeletal-program/patient-family-information/upper-limb-amputations.
 
[46]  Industrial safety and hygiene news, “Statistics on hand arm loss”, Feb. 4, 2014. [http://www.ishn.com/articles/97844-statistics-on-hand-and-arm-loss].
 
[47]  K. R.Sellegren. “An Early History of Lower Limb Amputations and Prostheses”, Theiowaorthopaedicjournal, vol. 2, pp.13-27, 1982.
 
[48]  R. S. Hamner, V. G. Narayan and K. M. Donaldson, “Designing for Scale: Development of the ReMotion Knee for Global Emerging Markets”, Annals of Biomedical Engineering, vol. 41(9), pp.1851-1859, 2013.
 
[49]  HCUP Nationwide Inpatient Sample (NIS). Healthcare Cost and Utilization Project (HCUP). Rockville, MD: Agency for Healthcare Research and Quality; 2009.
 
[50]  R. G.Miller, J. D.Mitchell, M. Lyon, D. H.Moore, “Amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND)”, Amyotroph Lateral Scler Other Motor Neuron Disord,vol. 4(3), pp. 191-206 , 2003.
 
[51]  U. E. Williams, E. E. Philip-Ephraim, S. K. Oparah, “Multidisciplinary Interventions in Motor Neuron Disease”, Journal of Neurodegenerative Diseases, vol. 2014, pp. 1-10, 2014.
 
[52]  G Gowing, C. N.Svendsen, “Stem Cell Transplantation for Motor Neuron Disease: Current Approaches and Future Perspectives”. J of Neurotherapeutics.pp.591-606,2011.
 
[53]  G.Modi, V.Pillay, Y. E. Choonara, “Advances in the treatment of neurodegenerative disorders employing nanotechnology”, Annals of the New York Academy of Sciences , vol. 1184, pp. 154-172, 2010.
 
[54]  A. L. Southwell, P. H. Patterson, “Antibody therapy in neurodegenerative disease”, Rev Neuroscience, vol.21(4), pp.273-87, 2010.
 
[55]  M. doCarmo Costa, H. L. Paulson, “New hope for therapy in neurodegenerative diseases”, Cell Research, vol.23, pp.1159–1160, 2013.
 
[56]  J.S. Lunn, A. S. Sakowski, E.L Feldman, “Stem Cell Technology for Neurodegenerative Diseases”, Ann Neurol, vol. 70 (3),pp. 353-361,Sep 2011.
 
[57]  K. Gao , S. Chen , L. Wang ,W. Zhang ,Y. Kang ,et al., “Anterior cruciate ligament reconstruction with LARS artificial ligament: a multicenter study with 3- to 5-year follow up”, Arthrosc J Arthrosc Amp RelatSurg, vol.26(4), pp.515-523,2010.
 
[58]  J. Cannan, H. Hu, “Human-Machine Interaction (HMI): A Survey”, School of Computer Science and Electronic Engineering, University of Essex, March 2013.
 
[59]  J. R. Wolpawa, N. Birbaumer, D. J. McFarlanda, G. Pfurtschellere, T. M. Vaughana, “Brain computer interfaces for communication and control”, Clinical Neurophysiology, vol. 113( 6), pp.767-791, 2002.
 
[60]  E. C. Leuthardt , G. Schalk, D. Moran, J. G. Ojemann, “The emerging world of motor neuroprosthetics: A neurosurgical perspective”, Neurosurgery , vol.59(1), pp. 1-14, 2006.
 
[61]  O .Lindvall , Z.Kokaia , A. M.Serrano, “Stem cell therapy for human neurodegenerative disorders-how to make it work”, Nature Medicine, vol 10, S42-S50, 2004.
 
[62]  M. L. Kringelbach, N. Jenkinson , S. L. F.Owen , T. Z. Aziz, “Translational principles of deep brain stimulation”, Nature Reviews Neuroscience, vol. 8(8), pp. 623-635, 2007.
 
[63]  G. Pizzolato, T.Mandat, “Deep Brain Stimulation for Movement Disorders” Frontiers”, in Integrative Neuroscience.; 6: 2. PMC3265746. 2012.
 
[64]  J. P. Lefaucheur, N. André-Obadia, A.Antal, S. S. Ayache , et al., “Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)”, Clinical Neurophysiology. 2014.
 
[65]  R. Cantello, “Applications of transcranial magnetic stimulation in movement disorders”, Journal of Clinical Neurophysiology, pp. 272-93, 2012. [PMID: 12436085]
 
[66]  A. G.Nerlich, A.Zink, “Ancient Egyptian prosthesis of the big toe”, Lancer, vol. 356(9248), pp.2176-9, 2000.
 
[67]  A. J. Thurston, “Pare and prosthetics: the early history of artificial limbs”, ANZ J Surg, vol. 77 (12), pp.1114-9, 2007.
 
[68]  P.I.Branemark, B. O.Hannson, R.Adell, et al., “Osseointegrated implants in the treatment of the edentulous jaw”, Stockholm: Almqvist and wiksel, pp. 132,1977.
 
[69]  A. F.Mak,M. Zhang, D. A. Boone, “State-of-the-art research in lower limb biomechanics-socket interface: a review”, J Rehabil Res Dev, vol. 38(2), pp.161-74, 2001.
 
[70]  W. J. Board, G. M.Street,C.Caspers, “A comparison of transtibial amputee suction and vacuum socket conditions”. ProsthetOrthotInt, vol.25, pp.202-9,2001.
 
[71]  H. Wetz, D. Gisbertz, “History of artificial limbs for the leg”, Orthopade, vol. 29(12), pp. 1018-32,2009.
 
[72]  M. Heim, M. Wershavski, S. T. Zwas, et al., “Silicone suspension of external prostheses: a new era in artificial limb usage”, J Bone joint Surg, vol. 79, pp. 638-40, 1997.
 
[73]  W. A.Sonck, J. L. Cockrell, G. H.Koepke, “Effect of liner materials on interface pressures in below knee prostheses”, Arch Phys Med Rehabil, vol. 51, pp. 666-9, 1970.
 
[74]  M. S.Scholz, J. P.Blanchfield, L. D. Bloom, B. H.Coburn, et.al., “The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review”, Compos SciTechnol, vol.71(16), 1791-1803, 2011.
 
[75]  J. F. Lehmann,R. Price, B. S.Boswell, et al., “Comprehensive analysis of energy storing prosthetics feet: Flex Foot and Seattle foot versus standard SACH foot”, Arch Phys Med Rehabil, vol. 74, pp. 1225-31, 1993.
 
[76]  B. J.Hafner, L. L. Willingham, N. C.Buell, et al., “Evaluation of function, performance and preference as transfemoralamputees transition from mechanical to microprocessor control of the prosthetic knee”, Arch Phys Med Rehabil, vol. 88(2), pp. 207-17, 2007.
 
[77]  J. G. Buckley, W. D. Spence, S. Solomonidis, “Energy cost of walking: comparison of “intelligent prosthesis” with conventional mechanism”. ArchPhys Med Rehabil, vol.78, pp. 330­3, 1997.
 
[78]  L. D. Fisher, M.Lord, “Bouncy knee in a semi­automatic knee lock prosthesis”, Prosthet Orthot. Int, vol.10, pp. 35­9, 1986.
 
[79]  K. Schneider, T. Hart,R. F. Zemicke, et al., “Dynamics of below-knee child child amputee gait: SACH foot versus Flex foot”, J Biomech, vol.26, pp. 1191-204, 1993.
 
[80]  L. A. Miller, D. S. Childress. “Vertical compliance in prosthetic feet: a preliminary investigation [abstract]”, Proceedings of the 8th world congress of the International Society for Prosthetics and Orthotics. Melbourne, Australia: International Society for Prosthetics and Orthotics, pp. 1-8, 1995.
 
[81]  S. K. Au, H. Herr, J. Weber, et al., “Powered ankle-foot prosthesis for the improvement of amputee ambulation”, Proceedings of the 29th Annual International Conference of the IEEE EMBS Cite Internationale, Lyon, France, August 23-26, 2007.
 
[82]  J. K. Hitt, R. Bellman, M. Holgate, et al., “The SPARKy Project: design and analysis of a robotic transtibial prostheses with regenerative kinetics”, Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007. Nevada, Sept 4-7, 2007.
 
[83]  K. Bhaskaranand, A. K. Bhat, K. N. Acharya, “Prosthetic rehabilitation in traumatic upper limb amputees (an Indian perspective)”, Arch Orthop Trauma Surg, vol. 123(7), pp, 363-6, 2003.
 
[84]  J. Z. Laferrier, R. Gailey, “Advances in lower limb prosthetic technology”, Phys Med RehabilClin N Am, vol.21, pp.87-110, 2010.
 
[85]  [Online] available: http://www.disabled-world.com/assistivedevices/prostheses/.
 
[86]  L. J.Hargrove,H. Huang,A. E. Schultz, B. A. Lock, R.Lipschutz, T. A.Kuiken, “Toward the Development of a Neural Interface for Lower Limb Prosthesis Control”, 31st Annual International Conference of the IEEE EMBS, 2009
 
[87]  B. Aeyels, L. Peeraer, J. Vander Sloten, P. G. Van deret al., “Development of an above-knee prosthesis equipped with a microcomputer-controlled knee joint: first test results”, J Biomed Eng, vol. 14(3), pp. 199-202, 1992.
 
[88]  D. Popovic, M.N. Oguztoreli, R.B. Stein, “Optimal control for an above-knee prosthesis with two degrees of freedom”, Journal of Biomechanics, vol. 28(1), pp 89-98, 1995.
 
[89]  M. Cestari, D. Sanz-Merodio, J. C. Arevalo, E. Garcia, “An Adjustable Compliant Joint for Lower-Limb Exoskeletons”, IEEE Transactions On Mechatronics, vol.20, no.2, pp.889-898, 2015.
 
[90]  A.O Kapti, M.S. Yucenur, “Design and control of an active artifical knee joint. Mechanism and Machine Theory”, Vol, 41: pp, 1477-1485. 2006.
 
[91]  M. S. Zahedi, M. S. Spence, W. D. Solomonidis, J. P. Paul, “Alignment of lower-limb prostheses”, Journal of Rehabilitation Research and Development, vol.23, no.2. pp.2-19, 1986.
 
[92]  M. S. H. Bhuyian, I. A. Choudhury, M. Dahari. “Development of a control system for artificially rehabilitated limbs: a review”, Biological Cybernetics, pp. 1-22, 2014.
 
[93]  A. E. Schultz, T. A. Kuiken, “Neural Interfaces for Control of Upper Limb Prostheses: The State of the Art and Future Possibilities”, American Academy of Physical Medicine and Rehabilitation, vol.3, pp.55-67, 2011.
 
[94]  T. R. Dillingham, L. E. Pezzin, E. J. MacKenzie. “Limb amputation and limb deficiency: epidemiology and recent trends in the United States”. South Med J, vol. 95(8), pp.875-83, Aug 2002.
 
[95]  Y. Geng, P. Yang, X. Xu, L. Chen, “Design and simulation of active transfemoral prosthesis.” Control and Decision Conference (CCDC), 2012 24th Chinese. IEEE, 2012. H. H.Kessler, E.A. Kiessling, “Automatic Arm Prosthesis”, Am. J. Nursing, pp. 65-6, 1965.
 
[96]  D. S. Childress, “Historical Aspects of Powered Limb Prostheses”, Clinical J Prosthetics & Orthotics, vol 9(1), pp. 2-13, 1985.
 
[97]  S. R. Spiegel, “Adult myoelectric upper-limb prosthetic training”, In: Atkins DA, Meier RHIII, eds. Comprehensive Management of the Upper-Limb Amputee. New York, NY: Springer-Verlag, pp. 60-71, 1989.
 
[98]  A. L. Muilenberg,M. A. Leblanc, “Body-powered upper-limb components”. In: Atkins DJ, Meier RHI, eds. Comprehensive Management of the Upper-Limb Amputee. New York. NY: Springer-Verlag, pp. 28-38,1989.
 
[99]  C. K. Battye, A. Nightingale, J. Whillis, “The Use of Myo-Electric Currents in the Operation of Prostheses”, J. Bone & Joint Surg., vol. 37B, pp. 506-510, 1955.
 
[100]  R. N. Scott , P. A.Parker, “ Myoelectric prostheses: state of the art”, Journal of Medical Engineering & Technology, vol. 12, No. 4. pp. 143-151, 1988.
 
[101]  C. Choi, J. Kim, “A Real-time EMG-based Assistive Computer Interface for the Upper Limb Disabled,” Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on , vol., no., pp.459,462, 13-15 June 2007.
 
[102]  X. Navarro, T. B. Krueger, N. Lago, S. Micera, T.Stieglitz, P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems”, J PeripherNervSyst, vol. 10, pp. 229-258, 2005.
 
[103]  J. C. Sanchez, “Co-Evolution of Human and Machine: Neuroprosthetics in the 21st Century”. History of Technical Societies, IEEE Conference Aug 2009.
 
[104]  N. Hogan. “Close-Contact, Human-Interactive Technologies”, Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering, March 2005.
 
[105]  N. Hogan. “Close-Contact, Human-Interactive Technologies”, Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering, March 2005.
 
[106]  E. Bionics. (2015), Available http://intl.eksobionics.com/ekso.
 
[107]  R. Bionics. (2015), Available: http://www.rexbionics.com/.
 
[108]  M. Cestari, D. S. Merodio, J. C. Arevalo, E. Garcia, “Adjustable Compliant Joint for Lower-Limb Exoskeletons”, IEEE Transactions on Mechatronics, vol.20, No.2, pp. 889-898, 2015.
 
[109]  S. Kwon, J. Kim.”Real-Time Upper Limb Motion Prediction from noninvasive biosignals for physical Human-Machine Interactions”, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 2009.
 
[110]  L. Cen , H. Han and J. Kim, “Optical muscle activation sensors for estimating upper limb force level”, Proc. Instrum. Meas. Technol. Conf. pp.1 -4, 2011.
 
[111]  R. Tomovic, D. Popovic, R. B. Stein, “Nonanalytical methods for motor control”, World Scientific, Singapore, 1995.
 
[112]  J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D, J. McFarland, et al., “Brain-Computer Interface Technology: A Review of the First International Meeting”. IEEE Transactions on rehabilitation engineering, vol. 8, no. 2. pp. 164-173, 2000.
 
[113]  N. Birbaumer, A. R. Murguialday, L. Cohen, “Brain-computer interface in paralysis”, Current Opinion in Neurology, vol. 21. pp. 634-638, 2008.
 
[114]  D. J. McFarland, L.M. McCane, S.V. David, J. R. Wolpaw, “Spatiallter Selection for EEG-based communication”, Electroencephalography and Clinical Neurophysiology, vol. 103. pp. 386-394, 1997.
 
[115]  G. Pfurtscheller, C. Neuperamd, A. Schlogl, K. Lugger, “Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters”, IEEE Transactions on Rehabilitation Engineering, vol. 6(3), pp.316-325, 1998.
 
[116]  H. Ramoser, J. Muller-Gerking, G. Pfurtscheller, “Optimal spatial altering of single trial EEG during imagined hand movement”, IEEE Transactions on Rehabilitation Engineering, vol. 8(4), pp. 441-446, 2000.
 
[117]  J. R. Wolpaw, D.J. McFarland, “Multichannel EEG-based brain-computer communication”, Electroencephalography and Clinical Neurophysiology, vol. 90, pp. 444-449, 1994.
 
[118]  L. R. Hochberg, M. D. Serruya, G. M. Friehs, et al., “Neuronal ensemble control of prosthetic devices by a human with tetraplegia”, Nature, vol. 442(7099), pp. 164-171, 2006.
 
[119]  N. F. Ramsey, M. P. Van de Heuvel, K. H. Kho, F. S. Leijten, “Towards human BCI applications based on cognitive brain systems: an investigation of neural signals recorded from the dorsolateral prefrontal cortex”. IEEE Trans Neural SystRehabil Eng. vol. 14(2), pp. 214-217, 2006.
 
[120]  J. J. Shih, D. J. Krusienski, J. R Wolpaw, “Brain-Computer Interfaces in Medicine”, Mayo ClinProc, vol. 87(3), pp. 268-279, 2012.
 
[121]  R. Roy, A. Konar, D. N. Tiberawala, “EEG driven Artificial Limb Control using State Feedback PI Controller”, IEEE Students’ Conference on Electrical, Electronics and Computer Science 2012.
 
[122]  A. R Murguialday, V. Aggarwal, A. Chatterjee, C. Yoonju, “Brain-Computer Interface for a Prosthetic Hand Using Local Machine Control and Haptic Feedback”, IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007. , vol. no., pp. 609-13, June 2007.
 
[123]  M. Velliste, S. Perel, M. C. Spalding, et al., “Cortical control of a prosthetic arm for self-feeding”, Nature, vol. 453, pp. 1098-1101, 2008.
 
[124]  A. Riehle, E. Vaadia, “Motor cortex in voluntary movements: A distributed system for distributed functions”, Boca Raton: CRC Press; 2005.
 
[125]  M. A. Lebedev, M. A. Nicolelis, “Brain machine interfaces: past, present and future”, Trends Neurosci, vol. 29, pp. 536–546, 2006.
 
[126]  E. A. Felton, J. A. Wilson, J. C. Williams, P. C. Garell, “Electrocorticographically controlled brain–computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants”, J Neurosurg, vol. 106, pp.495-500, 2007.
 
[127]  A. Caria, R.Veit, R.Sitaram et al., “Regulation of anterior insular cortex activity using real-time fMRI”, NeuroImage, vol. 35, pp. 1238-1246, 2007.
 
[128]  R. Sitaram,H. Zhang, C. Guan, et al., “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain computer interface”, NeuroImage, vol.34, pp.1416-1427, 2007.
 
[129]  H. S. Mayberg,A. M. Lozano, “Deep brain stimulation for treatment –resistant depression”, Neuron.3, vol. 45(5), pp.651-660, 2005.
 
[130]  G. Loeb, “Cochlear prosthetics,” Annu. Rev. Neurosci., vol. 13, pp. 357-371, 1990.
 
[131]  J. Rauschecker, R. Shannon, “Sending sound to the brain”, Science, vol. 295, pp. 1025-1029, 2002.
 
[132]  L.Borreli, FIFA World Cup 2014: 'Iron Man' Paraplegic To Kick First World Cup Ball With Brain Activity-Controlled Exoskeleton, June 2014. [online] available: http://www.medicaldaily.com/fifa-world-cup-2014-iron-man-paraplegic-kick-first-world-cup-ball-brain-activity-controlled-287770.
 
[133]  Hesse, S., Schmidt, H., Werner, C., & Bardeleben, A. (2003). Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Current opinion in neurology, 16(6), 705-710.
 
[134]  Paweł Maciejasz1,2,3, Jörg Eschweiler4*, Kurt Gerlach-Hahn, et al. A survey on robotic devices for upper limb rehabilitation, Journal of NeuroEngineering and Rehabilitation 2014, 11:3, 1-29.
 
[135]  T. Anwar, A.A. Jumaily, Patient Cooperative Adaptive Controller for lower limb Robotic Rehabilitation Device, 2014 IEEE International Advance Computing Conference (IACC), 1469-1474, 2014.
 
[136]  H.I. Krebs, N. Hogan, M. L. Aisen, B.T. Volpe, “Robot-aided neurorehabilitation”, Rehabilitation Engineering, IEEE Transactions on, vol. 6, no. 1, pp.75-87, 1998.
 
[137]  G. Aguirre-Ollinger, J. E. Colgate, M. A. Peshkin, and A. Goswami, “A 1-DOF assistive exoskeleton with virtual negative damping: effects on the kinematic response of the lower limbs,” in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pp. 1938-1944, 2007.
 
[138]  G. Aguirre-Ollinger, J. E. Colgate, M. A. Peshkin, and A. Goswami, “Active-impedance control of a lower-limb assistive exoskeleton,” pp. 188-195, 2007.
 
[139]  C. Krishnan, R. Ranganathan, S. S. Kantak, Y. Y. Dhaher, and W. Z. Rymer, “Active robotic training improves locomotor function in a stroke survivor,” J. NeuroEng. Rehabil., vol. 9, no. 57, 2012.
 
[140]  P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar, and M. van der Loos, “Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke,” Arch. Phys. Med. Rehab., vol. 83, pp. 952-959, 2002.
 
[141]  M.L. Aisen, H.I. Krebs, N. Hogan, F. McDowell, B.T. Volpe, “The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke”, Arch Neurol, vol. 54, no 4, pp. 443-46, 1997.
 
[142]  S.E. Fasoli, H.I. Krebs, J. Stein, W. R. Frontera , N. Hogan, “Effects of robotic therapy on motor impairment and recovery in chronic stroke”, Arch Phys Med Rehabil, vol. 84, no. 4, pp. 477-82, 2003.
 
[143]  L. R. MacClellan, D.D. Bradham, J. Whitall, B. Volpe, et al, “Robotic upper-limb neurorehabilitation in chronic stroke patients”, Journal of rehabilitation research and development, vol. 42, no. 6, pp.717, 2005.
 
[144]  N. Hogan, H.I. Krebs, A. Sharon, J. Charnnarong, inventors; Massachusetts Institute of Technology, assignee. Interactive robotic therapist. United States patent US 5466213. Nov 1995.
 
[145]  F. Tenore, R. Etienne-Cummings, “Biomorphic circuits and systems: Control of robotic and prosthetic limbs,” in Biomedical Circuits and Systems Conference, 2008. BioCAS 2008. IEEE , vol., no., pp.241-244, 20-22 Nov. 2008.
 
Show Less References

Article

Automated Evaluation System of Japanese Mammary Gland Density Using Breast Thickness: An Initial Study

1School of Information Science and Technology, Aichi Prefectural University, Nagakute, Aichi, Japan

2Department of Radiological Technology, School of Health Science, Gifu University of Medical Science, Seki, Gifu, Japan


Biomedical Science and Engineering. 2016, 4(1), 1-5
doi: 10.12691/bse-4-1-1
Copyright © 2016 Science and Education Publishing

Cite this paper:
Naoki Kamiya, Norimitsu Shinohara. Automated Evaluation System of Japanese Mammary Gland Density Using Breast Thickness: An Initial Study. Biomedical Science and Engineering. 2016; 4(1):1-5. doi: 10.12691/bse-4-1-1.

Correspondence to: Naoki  Kamiya, School of Information Science and Technology, Aichi Prefectural University, Nagakute, Aichi, Japan. Email: n-kamiya@ist.aichi-pu.ac.jp

Abstract

Data in Japan shows that the risk of developing breast cancer increases after the age of 40 and peaks in the late 40s. The most common method of breast cancer screening in Japan is through mammograms, and in recent years, experts have considered combining mammograms with an ultrasound to increase the detection rate of breast cancer. Meanwhile, in the United States, physicians alert the patients of their mammary gland density after the mammogram. The physician offers the possibility of tumors being covered up by the mammary tissue, and use this data to determine the appropriate interval between check-ups. However, this advice based on mammary gland density relies on the physician's visual assessment, and reproducibility remains a challenge. Software that quantitatively evaluates mammary gland density is already commercially available, but is optimized for the Western population. This study aims for the automatic evaluation of mammary gland density of Japanese subjects. We define an evaluation index of the mammary gland amount based on the breast thickness obtained from the DICOM header, and the characteristic amount of breast tissue measured through image analysis. We verified the accuracy of the proposed indicator in its ability to correctly classify mammary gland density across 458 cases, and found it consistent with the physician's classification in 98.5% of the cases. In the future, we look to create an index to calculate average glandular dose (AGD) based on this index.

Keywords

References

[1]  Berg, WA., Blume, JD., Cormack, JB., Mendelson, EB., Lehrer, D., Bohm-Velez, M., Pisano, ED., Jong. RA., Evans, WP., Morton, MJ., Mahoney, MC., Larsen, LH., Barr, RG., Farria, DM., Marques, HS and Boparai, K., “Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer,” The Journal of the American Medical Association, 299 (18), 2151-63, May.2008.
 
[2]  Nothacker, M., Duda, V., Hahn, M., Warm, M., Degenhardt, F., Madjar, H., Weinbrenner, S. and Albert, US., “Early detection of breast cancer: benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense breast tissue. A systematic review,” BMC Cancer, 9, 335, Sep.2009.
 
[3]  Chae, EY., Kim, HH., Cha, JH., Shin, HJ. and Kim, H., “Evaluation of screening whole-breast sonography as a supplemental tool in conjunction with mammography in women with dense breasts,” Journal of Ultrasound in Medicine, 32 (9), 1573-78, Sep.2013.
 
[4]  Volpara Solution Limited, “Volpara clinical breast density and its implications for your patients,” Available: http://www.volparadensity.com/solutions/volparadensity/. [Accessed May. 2, 2016].
 
[5]  Ishihara, S., Taira, N., Kawasaki, K., Ishibe, Y., Mizoo, T., Nishiyama, K., Iwamoto, T., Nogami, T., Motoki, T., Shien, T., Matsuoka, J., Doihara, H., Komoike, Y., Sato, S. and Kanazawa, S., “Association between Mammographic Breast Density and Lifestyle in Japanese Women,” Acta Med Okayama, 67. 145-151. 2013.
 
Show More References
[6]  Dai, H., Yan, Y., Wang, P., Liu, P., Cao, Y., Xiong, L., Luo, Y., Pan, T., Ma, X., Wang, J., Yang, Z., Liu, X., Chen, C., Huang, Y., Li, Y., Wang, Y., Hao, X., Ye, Z. and Chen, K., “Distribution of mammographic density and its influential factors among Chinese women,” International Journal of Epidemiology, 43 (4), 1240-51, March.2014.
 
[7]  Bae, JM., Shin, SY., Kim, EH., Kim, YN., and Nam, CM., “Distribution of dense breasts using screening mammography in Korean women: a retrospective observational study,” Epidemiology and Health, 36, e2014027, Nov.2014.
 
[8]  Matsubara, T., Kasai, S., Seki, K., Fujita, H., Hara, T. and Endo, T., “Development of a Computer-aided Diagnostic System for Mammograms: Improvement of the Method of Extracting Low-Density Regions during Automated Mass Detection.:Improvement of the Method of Extracting Low-Density Regions during Automated Mass Detection,” Japan Association of Breast Cancer Screening, 7 (1). 87-101. 1998.
 
[9]  Matsubara, T., Tsuchimoto, T., Hara, T., Fujita, H., Iwase T. and Endo, T., “A Classification Scheme for Mammograms Based on the Evaluation of Fibroglandular Breast Tissue Density,” Japanese journal of medical electronics and biological engineering, 38 (2). 93-101. 2000.
 
[10]  Matsubara, T., Yamasaki, D., Kato, M., Hara, T., Fujita, H., Iwase, T. and Endo, T., “An automated classification scheme for mammograms based on amount and distribution of fibroglandular breast tissue density,” Proc. of the 15th International Congress and Exhibition CARS 2001, 1230, 545-552, June.2001.
 
[11]  Matsubara, T., Ichikawa, T., Hara, T., Fujita, H., Kasai, S., Endo, T. and Iwase, T., “Novel method for detecting mammographic architectural distortion based on concentration of mammary gland,” Proc. of the 18th International Congress and Exhibition CARS 2004, 1268, 867-871, June.2004.
 
[12]  Matsuda, A., Matsuda, T., Shibata, A., Katanoda, K., Sobue, T. and Nishimoto, H., “Cancer incidence and incidence rates in Japan in 2008: a study of 25 population-based cancer registries for the Monitoring of Cancer Incidence in Japan (MCIJ) project,” Japanese Journal of Clinical Oncology, 44 (4) 388-396, Feb.2014.
 
[13]  Ohuchi, N., Suzuki, A., Sobue, T., Kawai, M., Yamamoto, S., Zheng, Y.F., Endo, T., Fukao, A., Tsuji, I., Yamaguchi, T., Ohashi, Y., Fukuda M. and Ihisda, T., “Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial,” The Lancet, 387 (10016). 341-348. Jan.2016.
 
[14]  Yafee, J. M. and Jong, A.R., “Adjunctive ultrasonography in breast cancer screening”, The Lancet, 387 (10016). 313-314. Jan.2016.
 
[15]  Dance, DR., Skinner, CL., Young, KC., Beckett, JR. and Kotre, CJ., “Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol,” Physics in Medicine and Biology, 45 (11). 3225-3340. 2000.
 
Show Less References