Applied Mathematics and Physics

ISSN (Print): 2333-4878

ISSN (Online): 2333-4886

Website: http://www.sciepub.com/journal/AMP

Article

Objective Quantum Gravity, Its Possible Relation to Gauge Theories and Strings

1B.M. Birla Science Centre, Hyderabad, India


Applied Mathematics and Physics. 2014, 2(3), 82-93
DOI: 10.12691/amp-2-3-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
Lukasz Andrzej Glinka. Objective Quantum Gravity, Its Possible Relation to Gauge Theories and Strings. Applied Mathematics and Physics. 2014; 2(3):82-93. doi: 10.12691/amp-2-3-4.

Correspondence to: Lukasz  Andrzej Glinka, B.M. Birla Science Centre, Hyderabad, India. Email: laglinka@gmail.com; lukaszglinka@wp.eu

Abstract

In this paper the model of quantum gravity for the higher dimensional Lorentzian space-times, in the sense of the analogy with the Arnowitt–Deser–Misner decomposition well-known from General Relativity, is presented. The model is constructed through making use of the quantum geometrodynamics supplemented by the global onedimensionality conjecture, and considers the objective wave functionals. The framework of quantum field theory is applied in order to establish the phenomenological efficiency in accordance with high energy physics. The empirical deductions on the spatial dimensionality are presented as the relationship between the model and gauge theories, especially string theory.

Keywords

References

[1]  Giulini, D. & Kiefer, C. (2007). The Canonical Ap- proach to Quantum Gravity: General Ideas and Geometrodynamics, In: Approaches to Fundamental Physics: An Assessment of Current Theoretical Ideas, I.-O. Stamatescu and E. Seiler, (Eds.), Lect. Notes Phys. 721, pp. 131-150, Springer, New York.
 
[2]  Kiefer, C. (2009). Quantum geometrodynamics: whence, whither?. Gen. Rel. Grav. 41, (2009) 877-901.
 
[3]  ’t Hooft, G. & Veltman, M.J.G. (1973). Dia- grammar, CERN, Geneva.
 
[4]  Veltman, M.J.G. (1976). Quantum Theory of Gravitation, In: Methods in Field Theory. Proc. Les Houches, Session XXVIII, R. Balian and J. Zinn-Justin, (Eds.), pp. 265-328, North Holland, Ams- terdam.
 
[5]  Bern, Z.; Carrasco, J.J.M. & Johansson, H. (2010). Per- turbative Quantum Gravity as a Double Copy of Gauge Theory. Phys. Rev. Lett. 105, (2010) 061602.
 
Show More References
[6]  Wadia, S.R. (2008). String Theory: A Framework for Quan- tum Gravity and Various Applications. E-print: arXiv:0809.1036 [gr- qc].
 
[7]  Blau, M. & Theisen, S. (2009). String theory as a theory of quantum gravity: a status report. Gen. Rel. Grav. 41, (2009) 743-755.
 
[8]  Giddings, S.B. (2011). Is string theory a theory of quantum gravity?. E-print: arXiv:1105.6359 [hep-th].
 
[9]  Ashtekar, A. (2007). An Introduction to Loop Quantum Gravity Through Cosmology. Nuovo Cim. B 122, (2007) 135-155.
 
[10]  Perez, A. (2009). Loop quantum gravity: An introduction. AIP Conf. Proc. 1132, (2009) 386-428.
 
[11]  Domagala, M; Giesel, K.; Kaminski, W. & Lewandowski, J. (2010). Gravity quantized: Loop Quantum Gravity with a Scalar Field. Phys. Rev. D 82, (2010) 104038.
 
[12]  Rovelli, C. (2011). Loop quantum gravity: the first twenty five years. Class. Quant. Grav. 28, (2011) 153002. —– (2011). A new look at loop quantum gravity. Class. Quant. Grav. 28, (2011) 114005.
 
[13]  Oriti, D. (Ed.) (2009). Approaches To Quantum Gravity. To- ward A New Understanding Of Space, Time And Matter, Cambridge University Press, Cambridge.
 
[14]  Wheeler, J.A. (1957). On the Nature of Quantum Ge- ometrodynamics. Ann. Phys. 2, (1957) 604-614. —– (1962). Geometrodynamics, Academic Press, New York. —– (1964). Geometrodynamics and the Issue of the Final State, In: Relativity, Groups, and Topology. Lectures Delivered at Les Houches During the 1963 Session of the Summer School of Theoretical Physics, University of Grenoble, C. DeWitt and B. DeWitt, (Eds.), pp. 317-501, Gordon and Breach, New York. —– (1968). Superspace and the Nature of Quantum Geometrodynam- ics, In: Battelle Rencontres. 1967 Lectures in Mathematics and Physics, C.M. DeWitt and J.A. Wheeler, (Eds.), pp. 242-308, W.A. Benjamin, New York. —– (1968). Einsteins Vision, Springer-Verlag, New York. —– (1970). Superspace, In: Analytic Methods in Mathematical Physics, R.P. Gilbert and R. Newton, (Eds.), pp. 335-378, Gordon and Breach, New York.
 
[15]  DeWitt, B.S. (1967). Quantum Theory of Gravity I. The Canonical Theory. Phys. Rev. 160, (1967) 1113-1148. —– (1967). Quantum Theory of Gravity II. The Manifestly Covariant Theory. Phys. Rev. 160, (1967) 1195-1239. —– (1967). Quantum Theory of Gravity III. Applications of the Co- variant Theory. Phys. Rev. 160, (1967) 1239-1256.
 
[16]  Dirac, P.A.M. (1964). Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva University. —– (1959). Fixation of Coordinates in the Hamiltonian Theory of Grav- itation, Phys. Rev. 114, (1959) 924-930. —– (1959). Energy of the Gravitational Field. Phys. Rev. Lett. 2, (1959) 368-371.– (1958). Generalized Hamiltonian Dynamics. Proc. R. Soc. A 246, (1958) 326-332. —– (1958). The Theory of Gravitation in Hamiltonian Form. Proc. R. Soc. A 246, (1958) 333-343. —– (1950). Generalized Hamiltonian Dynamics. Can. J. Math. 2, (1950) 129-148. —– (1949). Forms of Relativistic Dynamics. Rev. Mod. Phys 21, (1949) 392-399.
 
[17]  Arnowitt, R.; Deser, S. & Misner, C.W. (1961). The Dynamics of General Relativity, In: Gravitation: an introduction to current research, L. Witten, (Ed.), pp. 227-265, John Wiley & Sons, New York.
 
[18]  Hartle, J.B. & Hawking, S.W. (1983). Wave func- tion of the Universe. Phys. Rev. D 28, (1983) 2960-2975.
 
[19]  Halliwell, J.J. & Hawking, S.W. (1985). Origin of structure of the Universe. Phys. Rev. D 31, (1985) 1777-1791.
 
[20]  Coleman, S.; Hartle, J.B.; Piran, T. & Weinberg, S. (Eds.) (1991), Quantum Cosmology and Baby Universes, World Scien- tific, Singapore.
 
[21]  Hartle, J.B.; Hawking, S.W. & Hertog T. (2008). Clas- sical universes of the no-boundary quantum state. Phys. Rev. D 77, (2008) 123537. —– (2008). No-Boundary Measure of the Universe. Phys. Rev. Lett. 100, (2008) 201301.
 
[22]  Glinka, L.A. (2007). Quantum Information from Graviton-Matter Gas. SIGMA 3, (2007) 087, 13 pages. —– (2007). Preliminaries in Many-Particle Quantum Gravity. Einstein– Friedmann Spacetime. E-print: arXiv:0711.1380 [gr-qc]. —– (2008). Multiparticle Quantum Cosmology, In: Frontiers of Fun- damental and Computational Physics. 9th International Symposium, Udine and Trieste, Italy 7-9 January 2008, B.G. Sidharth, F. Honsell, O. Mansutti, K. Sreenivasan, and A. De Angelis (Eds.), AIP Conf. Proc. 1018, (2008) 94-99, American Institute of Physics, New York. —– (2008). Quantum gravity as the way from spacetime to space quan- tum states thermodynamics. New Adv. Phys. 2, (2008) 1-62. —– (2008). 1D Global Bosonization of Quantum Gravity. E-print: arXiv:0804.3516 [gr-qc]. —– (2008). Many-Particle Quantum Cosmology, In: Supersymme- tries and Quantum Symmetries (SQS’07): Proceedings of International Workshop, held in Dubna, Russia, July 30 - August 4, 2007, E. Ivanov and S. Fedoruk (Eds.), pp. 406-411, J
 
[23]  Weinberg, S. (1972). Gravitation and Cosmology. Princi- ples and Applications of the General Theory of Relativity, John Wiley & Sons, New York.
 
[24]  Misner, C.W.; Thorne, K.S. & Wheeler, J.A. (1973). Gravitation, W.H. Freeman, San Francisco.
 
[25]  Landau, L.D. & Lifshitz, E.M. (1994). Course of Theoretical Physics, Vol 2. The Classical Theory of Fields, 4th English ed., Butterworth Heinemann, Amsterdam.
 
[26]  Carroll, S. (2004). Space-time and Geometry. An Introduction to General Relativity, Addison-Wesley, San Francisco.
 
[27]  Poisson, E. (2004). A Relativist’s Toolkit. The Mathematics of Black-Hole Mechanics, Cambridge University Press, Cambridge.
 
[28]  DeWitt, B. (2003). The Global Approach to Quantum Field Theory, Vols. 1-2, Int. Ser. Monogr. Phys. 114, Clarendon Press, Ox- ford.
 
[29]  Masahiro, S. (1987). Nash Manifolds, Lect. Notes Math. 1269, Springer, New York.
 
[30]  Giulini, D. (2009). The Superspace of geometrodynamics. Gen. Rel. Grav. 41, (2009) 785-815.
 
[31]  ’t Hooft, G. & Veltman, M. (1972). Regulariza- tion and renormalization of gauge fields. Nuclear Physics B 44, (1972) 189-213.
 
[32]  Glinka, L.A. (2012). Æthereal Multiverse: A New Unifying Theoretical Approach to Cosmology, Particle Physics, and Quantum Gravity, Cambridge International Science Publishing, Great Abington.
 
Show Less References

Article

Towards Superluminal Physics: Compromising Einstein's Special Relativity and Faster-Than-Light Particles

1B.M. Birla Science Centre, Hyderabad, India


Applied Mathematics and Physics. 2014, 2(3), 94-102
DOI: 10.12691/amp-2-3-5
Copyright © 2014 Science and Education Publishing

Cite this paper:
Lukasz Andrzej Glinka. Towards Superluminal Physics: Compromising Einstein's Special Relativity and Faster-Than-Light Particles. Applied Mathematics and Physics. 2014; 2(3):94-102. doi: 10.12691/amp-2-3-5.

Correspondence to: Lukasz  Andrzej Glinka, B.M. Birla Science Centre, Hyderabad, India. Email: laglinka@gmail.com; lukaszglinka@wp.eu

Abstract

Throughout the violation of momentum-velocity parallelism and deformation of the Einstein equivalence principle, the model of faster- than-light motion, wherein both the Minkowski energy-momentum space and the Lorentz invariance, laying the foundations of Special Relativity and Standard Model, is constructed. Recently announced and denounced CERN's superluminal neutrinos are confronted.

Keywords

References

[1]  OPERA Collaboration (2011). Measurement of the neutrino velocity with the OPERA detector in the CNGS beam. arXiv: 1109.4897v1.
 
[2]  CERN (2011). OPERA experiment reports anomaly in ight time of neutrinos from CERN to Gran Sasso. September 23, 2011.
 
[3]  Cartlidge, E. (2012). Breaking News: Error Undoes Faster-Than-Light Neutrino Results. Science Insider, February 22, 2012.
 
[4]  Reich, E.S. (2012). Flaws found in faster-than-light neutrino measure- ment. Nature News.
 
[5]  ICARUS Collaboration (2012). Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam. arXiv: 1203. 3433, Phys. Lett. B 713 (1), 17-22.
 
Show More References
[6]  CERN (2012). Neutrinos sent from CERN to Gran Sasso respect the cosmic speed limit. June 8, 2012.
 
[7]  Bilaniuk, O.M.P., Deshpande, V.K. & Sudarshan, E.C.G. (1962). "Meta" Relativity. Amer. J. Phys. 30, 718-723.
 
[8]  Feinberg, G. (1967). Possibility of Faster-Than-Light Particles. Phys. Rev. 159(5), 1089-1105.
 
[9]  Sudarshan, E.C.G. (1968). Theory of Particles Travelling Faster-Than- Light. Syracuse University Report.
 
[10]  Sudarshan, E.C.G. (1968). The Nature of Faster-Than-Light Particles and Their Interactions. Delhi University Report.
 
[11]  Bilaniuk, O.M., Brown, S.L., DeWitt, B., Necomb, W.A., Sachs, M., Sudarshan, E.C.G. & Yoshikawa, S. (1969). More About Tachyones. Physics Today 22 (12), 47-52.
 
[12]  Bilaniuk, O.M. & Sudarshan, E.C.G. (1969). Particles Beyond the Light Barrier. Physics Today 22 (5), 43-51.
 
[13]  Camenzind, M. (1970). Relativity and Free Tachyons. Gen. Rel. Grav. 1 (1), 41-62.
 
[14]  Csonka, P.L. (1970). Causality and Faster than Light Particles. Nucl. Phys. B21, 436-444.
 
[15]  Feinberg, G. (1970). Particles that go faster than light. Scientific American 222 (2), 69-76.
 
[16]  Fitzgerald, P. (1970). Tachyons, Backwards Causation and Freedom. Boston Studies in the Philosophy of Science 8, 415-436.
 
[17]  Newton, R.G. (1970). Particles that Travel Faster than Light?. Science 167, 1659-1574.
 
[18]  Fitzgerald, P. (1974). On Retrocausality. Philosophia 4, 513-551.
 
[19]  Kirzhnitz, D.A. & Sazonov, V.N. (1974). Superluminal Motions and Special Relativity Theory (in Russian), in Einsteinovskii Sbornik 1973 ed. by V.L. Ginzburg, Nauka, Moscow, USSR, pp. 84-111.
 
[20]  Stinner, A. & Winchester, I. (1981). The physics of Star Trek. New Scientist 24 (3), 884-887.
 
[21]  Chapman, T. (1982). Time: Philosophical Analysis. Springer, New York, USA.
 
[22]  Fayngold, M. (2002). Special Relativity and Motions Faster than Light. Wiley-VCH, Weinheim, Germany.
 
[23]  Scheck, F. (2012). Classical Field Theory. On Electrodynamics, Non- Abelian Gauge Theories and Gravitation, Springer, Berlin-Heidelberg, Germany.
 
[24]  mNagashima, Y. (2010). Elementary Particle Physics.Volume 1: Quan- tum Field Theory and Particles, Wiley-VCH, Weinheim, Germany.
 
[25]  Huang. K (2007). Fundamental Forces of Nature: The Story of Gauge Fields. World Scientific, Singapore.
 
[26]  Wiedemann, H. (2007). Particle Accelerator Physics. 3rd ed., Springer, Berlin-Heidelberg, Germany.
 
[27]  Zeidler, E. (2006). Quantum Field Theory I: Basics in Mathematics and Physics. A Bridge between Mathematicians and Physicists. Springer, Berlin-Heidelberg, Germany.
 
[28]  Guidry, M. (2004). Gauge Field Theories: An Introduction with Appli- cations. Wiley-VCH, Weinheim, Germany.
 
[29]  Sexl, R.U. & Urbantke, H.K. (2001). Relativity, Groups, Particles: Spe- cial Relativity and Relativistic Symmetry in Field and Particle Physics. Springer, Wien, Austria.
 
[30]  Perkins, D.H. (2000). Introduction to High Energy Physics. Cambridge University Press, Cambridge, UK.
 
[31]  Martin, B.R. & Shaw, G. (1997). Particle Physics. 2nd ed., John Wiley & Sons, Chichester, UK.
 
[32]  Weinberg, S. (1995). The Quantum Theory of Fields. Vol. I Foundations. Cambridge University Press, Cambridge, UK. Rosser, W.G.V. (1969). Relativity and High Energy Physics. Wykeham Publications, London, UK.
 
[33]  Hagedorn, R. (1964). Relativistic Kinematics: A Guide to Kinematic Problems of High Energy Physics. W.A. Benjamin, New York, USA.
 
[34]  Larson, R. & Edwards, B.H. (2010). Calculus, Ninth Edition. Brooks/Cole, Cengage Learning, Belmont, USA.
 
[35]  Giaquinta, M. & Modica, G. (2009). Mathematical Analysis: An Intro- duction to Functions of Several Variables. Birkhauser, New York, USA.
 
[36]  Kaplan, W. (2003). Advanced Calculus. 5th ed., Pearson Education, New Jersey, USA.
 
[37]  Cheney, W. (2001). Analysis for Applied Mathematics. Springer, New York, USA.
 
[38]  Grillet, P.A. (2007). Abstract Algebra, 2nd ed., Springer, New York, USA.
 
[39]  Vinberg, E.B. (2003). A Course in Algebra. American Mathematical Society, Providence, USA.
 
[40]  Tignol, J.-P. (2001). Galois' Theory of Algebraic Equations. World Scientific, Singapore.
 
[41]  Einstein, A. (1921). Relativity. The Special and General Theory. Henry Holt and Company, New York, USA.
 
[42]  Lorentz, H.A., Einstein, A., Minkowski, H. & Weyl, H. (1952). The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity. Dover, USA.
 
[43]  Pauli, W. (1958). Theory of Relativity. Pergamon Press, London, UK.
 
[44]  Fock, V. (1959). The Theory of Space Time and Gravitation. Pergamon Press, London, UK.
 
[45]  Weinberg, S. (1972). Gravitation and Cosmology: Principles and Appli- cations of the General Theory of Relativity. John Wiley & Sons, New York, USA.
 
[46]  D'Inverno, R. (1998). Introducing Einstein's Relativity. Oxford University Press, Oxford, UK.
 
[47]  Schwarz, P.M. & Schwarz, J.H. (2004). Special Relativity: From Einstein to Strings. Cambridge University Press, Cambridge, UK.
 
[48]  Stephani, H. (2004). Relativity: An Introduction to Special and General Relativity. 3rd ed., Cambridge University Press, Cambridge, UK.
 
[49]  Ehlers, J. & Lammerzahl, C. (Eds.) (2006). Special Relativity. Will it Survive the Next 101 Years?. Springer, Berlin-Heidelberg, Germany.
 
[50]  Rindler, W. (2006). Relativity: Special, General and Cosmological. 2nd ed., Oxford University Press, New York, USA.
 
[51]  Ferraro, R. (2007). Einstein'S Space-Time: An Introduction to Special and General Relativity. Springer, New York, USA.
 
[52]  Kobayashi, M. (2009). CP Violation and Flavor Mixing. Prog. Theor. Phys. 122 (1), 1-13.
 
[53]  Rev. Mod. Phys. 81, 1019-1025.
 
[54]  Maskawa, T. (2009).What does CP violation tell us?. Prog. Theor. Phys. 122 (1), 15-21.
 
[55]  Rev. Mod. Phys. 81, 1027-1030.
 
[56]  Beyer, M. (Ed.) (2002). CP Violation in Particle, Nuclear and Astro- physics. Springer, Berlin-Heidelberg, Germany.
 
[57]  Bigi, I.I. & Sanda, A.I. (2009). CP Violation. 2nd ed., Cambridge University Press, Cambridge, UK.
 
[58]  Branco, G.C., Lavoura, L. & Silva, J.P. (1999). CP Violation. Oxford University Press, New York, USA.
 
[59]  Ginzburg, I.F. & Krawczyk, M. (2005). Symmetries of two Higgs doublet model and CP violation. Phys. Rev. D 72, 115013.
 
[60]  Glinka, L.A. (2012). thereal Multiverse: A New Unifying Theoretical Approach to Cosmology, Particle Physics, and Quantum Gravity, Cambridge International Science Publishing, Great Abington, UK.
 
[61]  Glinka, L.A. (2010). CP violation, massive neutrinos, and its chiral con- densate: new results from Snyder noncommutative geometry. Apeiron 17 (4), 223-242.
 
[62]  Kleinknecht, K. (2003). Uncovering CP Violation: Experimental Clarication in the Neutral K Meson and B Meson Systems. Springer, Berlin- Heidelberg, Germany.
 
[63]  Koranga, B.S. (2011). CP Violation in Neutrino Oscillation Due to Planck Scale E_ects. Int. J. Theor. Phys. 50 (1), 35-41.
 
[64]  Leader, E. & Predazzi, E. (1996). An Introduction to Gauge Theories and Modern Particle Physics, Volume 2: CP-violation, QCD and hard processes. Cambridge University Press, Cambridge, UK.
 
[65]  Maccione, L., Taylor, A.M., Mattingly, D.M. & Liberati, S. (2009). Planck-scale Lorentz violation constrained by Ultra-High-Energy CosmicRays. JCAP 04, 022.
 
[66]  Sanda, A.I. (2009). The Road to the Discovery of Large CP Violation inB Decays. Prog. Theor. Phys. 122 (1), 103-123.
 
[67]  Sozzi, M.S. (2008). Discrete Symmetries and CP Violation: From Ex-periment to Theory. Oxford University Press, New York, USA.
 
Show Less References

Article

Challenging Photon Mass: from Scalar Quantum Electrodynamics to String Theory

1B.M. Birla Science Centre, Hyderabad, India


Applied Mathematics and Physics. 2014, 2(3), 103-111
DOI: 10.12691/amp-2-3-6
Copyright © 2014 Science and Education Publishing

Cite this paper:
Lukasz Andrzej Glinka. Challenging Photon Mass: from Scalar Quantum Electrodynamics to String Theory. Applied Mathematics and Physics. 2014; 2(3):103-111. doi: 10.12691/amp-2-3-6.

Correspondence to: Lukasz  Andrzej Glinka, B.M. Birla Science Centre, Hyderabad, India. Email: laglinka@gmail.com; lukaszglinka@wp.eu

Abstract

A massless photon, originated already through the Maxwell theory of electromagnetism, is one of the basic paradigms of modern physics, ideally supported throughout both the quantum electrodynamics and the Higgs mechanism of spontaneous symmetry breaking which lays the foundations of the Standard Model of elementary particles and fundamental interactions. Nevertheless, the physical interpretation of the optical experimental data, such like observations of total internal reflection of the beam shift in the Goos–H¨anchen effect, concludes a photon mass. Is, therefore, light diversified onto two independent species - gauge photons and optical photons? Can such a state of affairs be consistently described through a unique theoretical model? In this paper, two models of a photon mass, arising from the scalar quantum electrodynamics with the Higgs potential, are discussed. The first scenario leads to a neutral scalar mass estimable throughout the experimental limits on a photon mass. In the modified mechanism, a neutral scalar mass in not affected throughout a photon mass and is determinable through the experimental data, while a massless dilaton is present and a non-kinetic massive vector field effectively results in the string theory of non-interacting invariant both a free photon and a neutral scalar, and the Aharonov–Bohm effect is considered. The Markov hypothesis on maximality of the Planck mass is applied.

Keywords

References

[1]  H.J. Muller-Kirsten. Electrodynamics: An Introduction Including Quan-tum E_ects (World Scienti_c, 2004).
 
[2]  F.W. Hehl, Yu.N. Obukhov. Foundations of Classical Electrodynamics. Charge, Flux and Metric (Birkhauser, 2003).
 
[3]  D.J. Gri_ths. Introduction to Electrodynamics (Prentice-Hall, 1999).
 
[4]  J.D. Jackson. Classical Electrodynamics (John Wiley & Sons, 1999).
 
[5]  W. Greiner. Classical Electrodynamics (Springer, 1998).
 
Show More References
[6]  J. Schwinger, L.L. DeRaad, K. Milton, W.-Y. Tsai. Classical Electrody-namics (Perseus Books, 1998).
 
[7]  H.C. Ohanian. Classical Electrodynamics (Allyn and Bacon, 1988).
 
[8]  M. Schwartz. Principles of Electrodynamics (Dover, 1987).
 
[9]  R.S. Ingarden, A. Jamio lkowski. Classical Electrodynamics (Elsevier, 1985).
 
[10]  A.O. Barut. Electrodynamics and Classical Theory of Fields and Parti-cles (Dover, 1980).
 
[11]  L.D. Landau, E.M. Lifshitz. The Classical Theory of Fields. Course of Theoretical Physics, Volume 2 (Butterworth-Heinemann, 1975).
 
[12]  S.R. de Groot, L.G. Suttorp. Foundations of Electrodynamics (North Holland Publishing Company, 1972).
 
[13]  A. Sommerfeld. Electrodynamics. Lectures on Theoretical Physics, Vol. III (Academic Press, 1952).
 
[14]  L. Silberstein. Elements of the Electromagnetic Theory of Light (Longmans, 1918).
 
[15]  J.C. Maxwell. A Treatise on Electricity and Magnetism (Clarendon Press, 1873).
 
[16]  E. Zeidler. Quantum Field Theory II: Quantum Electrodynamics. A Bridge between Mathematicians and Physicists (Springer, 2008).
 
[17]  D.M. Gingrich. Practical Quantum Electrodynamics (CRC Press, 2006).
 
[18]  O. Steinmann. Perturbative Quantum Electrodynamics and Axiomatic Field Theory (Springer, 2000).
 
[19]  C. Cohen-Tonnoudji, J. Dupont-Roc, G. Grynberg. Photons and Atoms. Introduction to Quantum Electrodynamics (John Wiley & Sons, 1997).
 
[20]  W. Greiner, J. Reinhardt. Quantum Electrodynamics (Springer, 1992).
 
[21]  W. Greiner, B. Muller, J. Rafelski. Quantum Electrodynamics of Strong Fields. With an Introduction into Modern Relativistic Quantum Mechan- ics (Springer, 1985).
 
[22]  N.N. Bogoliubov, D.V. Shirkov. Introduction to the Theory of Quantized Fields (John Wiley & Sons, 1980).
 
[23]  16 I. Bia lynicki-Birula, Z. Bia lynicka-Birula. Quantum Electrodynamics (Pergamon Press, 1975).
 
[24]  A.I. Akhiezer, V.B. Berestetskii. Quantum Electrodynamics (John Wiley & Sons, 1965).
 
[25]  E.A. Power. Introductory Quantum Electrodynamics (Longmans, 1964).
 
[26]  R.P. Feynman. Quantum Electrodynamics (W.A. Benjamin, 1961).
 
[27]  G. Grynberg, A. Apsect, C. Fabre. Introduction to Quantum Optics: From the Semi-Classical Approach to Quantized Light (Cambridge University Press, 2010).
 
[28]  J.R. Garrison, R.Y. Chiao. Quantum Optics (Oxford University Press, 2008).
 
[29]  I.R. Kenyon. The Light Fantastic: A Modern Introduction to Classicaland Quantum Optics (Oxford University Press, 2008).
 
[30]  D.F. Walls, G.J. Milburn. Quantum Optics (Springer, 2008).
 
[31]  R.J. Glauber, Quantum Theory of Optical Coherence (Wiley-VCH, 2007).
 
[32]  P. Meystre, M. Sargent. Elements of Quantum Optics (Springer, 2007).
 
[33]  V. Vogel, D.-G. Welsch. Quantum Optics (Wiley-VCH, 2006).
 
[34]  A.K. Prykarpatsky, U. Taneri, N.N. Bogolubov. Quantum Field Theory with Application to Quantum Nonlinear Optics (World Scienti_c, 2002).
 
[35]  M.O. Scully, M.S. Zubairy. Quantum Optics (Cambridge University Press, 2001).
 
[36]  W.P. Schleich. Quantum Optics in Phase Space (Wiley-VCH, 2001).
 
[37]  R. Loudon. The Quantum Theory of Light (Oxford University Press, 1973).
 
[38]  J.R. Klauder, E.C.G. Sudarshan. Fundamentals of Quantum Optics (W.A. Benjamin, 1968).
 
[39]  F. Scheck. Classical Field Theory: On Electrodynamics, Non-Abelian Gauge Theories and Gravitation (Springer, 2012).
 
[40]  M. Guidry. Gauge Field Theories: An Introduction with Applications (Wiley-VCH, 2004).
 
[41]  I.J.R. Aitchinson, A.J.G. Hey. Gauge Theories in Particle Physics. Vols. I and II (Institute of Physics Publishing, 2003-2004).
 
[42]  V. Rubakov. Classical Theory of Gauge Fields (Princeton University Press, 2002).
 
[43]  S. Pokorski. Gauge Field Theories (Cambridge University Press, 2000).
 
[44]  P.H. Frampton. Gauge Field Theories (John Wiley & Sons, 2000).
 
[45]  D. Bailin, A. Love. Introduction to Gauge Field Theory (Institute of Physics Publishing, 1993).
 
[46]  17 T.-P. Cheng, L.-F. Li. Gauge Theory of Elementary Particle Physics (Clarendon Press, 1988).
 
[47]  I.J.R. Aitchinson. An Informal Introduction to Gauge Field Theories (Cambridge University Press, 1984).
 
[48]  K. Huang. Quarks, Leptons and Gauge Fields (World Scientific, 1982).
 
[49]  N.P. Konopleva, V.N. Popov. Gauge Fields (Harwood Academic Publishers, 1981).
 
[50]  Y. Nambu. Phys. Rev. 117, 648 (1960).
 
[51]  P.W. Higgs. Phys. Rev. Lett. 13(16), 508 (1964).
 
[52]  F. Englert, R. Brout. Phys. Rev. Lett. 13 (9), 321 (1964).
 
[53]  L. de Broglie. Ann. de Phys. 3, 22 (1925).
 
[54]  Phil. Mag. 47, 446 (1924).
 
[55]  C.R. Acad. Sci. 177, 506, 548, 630 (1923).
 
[56]  J. Phys. 3, 422 (1922).
 
[57]  P. Ehrenfest. Phys. Z. 13, 317 (1912).
 
[58]  D.F. Comstock. Phys. Rev. 30, 267 (1910).
 
[59]  J. Kunz. Am. J. Sci. 30, 313 (1910).
 
[60]  R.C. Tolman. Phys. Rev. 30, 291 (1910), 31, 26 (1910).
 
[61]  W. Ritz. Ann. Chim. Phys. 13, 145 (1908).
 
[62]  Ar. Sc. Phys. Nat. 16, 260 (1908).
 
[63]  A. Proca, J. Phys. Rad. 7 (9), 61 (1938), 7 (8), 23 (1937), 7 (7), 347 (1936).
 
[64]  C.R. Acad. Sci. 203, 70 (1936), 202, 1366 (1936).
 
[65]  L. de Broglie. Nouvelles recherches sur la lumi_ere (Hermann, 1936).
 
[66]  Une nouvelle th_eorie de la Lumi_ere, la M_echanique ondulatoire du photon (Hermann, 1940-1942).
 
[67]  Th_eorie g_en_erale des particules _a Spin (Gauthier-Villars, 1943).
 
[68]  M_echanique ondulatoire et la th_eorie quantique des champs (GV, 1949).
 
[69]  La Thermodynamique de la particule isol_ee (ou Thermodynamique cach_ee des particules) (GV, 1964).
 
[70]  Ondes _electromag- n_etiques et Photons (GV, 1968).
 
[71]  J. Phys. Rad. 11, 481 (1950).
 
[72]  J. Phys. 20, 963 (1959).
 
[73]  Int. J. Theor. Phys. 1, 1 (1968).
 
[74]  Ann. Inst. H. Poincar_e 1, 1 (1964), 9, 89 (1968).
 
[75]  J. Phys. 20, 963 (1959), 28, 481 (1967).
 
[76]  C.R. Acad. Sci. 257, 1822 (1963), 264, 1041 (1967), 198, 445 (1934).
 
[77]  Found. Phys. 1(1), 5 (1970).
 
[78]  Ann. Fond. L. de Broglie 12, 1 (1987).
 
[79]  F. Goos, M. Hanchen. Ann. Phys. (Leipzig) 1, 333 (1947).
 
[80]  A. Mazet, C. Imbert, S. Huard. C.R. Acad. Sci. B 273, 592 (1971).
 
[81]  L. De Broglie, J.-P. Vigier. Phys. Rev. Lett. 28 (1), 1001 (1972).
 
[82]  G. J. Troup, J.L.A. Francey, R.G. Turner, A. Tirkel. Phys. Rev. Lett. 28, 1540 (1972). 18.
 
[83]  M.C. Diamantini, G. Guarnaccia, C.A. Trugenberger. J. Phys. A 47, 092001 (2014).
 
[84]  F. Logiurato. J. Mod. Phys. 5, 1 (2014).
 
[85]  Gior. Fis. 52(4), 261 (2011).
 
[86]  J. de Woul, E. Langmann. J. Stat. Phys. 154, 877 (2014).
 
[87]  L.A. Glinka, NeuroQuantology 10, 11 (2012).
 
[88]  J.R. Mureika, R.B. Mann. Mod. Phys. Lett. A 26, 171 (2011).
 
[89]  A. Accioly, J. Helayel-Neto, E. Scatena. Phys. Rev. D 82, 065026 (2010).
 
[90]  Int. J. Mod. Phys. D 19, 2393 (2010).
 
[91]  A.S. Goldhaber, M.M. Nieto. Rev. Mod. Phys. 82, 939 (2010), 43, 277 (1971).
 
[92]  Sci. Am. 234(5), 86 (1976).
 
[93]  Phys. Rev. Lett. 91, 149101 (2003), 26, 1390 (1971), 21, 567 (1968).
 
[94]  D.D. Ryutov. Phys. Rev. Lett. 103, 201803 (2009).
 
[95]  Plasma Phys. Control. Fusion 49, B429 (2007), 39, A73 (1997).
 
[96]  U. Kulshreshtha. Mod. Phys. Lett. A 22, 2993 (2008).
 
[97]  B.G. Sidharth. Ann. Fond. L. de Broglie 33, 199 (2008).
 
[98]  F. Wilczek. The Lightness of Being: Mass, Ether, and the Uni_cation of Forces (Basic Books, 2008).
 
[99]  E. Adelberger, G. Dvali, A. Gruzinov. Phys. Rev. Lett. 98, 010402 (2007).
 
[100]  A. Dolgov, D.N. Pelliccia. Phys. Lett. B 650, 97 (2007).
 
[101]  G. Spavieri, M. Rodriguez. Phys. Rev. A 75, 052113 (2007).
 
[102]  B. Altschul. Phys. Rev. 73, 036005 (2006).
 
[103]  H. Kleinert. Europh. Lett. 74, 889 (2006).
 
[104]  Lett. Nuo. Cim. 35, 405 (1982).
 
[105]  L.B. Okun. Acta Phys. Pol. B 37, 565 (2006).
 
[106]  Phys. Today 42, 31 (1989).
 
[107]  A. Vainshtein. Surv. High En. Phys. 20, 5 (2006).
 
[108]  P. Weinberger. Phil. Mag. Lett. 86(7), 405 (2005).
 
[109]  L.-C. Tu, J. Luo, G.T. Gillies. Rep. Prog. Phys. 68, 77 (2005).
 
[110]  M. Fullekrug, Phys. Rev. Lett. 93, 043901 (2004).
 
[111]  T. Prokopec, E. Puchwein. JCAP 0404, 007 (2004).
 
[112]  T. Prokopec, R.P. Woodard. Am. J. Phys. 72, 60 (2004).
 
[113]  J.Q. Shen, F. Zhuang. J. Optics A: Pure Appl. Optics 6, 239 (2004).
 
[114]  L.-C. Tu, J. Luo. Metrologia 41 S136 (2004).
 
[115]  M. Land, Found. Phys. 33, 1157 (2003).
 
[116]  J. Luo, L.-C. Tu, Z.-K. Hu, E.-J. Luan. Phys. Rev. Lett. 90, 081801 (2003).
 
[117]  B.-X. Sun, X.-F. Lu, P.-N. Shen, E.-G. Zhao. Mod. Phys. Lett. A 18, 1485 (2003).
 
[118]  T. Borne, G. Lochak, H. Stumpf. Nonperturbative Quantum Field Theory and the Structure of Matter (Kluwer Academic Publishers, 2002).
 
[119]  19 R. Dick, D.M.E. McArthur. Phys. Lett. B 535, 295 (2002).
 
[120]  C. Kohler. Class. Quant. Grav. 19, 3323 (2002).
 
[121]  T. Prokopec, O. Tornkvist, R. Woodard. Phys. Rev. Lett. 89, 101301 (2002).
 
[122]  R. Lakes. Phys. Rev. Lett. 80(9), 1826 (1998).
 
[123]  O. Costa de Beauregard, Phys. Essays 10(3), 492, 646 (1997).
 
[124]  S. Je_reys, S. Roy, J.-P. Vigier, G. Hunter (Eds). The Present Status of the Quantum Theory of Light (Springer, 1997).
 
[125]  H.A. M_unera, Apeiron 4, 77 (1997).
 
[126]  J.-P. Vigier. Phys. Lett. A 234, 75 (1997).
 
[127]  Apeiron 4, 71 (1997).
 
[128]  A.Yu. Ignatiev, G.C. Joshi. Mod. Phys. Lett. A 11, 2735 (1996).
 
[129]  P. Mathews, V. Ravindran. Int. J. Mod. Phys. A 11, 2783 (1996).
 
[130]  T.W. Barrett, D.M. Grimes (Eds). Advanced Electromagnetism (World Scienti_c, 1995).
 
[131]  G. Lochak, Ann. Fond. L. de Broglie 20, 111 (1995).
 
[132]  Int. J. Theor. Phys. 24, 1019 (1985).
 
[133]  E. Fischbach, H. Kloor, R.A. Langel, A.T.Y. Liu, M. Peredo. Phys. Rev. Lett. 73, 514 (1994).
 
[134]  E. Prugovecki, Found. Phys. 24, 335 (1994).
 
[135]  M.C. Combourieux, J.-P. Vigier. Phys. Lett. A 175, 277 (1993).
 
[136]  V.A. Kosteleck_y, M.M. Nieto. Phys. Lett. B 317, 223 (1993).
 
[137]  S. Mohanty, S.N. Nayak, S. Sahu. Phys. Rev. D 47, 2172 (1993).
 
[138]  M.M. Nieto, in D.B. Cline (Ed). Gamma Ray: Neutrino Cosmology and Planck Scale Physics (World Scienti_c, 1993), pp. 291-296.
 
[139]  V.A. Kosteleck_y, S. Samuel. Phys. Rev. Lett. 66, 1811 (1991).
 
[140]  B. Rosenstein, A. Kovner. Int. J. Mod. Phys. A 6, 3559 (1991).
 
[141]  D.G. Boulware, S. Deser. Phys. Rev. Lett. 63, 2319 (1989).
 
[142]  L.P. Fulcher, Phys. Rev. A 33, 759 (1986).
 
[143]  G. Barton, N. Dombey. Annals Phys. 162, 231 (1985).
 
[144]  Nature 311, 336 (1984).
 
[145]  J.J. Ryan, F. Accetta, R.H. Austin. Phys. Rev. D 32, 802 (1985).
 
[146]  J.D. Barrow, R.R. Burman. Nature 307, 14-15 (1984).
 
[147]  R.E. Crandall. Am. J. Phys. 51, 698 (1983).
 
[148]  H. Georgi, P. Ginsparg, S.L. Glashow. Nature (Lond.) 306, 765 (1983).
 
[149]  L.F. Abbott, M.B. Gavela. Nature 299, 187 (1982).
 
[150]  J.R. Primack, M.A. Sher. Nature 299, 187 (1982), 288, 680 (1980).
 
[151]  N. Dombey. Nature 288, 643 (1980).
 
[152]  J.C. Byrne, Astroph. Space Sci. 46, 115 (1977).
 
[153]  E. MacKinnon. Am. J. Phys. 45, 872 (1977), 44, 1047 (1976).
 
[154]  G.V. Chibisov. Usp. Fiz. Nauk 119, 551 (1976).
 
[155]  R. Schlegel. Am. J. Phys. 45, 871 (1976).
 
[156]  20L. Davis, A.S. Goldhaber, M.M. Nieto. Phys. Rev. Lett. 35, 1402 (1975).
 
[157]  O. Steinmann. Ann. Inst. H. Poincar_e 23(1), 61 (1975).
 
[158]  S. Deser. Ann. Inst. H. Poincar_e 16(1), 79 (1972).
 
[159]  G. 't Hooft, M. Veltman. Nucl. Phys. B 50, 318 (1972).
 
[160]  G. 't Hooft. Nucl. Phys. B 35, 16 (1971).
 
[161]  N.M. Kroll. Phys. Rev. Lett. 26, 1395 (1971), 27, 340 (1971).
 
[162]  D. Park, E.R. Williams. Phys. Rev. Lett. 26, 1393, 1651 (1971).
 
[163]  E.R. Williams, J.E. Faller, H.A. Hill. Phys. Rev. Lett. 26, 721 (1971).
 
[164]  H. Van Dam, M. Veltman. Nucl. Phys. B 22, 397 (1970).
 
[165]  G. Feinberg. Science 166, 879 (1969).
 
[166]  I.Yu. Kobzarev, L.B. Okun. Usp. Fiz. Nauk 95, 131 (1968).
 
[167]  V.I. Ogievetsky, I.V. Polubarinov. Yad. Fiz. 4, 216 (1966).
 
[168]  W.G.V. Rosser. An Introduction to the Theory of Relativity (Butterworths, 1964).
 
[169]  P.W. Anderson, Phys. Rev. 130, 439 (1963).
 
[170]  M. Gintsburg. Astron. Zh. 40, 703 (1963).
 
[171]  D.G. Boulware, W. Gilbert. Phys. Rev. 126, 1563 (1962).
 
[172]  J. Schwinger. Phys. Rev. 128, 2425 (1962), 125, 397 (1962).
 
[173]  N. Kemmer. Helv. Phys. Acta 33, 829 (1960).
 
[174]  Y. Yamaguchi. Prog. Theor. Phys. Supp. 11, 1 (1959).
 
[175]  E.C.G. Stueckelberg. Helv. Phys. Acta 30, 209 (1957).
 
[176]  L. Bass, Nuo. Cim. 3, 1204 (1956).
 
[177]  L. Bass, E. Schrodinger. Proc. R. Soc. London A 232, 1 (1955).
 
[178]  R.J. Glauber. Prog. Theor. Phys. 9, 295 (1953).
 
[179]  H. Umezawa. Prog. Theor. Phys. 7, 551 (1952).
 
[180]  F. Coester. Phys. Rev. 83, 798 (1951).
 
[181]  G. Petiau, J. Phys. Rad. 10, 215 (1949).
 
[182]  E. Schrodinger. Proc. R. Ir. Ac. A 49, 43, 135 (1943), 47, 1 (1941).
 
[183]  W. Pauli. Rev. Mod. Phys. 13, 203 (1941).
 
[184]  H. Yukawa, S. Sakata, M. Taketani. Proc. Phys. Math. Soc. Japan 20, 319 (1938).
 
[185]  H. Yukawa, Proc. Phys. Math. Soc. Japan 17, 48 (1935).
 
[186]  A. Bashir, Y. Concha-Sanchez, R. Delbourgo, M.E. Tejeda-Yeomans. Phys. Rev. D 80, 045007 (2009).
 
[187]  S.P. Kim, H.K. Lee. J. Korean Phys. Soc. 54, 2605 (2009).
 
[188]  Phys. Rev. D 76, 125002 (2007).
 
[189]  R.P. Malik, B.P. Mandal. Pramana 72, 805 (2009).
 
[190]  C. Bernicot, J.-Ph. Guillet. JHEP 0801, 059 (2008).
 
[191]  M.N. Chernodub, L. Faddeev, A.J. Niemi. JHEP 0812, 014 (2008).
 
[192]  21 H. Kleinert, B. van den Bossche. Nucl. Phys. B 632, 51 (2002).
 
[193]  D.S. Irvine, M.E. Carrington, G.Kunstatter, D. Pickering. Phys. Rev. D 64, 045015 (2001).
 
[194]  H. Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation (World Scienti_c, 2009).
 
[195]  Gauge Fields in Condensed Matter, Vol. I Superow and Vortex Lines (World Scientific, 1989).
 
[196]  S. Weinberg. The Quantum Theory of Fields. Vol. I Foundations (Cambridge University Press, 1996).
 
[197]  M. Peskin, D. Schroeder. An Introduction to Quantum Field Theory (Westview Press, 1995).
 
[198]  C. Itzykson, J.-B. Zuber. Quantum Field Theory (McGraw-Hill, 1980).
 
[199]  V.L. Ginzburg, L.D. Landau. Zh. Eksp. Teor. Fiz. 20, 1064 (1950).
 
[200]  L.D. Landau. Phys. Z. d. Sow. Union 11, 26 and 129 (1937).
 
[201]  A.A. Abrikosov. Sov. Phys. JETP 5, 1174 (1957).
 
[202]  H.B. Nielsen, P. Olesen. Nucl. Phys. B 61, 45 (1973).
 
[203]  L.A. Glinka. _thereal Multiverse: A New Unifying Theoretical Approach to Cosmology, Particle Physics, and Quantum Gravity (Cambridge International Science Publishing, 2012).
 
[204]  M.A. Markov. Prog. Theor. Phys. Suppl. E 65, 85 (1965).
 
[205]  Sov. Phys. JETP 24, 584 (1967).
 
[206]  Y. Aharonov, D. Bohm. Phys. Rev. 115 (3), 485 (1959).
 
Show Less References

Article

Massive Electrodynamic Gravity

1B.M. Birla Science Centre, Hyderabad, India


Applied Mathematics and Physics. 2014, 2(3), 112-118
DOI: 10.12691/amp-2-3-7
Copyright © 2014 Science and Education Publishing

Cite this paper:
Lukasz Andrzej Glinka. Massive Electrodynamic Gravity. Applied Mathematics and Physics. 2014; 2(3):112-118. doi: 10.12691/amp-2-3-7.

Correspondence to: Lukasz  Andrzej Glinka, B.M. Birla Science Centre, Hyderabad, India. Email: laglinka@gmail.com; lukaszglinka@wp.eu

Abstract

In this paper, an effcient combination of the diverse theoretical approaches, such like the Einstein gravitational waves, the Lifshitz cosmological perturbation theory, the Veltman perturbative quantum gravity, and the Maxwell electrodynamics, leads to an essentially new discussion of either massless and massive gravitons. The new force law of gravitation is established. The case of the Planckian particle is considered in the context of the Markov hypothesis.

Keywords

References

[1]  A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 1, 688 (1916).
 
[2]  A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 1, 154 (1918).
 
[3]  S. Weinberg, Gravitation and Cosmology. Principles and Applications of the General Theory of Relativity (John Wiley & Sons, 1972).
 
[4]  S. Carroll, Space-time and Geometry. An Introduction to General Rela- tivity (Addison-Wesley, 2004).
 
[5]  L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields. Course of Theoretical Physics, Volume 2 (Butterworth-Heinemann, 1994).
 
Show More References
[6]  J.D.E. Craighton and W.G. Anderson, Gravitational-Wave Physics and Astronomy: An Introduction to Theory, Experiment and Data Analysis (Wiley-VCH, 2011).
 
[7]  P. Jaranowski and A. Kr′olak, Analysis of Gravitational-Wave Data (Cambridge University Press, 2009).
 
[8]  M. Maggiore, Gravitational Waves. Volume 1 Theory and Experiments (Oxford University Press, 2007).
 
[9]  V.F. Mukhanov, Massive Gravity, talkat Quantum Theory and Gravita- tion, Eidgen¨ossische Technische Hochschule, Zurich,¨ Switzerland, June 14-24, 2011.
 
[10]  E.M. Lifshitz, J. Phys. (USSR) 10, 116 (1946).
 
[11]  E. Bertschinger, Cosmological Dynamics, in Cosmology and Large Scale Structure. Les Houches Summer School, Session LX, ed. by R.Schaeer, J. Silk, M. Spiro, and J. Zinn-Justin, (Elsevier, 1996), pp. 273-347.
 
[12]  M.J.G. Veltman, Quantum Theory of Gravitation, in Methods in Field Theory. Les Houches, Session XXVIII, ed. by R. Balian and J. Zinn- Justin (North Holland, 1976), pp. 265-328.
 
[13]  M.A. Markov, Prog. Theor. Phys. Suppl. E65, 85 (1965).
 
[14]  M.A. Markov, Sov. Phys. JETP 24, 584 (1967).
 
[15]  L.A. Glinka, AEthereal Multiverse: A New Unifying Theoretical Approach to Cosmology, Particle Physics, and Quantum Gravity (Cambridge In- ternational Science Publishing, 2012).
 
Show Less References

Article

On ’t Hooft–Polyakov Monopole, Julia–Zee Dyon, and Higgs Field, throughout the Generalized Bogomoln’yi Equations

1B.M. Birla Science Centre, Hyderabad, India


Applied Mathematics and Physics. 2014, 2(3), 119-123
DOI: 10.12691/amp-2-3-8
Copyright © 2014 Science and Education Publishing

Cite this paper:
Lukasz Andrzej Glinka. On ’t Hooft–Polyakov Monopole, Julia–Zee Dyon, and Higgs Field, throughout the Generalized Bogomoln’yi Equations. Applied Mathematics and Physics. 2014; 2(3):119-123. doi: 10.12691/amp-2-3-8.

Correspondence to: Lukasz  Andrzej Glinka, B.M. Birla Science Centre, Hyderabad, India. Email: laglinka@gmail.com; lukaszglinka@wp.eu

Abstract

In this paper, making use of the’tHooft–Polyakov–Julia–Zeeansatz for the SU(2) Yang–Mills–Higgs gauge field theory, we present the straightforward generalization of the Bogomoln’yi equations and its several consequences. Particularly, this is shown that this idea is able to generate new types of non-abelian both dyons and magnetic monopoles and, moreover, that within the new model the scalar field can be described through the Coulomb potential, whereas, upto aconstant, the non-abelian gauge field becomes the Wu–Yang monopole.

Keywords

References

[1]  C.N. Yang, R. Mills. Phys. Rev. 96(1), 191 (1954).
 
[2]  P.W. Higgs. Phys. Rev. Lett. 13, 508 (1964).
 
[3]  J. Schwinger. Phys. Rev. 144, 1087 (1966), 173, 1536 (1968).
 
[4]  Science 165, 757 (1969).
 
[5]  J.J. Aubert et al. Phys. Rev. Lett. 33, 1404 (1974).
 
Show More References
[6]  J.E. Augustin et al. Phys. Rev. Lett. 33, 1406 (1974).
 
[7]  G. ’t Hooft. Nucl. Phys. B 79, 276 (1974).
 
[8]  A.M. Polyakov. JETP Lett. 20, 194 (1974).
 
[9]  Sov. Phys. JETP 41, 988 (1975).
 
[10]  B. Julia, A. Zee. Phys. Rev. D 11, 2227 (1975).
 
[11]  M.K. Prasad, C.M. Sommerfield. Phys. Rev. Lett. 35, 760 (1975).
 
[12]  E.B. Bogomol’nyi. Sov. J. Nucl. Phys. 24, 449 (1976).
 
[13]  S.-F. Mo, J.-R. Ren, T. Zhu. Commun. Theor. Phys. 51, 293 (2009).
 
[14]  K.M. Milton. Rept. Prog. Phys. 69, 1637 (2006).
 
[15]  M. Creutz. Nucl. Phys. B (Proc. Suppl.) 140, 597 (2005).
 
[16]  G. ’t Hooft. 50 Years of Yang-Mills Theory (World Scientific, 2005).
 
[17]  Ya. Shnir. Magnetic Monopoles (Springer, 2005).
 
[18]  G. Fodor, I. R’ acz. Phys. Rev. Lett. 92, 151801 (2004).
 
[19]  N. Manton, P.M. Sutcli?e. Topological Solitons (Cambridge University Press, 2004).
 
[20]  F.A. Bais, J. Striet. Phys. Lett. B 540, 319 (2002).
 
[21]  X. Artru, D. Fayolle. Prob. Atom. Sci. Tech. 6, 110 (2001).
 
[22]  F.A. Bais, B.J. Schroers. Nucl. Phys. B 512, 250 (1998).
 
[23]  E. van der Meer. Magnetic Monopoles in Gauge Field Theories. On the realization of global symmetries on moduli spaces (MSc thesis, University of Amsterdam, 1997).
 
[24]  D. Singleton. Int. J. Theor. Phys. 34(12), 2453 (1995).
 
[25]  M.A. Shifman. Instantons in Gauge Theories (World Scientific, 1994).
 
[26]  M. Atiyah, N. Hitchin. The Geometry and Dynamics of Magnetic Monopoles (Princeton University Press, 1988).
 
[27]  I.J.R. Aitchinson. Acta Phys. Pol. B 18, 207 (1987).
 
[28]  N.S. Craigie (Ed). Theory and Detection of Magnetic Monopoles in Gauge Theories: A Collected Set of Lecture Notes (World Scientific, 1986).
 
[29]  S. Coleman. Aspects of Symmetry (Cambridge University Press, 1985).
 
[30]  J. Preskill, Ann. Rev. Nucl. Part. Sci. 34, 461 (1984).
 
[31]  R.A. Carrigan, W.P. Trower. Magnetic Monopoles (PlenumPress,1983).
 
[32]  K.L. Chang, W.F. Kao. Chin. J. Phys. 21, 1 (1983).
 
[33]  M.K.Murray, Non-Abelian Magnetic Monopoles (PhDthesis, University of Oxford, 1983).
 
[34]  P. Rossi. Phys. Rep. 86, 317 (1982).
 
[35]  K.L. Chang. Rev. Bras. Fis. 10, 147 (1980).
 
[36]  A. Comtet. Ann. Inst. H. Poincar′e 32, 283 (1980).
 
[37]  D. Wilkinson, F.A. Bais. Phys. Rev. D 19, 2410 (1979).
 
[38]  E. Witten. Phys. Lett. B 86, 283 (1979).
 
[39]  F.A. Bais, H.A. Weldon. Phys. Lett. B 79, 297 (1978).
 
[40]  P. Goddard, D.I. Olive. Rep. Prog. Phys. 41, 1357 (1978).
 
[41]  C. Montonen, D. Olive. Phys. Lett. B 72, 117 (1977).
 
[42]  I. Bialynicki-Birula, Z. Bialynicka-Birula. Phys. Rev. D 3, 2410 (1971).
 
[43]  I. Bialynicki-Birula. Phys. Rev. D 3, 2413 (1971).
 
[44]  D. Zwanziger. Phys. Rev. 176, 1480, 1489 (1968).
 
[45]  T.T. Wu, C.N. Yang. Some Solutions of the Classical Isotopic Gauge Field Equations, in H. Mark, S. Fernbach (Eds). Properties of Matter Under Unusual Conditions (Wiley-Interscience, 1969), pp. 344-354.
 
[46]  L.A.Glinka, AEthereal Multiverse: A New Unifying Theoretical Approach to Cosmology, Particle Physics, and Quantum Gravity (Cambridge In- ternational Science Publishing, 2012).
 
Show Less References

Article

Two Numerical Methods to Solve the Second Order Multi-pantograph Equation with Boundary Conditions

1Department Mathematics, University of Qom, Qom, Iran


Applied Mathematics and Physics. 2014, 2(4), 124-127
DOI: 10.12691/amp-2-4-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Mahdi Ahmadinia, Zeinab Safari. Two Numerical Methods to Solve the Second Order Multi-pantograph Equation with Boundary Conditions. Applied Mathematics and Physics. 2014; 2(4):124-127. doi: 10.12691/amp-2-4-1.

Correspondence to: Mahdi  Ahmadinia, Department Mathematics, University of Qom, Qom, Iran. Email: mahdiahmadinia72@gmail.com & m-ahmadinia@qom.ac.ir

Abstract

In this article, we present two numerical methods to solve the second order multi-pantograph equation with boundary conditions. The multi-pantograph equation is converted to an integral equation then the integral equation is solved by two projective methods. Some properties of Chebyshev polynomials are employed to prove the convergence analysis of the two proposed methods. Finally, numerical examples also are given to illustrate the efficiency and validity of the two proposed methods.

Keywords

References

[1]  K. Atkinson and W. Han, Theoretical Numerical Analysis A Functional Analysis Frame-work, , 2009.
 
[2]  H. Brunner, Q. Huang and H. Xie,“Discontinuous Galerkin methods for delay differential equations of pantograph type,” SIAM J. Numer. Anal, 48. 1944-1967. 2010.
 
[3]  R. L. Burden and J. D. Faires, Numerical Analysis, Brooks/Cole, Boston, 2011.
 
[4]  M.Z. Liu and D. Li, “Properties of analytic solution and numerical solution of multi-pantograph equation,”Appl. Math. Comput., 155. 853-871. 2004.
 
[5]  A. Saadatmand and M. Dehghan, “Variational iteration method for solving a generalized pantograph equation,” Comput. Math. Appl. 58(11-12). 2190-2196. 2009.
 
Show More References
[6]  M. Sezer and A. Akyüz-Daşcıoğlu, “A Taylor method for numerical solution of generalized pantograph equations with linear functional argument,”J. Comput. Appl. Math., 200. 217-225. 2007.
 
[7]  M. Sezer, S. Yalçinbaş and M. Gülsu,“A Taylor polynomial approach for solving generalized pantograph equations with nonhomogeneous term,” Int. J. Comput. Math., 85(7), 1055-1063. 2008.
 
[8]  M. Sezer, S. Yalçinbaş and N. Şahin, “Approximate solution of multi-pantograph equation with variable coefficients,” J. Comput. Appl. Math., 214. 406-416. 2008.
 
[9]  L. N. Trefethen, “Is Gauss quadrature better than Clenshaw-Curtis?,” SIAM Review, 50. 67-87. 2008.
 
[10]  E.Yusufoğlu, “An efficient algorithm for solving generalized pantograph equations with linear function alargument,” Appl. Math. Comput, 217(7). 3591-3595. 2010.
 
[11]  Ş. Yüzbaşi, “An efficient algorithm for solving multi-pantograph equations systems,” Comput. Math. Appl, 64, 589-603, 2012.
 
[12]  S.Yüzbaşi, N. Şahin, and M. Sezer. “A Bessel collocation method for numerical solution of generalized pantograph equations.” Numerical Methods for Partial Differential Equations, 28(4). 1105-1123, 2012.
 
[13]  Ş.Yüzbaşi, N. Şahin and M. Sezer, “Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases,” Comput. Math. Appl, 61(10), 3079-3096, 2011.
 
[14]  Ş.Yüzbaşi, N. Şahin and M. Sezer, “A Bessel polynomial approach for solving linear neutral delay differential equations with variable coefficients,” J. Adv. Res. Differ. Equ. 3(1). 81-101, 2011.
 
[15]  Z. H. Yu, “Variational iteration method for solving the multi-pantograph delay equation,” Phys. Lett. A, 372(43). 6475-6479. 2008.
 
Show Less References

Article

Asymmetric Wavelet Signal of Gravitational Waves

1Doctor of Engineering Science, Academician of RANS, member of EANS, Volga Region State Technological University, Russia


Applied Mathematics and Physics. 2014, 2(4), 128-134
DOI: 10.12691/amp-2-4-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
P.M. Mazurkin. Asymmetric Wavelet Signal of Gravitational Waves. Applied Mathematics and Physics. 2014; 2(4):128-134. doi: 10.12691/amp-2-4-2.

Correspondence to: P.M.  Mazurkin, Doctor of Engineering Science, Academician of RANS, member of EANS, Volga Region State Technological University, Russia. Email: kaf_po@mail.ru

Abstract

On the example of a complex of 10 pulsars shows a method to identify the statistical models and the analysis of the model amplitude of gravitational waves, depending on the rotation periods of pulsars. Hilbert applied invariants. Shows the levels of adequacy asymmetric wavelet signals detected by statistical data. Proved insufficient deterministic models for the Laplace-Mandelbrot law. For 10 pulsars obtained statistical model pulsating universe. The model contains two modified 's law and two asymmetric wavelets oscillatory perturbation of gravitational waves in overcoming the energy crisis. Interpretation of the resulting statistical model is given based on the relativistic theory of gravitation. To do this, four components of the statistical model are divided into two cones of causality.

Keywords

References

[1]  Brian Cox. Wonders of the universe. : Eksmo, 2012. 256 pages.
 
[2]  S.F. Levin Statistical methods of the solution of measuring problems of cosmology and gravitation // International session conference of Section of nuclear physics of Office of physical sciences of the Russian Academy of Sciences "Physics of fundamental interactions": 12-16.11.2012. Moscow: National Research Nuclear University “MEPhI”, 2012. 75 pages.
 
[3]  P.M. Mazurkin, “Wavelet Analysis of a Number of Prime Numbers.” American Journal of Numerical Analysis, vol. 2, no. 2 (2014): 29-34.
 
[4]  P.M. Mazurkin. Patterns of primes. Germany: Palmarium Academic Publishing, 2012. 280 p.
 
[5]  P.M. Mazurkin, “Stable Laws and the Number of Ordinary.” Applied Mathematics and Physics, vol. 2, no. 2 (2014): 27-32.
 
Show More References
[6]  P.M. Mazurkin, A.S. Filonov, Mathematical modeling. Identification univariate statistical regularities: tutorial. Yoshkar-Ola, Mari State Technical University, 2006. 292 pages.
 
Show Less References

Article

Block Structure of a Number of the Integers Prime

1Doctor of Engineering Science, Academician of RANS, member of EANS, Volga Region State Technological University, Russia


Applied Mathematics and Physics. 2014, 2(4), 135-145
DOI: 10.12691/amp-2-4-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
P.M. Mazurkin. Block Structure of a Number of the Integers Prime. Applied Mathematics and Physics. 2014; 2(4):135-145. doi: 10.12691/amp-2-4-3.

Correspondence to: P.M.  Mazurkin, Doctor of Engineering Science, Academician of RANS, member of EANS, Volga Region State Technological University, Russia. Email: kaf_po@mail.ru

Abstract

Binary decomposition of numbers forms geometrical blocks. They depend on approach of a prime or whole prime number to values of the two in the degree equal to number from a natural row. As a result there is a strict geometry among prime or whole prime numbers in the form of block structure. This structure receives distinctive signs and harmonicas in positive part of a number of the whole prime numbers are shown. Statistically from a natural numbers regularities of growth of power of the left and right reference points, as borders previous and the subsequent from values of the two in degree, at blocks increasing on length among the whole prime numbers are proved.

Keywords

References

[1]  P.M. Mazurkin, “Wavelet Analysis of a Number of Prime Numbers.” American Journal of Numerical Analysis, vol. 2, no. 2 (2014): 29-34.
 
[2]  P.M. Mazurkin. Patterns of primes. Germany : Palmarium Academic Publishing, 2012. 280 p.
 
[3]  P.M. Mazurkin, “Stable Laws and the Number of Ordinary.” Applied Mathematics and Physics, vol. 2, no. 2 (2014): 27-32.
 
[4]  P.M. Mazurkin, “Series Primes in Binary.” American Journal of Applied Mathematics and Statistics, vol. 2, no. 2 (2014): 60-65.
 
[5]  P.M. Mazurkin, “Proof the Riemann Hypothesis.” American Journal of Applied Mathematics and Statistics, vol. 2, no. 1 (2014): 53-59.
 
Show More References
[6]  P.M. Mazurkin, “Increment Primes.” American Journal of Applied Mathematics and Statistics, vol. 2, no. 2 (2014): 66-72.
 
[7]  P.M. Mazurkin, “Identification of statistical stable patterns.” SCIENCE AND WORLD. International scientific journal, № 3 (3), 2013. p. 28-33.
 
[8]  P.M. Mazurkin, A.S. Filonov, “Mathematical modeling. Identification univariate statistical regularities: tutorial.” Yoshkar-Ola, Mari State Technical University, 2006. 292 p.
 
Show Less References

Article

Chaos and Order in the Integers Primes

1Doctor of Engineering Science, Academician of RANS, member of EANS, Volga State University of Technology, Russia


Applied Mathematics and Physics. 2014, 2(4), 146-156
DOI: 10.12691/amp-2-4-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
P.M. Mazurkin. Chaos and Order in the Integers Primes. Applied Mathematics and Physics. 2014; 2(4):146-156. doi: 10.12691/amp-2-4-4.

Correspondence to: P.M.  Mazurkin, Doctor of Engineering Science, Academician of RANS, member of EANS, Volga State University of Technology, Russia. Email: kaf_po@mail.ru

Abstract

Statistical modeling by asymmetric waves, with variables amplitude and a half-cycle of fluctuation, dynamics of a scatter of block structure of positive part of a number of the integers prime which located in a row of 10 million natural numbers, proved emergence of three stages of growth of the left and right reference points in blocks of binary decomposition of prime numbers. These a reference point settle down on each side from the dividing line in the form of the two in the degree equal to number of the category of a binary numeral system, without unit. The first stage of critical chaos is formed by critical prime numbers 0, 1 and 2. The second stage of an accruing order begins with number 3 and comes to the end with a margin error in 1% at the 1135th category of binary notation for the left reference point. At blocks increasing on length among the integers prime by calculations after the 1135th category there comes the third stage with high definiteness of the beginning and the end of blocks of binary decomposition of positive prime numbers.

Keywords

References

[1]  I.N. Beckman, “Informatics. Course of lectures.” URL: http://profbeckman.narod.ru/InformLekc.htm
 
[2]  P.M. Mazurkin. “Patterns of primes”. Germany: Palmarium Academic Publishing, 2012. 280 p.
 
[3]  P.M. Mazurkin, “Series Primes in Binary.” American Journal of Applied Mathematics and Statistics, vol. 2, no. 2 (2014): 60-65.
 
[4]  P.M. Mazurkin, “Proof the Riemann Hypothesis.” American Journal of Applied Mathematics and Statistics, vol. 2, no. 1 (2014): 53-59.
 
[5]  P.M. Mazurkin, “Increment Primes.” American Journal of Applied Mathematics and Statistics, vol. 2, no. 2 (2014): 66-72.
 

Article

Spherical Harmonic on a Four Sphere

1Department of Physics, National Institute of Technology, Srinagar, Kashmir, India

2Department of Applied Sciences, College of Engineering and Technology, BGSB University, Rajouri, India

3Department of Physics, Aligarh Muslim University, U.P, India


Applied Mathematics and Physics. 2014, 2(5), 157-160
DOI: 10.12691/amp-2-5-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Shabir Ahmad Akhoon, Ashaq Hussain Sofi, Anil Maini, Asloob Ahmad Rather. Spherical Harmonic on a Four Sphere. Applied Mathematics and Physics. 2014; 2(5):157-160. doi: 10.12691/amp-2-5-1.

Correspondence to: Ashaq  Hussain Sofi, Department of Physics, National Institute of Technology, Srinagar, Kashmir, India. Email: shifs237@gmail.com

Abstract

In this paper, we will analyse the scalar harmonics on a four sphere using a associated Legendre function. Then, we will use these modes to construct two types of vector harmonics on a four sphere. Finally, we will also construct three types of tensor harmonics on a four sphere. As there is a relation between de Sitter spacetime and four sphere, these modes are related to the modes on de Sitter spacetime.

Keywords

References

[1]  K. Bamba, G. Cognola, S. D. Odintsov, and S. Zerbini, Phys. Rev. D 90, 023525 (2014).
 
[2]  D. Seery, JCAP 0905, 021 (2009).
 
[3]  S. Dubovsky, L. Senatore and G. Villadoro, JHEP. 0904, 118 (2009).
 
[4]  A. del Rio and J. Navarro-Salas, Phys. Rev. D89, 084037 (2014).
 
[5]  A. Higuchi, J. Math. Phys. 43, 6385 (2002).
 
Show More References
[6]  C. de Rham and G. Gabadadze, Phys. Rev. D 82, 4 (2010).
 
[7]  F. Melia, arXiv:1202.0775.
 
[8]  I. Ya. Aref'eva, N. V. Bulatov and R. V. Gorbachev, arXiv:1112.5951.
 
[9]  K.L. Mahanta, Astrophys. Space Sci. 353, 683 (2014).
 
[10]  H. Hossienkhani, A. Najafi and N. Azimi, Astrophys. Space Sci. 353, 311 (2014).
 
[11]  J. Rekier, I. Cordero-Carrion and A. Fuzfa, arXiv:1409.3476.
 
[12]  I. A. Meitei, T. I. Singh and K. Y. Singh, Int. J. Mod. Phys. D23, 1450077 (2014).
 
[13]  P. Helbig, Springer Proc. Phys. 157, 355 (2014).
 
[14]  D. S. Gorbunov, Phys. Usp. 57, 503 (2014).
 
[15]  L. Fabbri, Int. J. Theor. Phys. 50, 3616, 2011.
 
[16]  T. Kugo and I. Ojima, Nucl. Phys. B144, 234, 1978.
 
[17]  K. Nishijima and M. Okawa, Prog. Theor. Phys. 60, 272, 1978.
 
[18]  N. Nakanishi and I. Ojima, Covariant operator formalism of gauge theories and quantum gravity - World Sci. Lect. Notes. Phys -, 1990.
 
[19]  A. Lesov, arXiv:0911.0058,
 
[20]  M. Faizal and S. Upadhyay, Phys. Lett. B 736 (2014) 288.
 
[21]  M. Faizal and T. S. Tsun, arXiv:1407.3119.
 
[22]  M. Faizal and S. I. Kruglov, arXiv:1406.2653.
 
[23]  Mohammad Vahid Takook.
 
[24]  A. F. Ali, M. Faizal, B. Majumder, arXiv:1406.1980.
 
[25]  R. R. Metsaev, arXiv:1407.2601.
 
[26]  P. Yu. Moshin and A. A. Reshetnyak, arXiv:1406.5086.
 
[27]  M. Faizal, arXiv:1406.0273 J. MacDonald and D. J. Mullan, Phys. Rev. D80, 043507, 2009.
 
[28]  A. M. Sinev, arXiv:0806.3212.
 
[29]  C. Pagliarone, arXiv:hep-ex/0612037.
 
[30]  M. Faizal, Class. Quant. Grav. 29, 035007, 2012.
 
[31]  A. Pakman, JHEP 0306, 053, 2003.
 
[32]  S. I. Kruglov and M. Faizal, arXiv:1408.3794.
 
[33]  K. Izumi and T. Tanaka, Prog. Theor. Phys. 121, 427, 2009.
 
[34]  M. Faizal and B. Majumder, arXiv:1408.3795.
 
[35]  M. Faizal, J. Phys. A 44, 402001, 2011.
 
[36]  I. A. Batalin and G. A. Vilkovisky, Phys. Lett. B 102, 27, 1981.
 
[37]  I. A. Batalin and G. A. Vilkovisky, Phys. Rev. D 28, 2567, 1983.
 
[38]  C. Bizdadea and S. O. Saliu, J. Phys. A 31, 8805, 1998.
 
[39]  C. Bizdadea, I. Negru and S. O. Saliu, Int. J. Mod. Phys. A 14, 359, 1999.
 
[40]  M. Faizal, Found. Phys. 41, 270, 2011.
 
[41]  M. Faizal, Phys. Lett. B 705, 120, 2011.
 
[42]  J. W. Mo_at, Phys. Lett. B 506, 193, 2001.
 
[43]  J. W. Mo_at, Phys. Lett. B 491, 345, 2000.
 
[44]  M. Faizal, Mod. Phys. Lett. A27: 1250075, 2012.
 
[45]  S. Ahmad, Comm. in Theo.l Phys, 59, 439, 2013.
 
[46]  M. Faizal, Phys. Rev. D 84, 106011, 2011.
 
[47]  M. Faizal and D. J. Smith, Phys. Rev. D85: 105007, 2012.
 
[48]  V. Mader. M. Schaden, D. Zwanziger and R. Alkofer, arXiv:1309.0497.
 
[49]  M. Faizal, JHEP 1204: 017, 2012.
 
[50]  A. Gustavsson, arXiv:1203.5883.
 
[51]  M. Faizal, Comm. Theor. Phys. 57, 637, 2012
 
[52]  M. S. Bianchi, M. Leoni and S. Penati, arXiv:1112.3649.
 
[53]  M. Faizal, Europhys. Lett. 98: 31003, 2012.
 
[54]  M. Marino and P. Putrov, arXiv:1110.4066.
 
[55]  K. Okuyama, arXiv:1110.3555.
 
[56]  M. Faizal, JHEP. 1204, 017, 2012.
 
[57]  A. Belhaj, arXiv:1107.2295.
 
[58]  M. Faizal, arXiv:1303.5477.
 
[59]  D. Zwanziger, AIPConf.Proc.892:121-127, 2007.
 
[60]  M. Faizal, Mod. Phys. Lett. A28: 1350034, 2013.
 
[61]  D. Zwanziger, Phys. Rev. D76: 125014, 2007.
 
[62]  M. Faizal, Int. J. Mod. Phys. A28: 1350012, 2013.
 
[63]  M. Golterman, L. Zimmerman, Phys.Rev. D71, 117502, 2005.
 
[64]  M. Faizal, JHEP. 1301: 156, 2013.
 
[65]  D. Polyakov, Phys.Lett. B611, 173, 2005.
 
[66]  M. Faizal, Europhys. Lett. 103: 21003, 2013.
 
[67]  A. Imaanpur, JHEP 0503, 030, 2005.
 
[68]  M. Faizal, Nucl. Phys. B. 869: 598, 2013.
 
[69]  Jen-Chi Lee, Eur.Phys.J.C1:739-741, 1998.
 
[70]  M. Faizal, Phys. Rev. D87: 025019, 2013.
 
[71]  A. Kapustin, Y. Li, Anton Kapustin, Adv.Theor.Math.Phys. 9, 559, 2005.
 
[72]  M. Faizal, Int. J. Theor. Phys. 52: 392, 2013.
 
[73]  Chuan-Tsung Chan, Jen-Chi Lee, Yi Yang, Phys.Rev. D71 086005, 2005.
 
[74]  M. Faizal,Class. Quant. Grav. 29: 215009, 2012.
 
[75]  R. P. Malik, arXiv:hep-th/0412333.
 
[76]  M. Faizal, Comm. Theor. Phys. 58: 704, 2012.
 
[77]  N. Boulanger, J.Math.Phys. 46, 053508, 2005.
 
[78]  M. Faizal, Mod. Phys. Lett. A27: 1250147, 2012.
 
[79]  W. H. Huang, arXiv:1107.2030.
 
[80]  M. Faizal and M. Khan, Eur. Phys. J. C 71, 1603, 2011.
 
[81]  J. T. Liu and Z. Zhao, arXiv:1108.5179.
 
[82]  M. Fontanini and M. Trodden, Phys. Rev. D 83, 103518, 2011.
 
[83]  V. O. Rivelles, Phys. Lett. B 577, 137, 2003.
 
[84]  B. S. DeWitt, Phys. Rev. 160, 1113, 1967.
 
[85]  M. Faizal, J.Exp.Theor.Phys. 114, 400, 2012, arXiv:gr-qc/0602094.
 
[86]  Y. Ohkuwa, Int. J. Mod. Phys. A 13, 4091, 1998.
 
[87]  M. Faizal, Mod. Phys. Lett. A 27, 1250007, 2012.
 
[88]  I. T. Durham, arXiv:1307.3691.
 
[89]  M. Faizal, Phys. Lett. B727: 536, 2013.
 
[90]  V. Bonzom, Phys.Rev.D84:024009, 2011.
 
[91]  M. Faizal, arXiv:1303.5478.
 
[92]  D. Chowdhury, S. Raju, S. Sachdev, A. Singh and P. Strack, Phys. Rev. B87, 085138 (2013).
 
[93]  S. Singh, C. Ganguly and T. Padmanabhan, Phys. Rev. D 87, 104004 (2013).
 
[94]  M. Faizal, A. F. Ali and A. Nassar, arXiv:1405.4519.
 
[95]  M. Faizal, arXiv:1404.5024.
 
[96]  M. V. Takook, arXiv:1403.1204.
 
[97]  M. Faizal, arXiv:1407.3118.
 
[98]  M. Faizal and T. S. Tsun, arXiv:1402.6802.
 
[99]  Ru-Nan Huang, arXiv:1304.5309.
 
[100]  S. I. Kruglov and M. Faizal, arXiv:1408.3794.
 
[101]  R. Garattini and B. Majumder, Nucl. Phys. B 884, 125 (2014).
 
[102]  A. Awad, A. F. Ali and B. Majumder, JCAP 10,052 (2013).
 
[103]  A. Awad and A. F. Ali, JHEP 1406, 093 (2014).
 
[104]  M. Faizal, arXiv:1301.0224.
 
[105]  M. Faizal and B. Majumder, arXiv:1408.3795.
 
[106]  R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics- University of Chicago Press- (1994) 10.
 
Show Less References