[6]  Conway, John B., “A course in functional analysis”, 2' ed., SpringerVerlag, New York, 1990. 

[7]  Diagana, T., “An Introduction to Classical and pADIC Theory of Linear Operators and Applications”, Nova Science Publishers, 2006. 

[8]  Dhage. B.C.,Multivalued mappings and fixed points II,Tamkang J.Math.37(2006). 2746. 

[9]  Erwin, K., “Introduction Functional Analysis with Application”, By John Wiley and Sons, 1978. 

[10]  Einsiedler M. and Ward T., “Functional Analysis Notes”, Draft July 2, 2012. 

[11]  Grippenberg, G. and Norros I., “On The Prediction of Fractional Brownian Motion”, Journal of Applied Probability, Vol. 33, No. 2, PP: 400410, 1996. 

[12]  Gani J., Heyde C.C., Jagers P. and Kurtz T.G., “Probability and its Applications”, SpringerVerlag London Limited, 2008. 

[13]  Kumlin Peter, “A Note on Fixed Point Theory”, TMA 401 / MAN 670 Functional Analysis 2003 /2004. 

[14]  KressRainer, “Linear Integral Equations”, 2’ed, Springer Science Business Media New York, 1999. 

[15]  Kisil Vladimir. V “Introduction to Functional Analysis”, Courses on Functional Analysis at School of Mathematics of University of Leeds, December 2014 . 

[16]  Kilbas, A.A., Srivastava, H.M., Trujillo, J.J. (2006). Theory and application of fractional differential Equations. Elsevier, Amsterdam. 

[17]  Lasikcka, I., “Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations”, J. Deferential Equation, 47, pp. 246272, 1983. 

[18]  Li K., “Stochastic Delay Fractional Evolution Equations Driven by Fractional Brownian Motion”, Mathematical Method in the Applied Sciences, 2014. 

[19]  Mishura Y. S., “Stochastic Calculus for Fractional Brownian Motion and Related Processes”, Lect, Notes in Math., 1929, Springer, 2008. 

[20]  Madsen Henrik, “ito integrals”, Aalborg university, Denmark, 2006. 

[21]  Nualart D., “Fractional Brownian motion: stochastic calculus and Applications”, Proceedings of the International Congress of Mathematicians, Madrid, Spain, European Mathematical Society, 2006. 

[22]  Tudor Ciprian A., “Ito Formula for the Infinite –Dimensional Fractional Brownian Motion”, J. Math. Kyoto Univ. (JMKYAZ), Vo. 45, No.3, PP: 531546, 2005. 
