ISSN (Print): 2333-4878

ISSN (Online): 2333-4886

Editor-in-Chief: Vishwa Nath Maurya

Website: http://www.sciepub.com/journal/AMP

   

Article

Spherical Harmonic on a Four Sphere

1Department of Physics, National Institute of Technology, Srinagar, Kashmir, India

2Department of Applied Sciences, College of Engineering and Technology, BGSB University, Rajouri, India

3Department of Physics, Aligarh Muslim University, U.P, India


Applied Mathematics and Physics. 2014, 2(5), 157-160
doi: 10.12691/amp-2-5-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Shabir Ahmad Akhoon, Ashaq Hussain Sofi, Anil Maini, Asloob Ahmad Rather. Spherical Harmonic on a Four Sphere. Applied Mathematics and Physics. 2014; 2(5):157-160. doi: 10.12691/amp-2-5-1.

Correspondence to: Ashaq  Hussain Sofi, Department of Physics, National Institute of Technology, Srinagar, Kashmir, India. Email: shifs237@gmail.com

Abstract

In this paper, we will analyse the scalar harmonics on a four sphere using a associated Legendre function. Then, we will use these modes to construct two types of vector harmonics on a four sphere. Finally, we will also construct three types of tensor harmonics on a four sphere. As there is a relation between de Sitter spacetime and four sphere, these modes are related to the modes on de Sitter spacetime.

Keywords

References

[1]  K. Bamba, G. Cognola, S. D. Odintsov, and S. Zerbini, Phys. Rev. D 90, 023525 (2014).
 
[2]  D. Seery, JCAP 0905, 021 (2009).
 
[3]  S. Dubovsky, L. Senatore and G. Villadoro, JHEP. 0904, 118 (2009).
 
[4]  A. del Rio and J. Navarro-Salas, Phys. Rev. D89, 084037 (2014).
 
[5]  A. Higuchi, J. Math. Phys. 43, 6385 (2002).
 
Show More References
[6]  C. de Rham and G. Gabadadze, Phys. Rev. D 82, 4 (2010).
 
[7]  F. Melia, arXiv:1202.0775.
 
[8]  I. Ya. Aref'eva, N. V. Bulatov and R. V. Gorbachev, arXiv:1112.5951.
 
[9]  K.L. Mahanta, Astrophys. Space Sci. 353, 683 (2014).
 
[10]  H. Hossienkhani, A. Najafi and N. Azimi, Astrophys. Space Sci. 353, 311 (2014).
 
[11]  J. Rekier, I. Cordero-Carrion and A. Fuzfa, arXiv:1409.3476.
 
[12]  I. A. Meitei, T. I. Singh and K. Y. Singh, Int. J. Mod. Phys. D23, 1450077 (2014).
 
[13]  P. Helbig, Springer Proc. Phys. 157, 355 (2014).
 
[14]  D. S. Gorbunov, Phys. Usp. 57, 503 (2014).
 
[15]  L. Fabbri, Int. J. Theor. Phys. 50, 3616, 2011.
 
[16]  T. Kugo and I. Ojima, Nucl. Phys. B144, 234, 1978.
 
[17]  K. Nishijima and M. Okawa, Prog. Theor. Phys. 60, 272, 1978.
 
[18]  N. Nakanishi and I. Ojima, Covariant operator formalism of gauge theories and quantum gravity - World Sci. Lect. Notes. Phys -, 1990.
 
[19]  A. Lesov, arXiv:0911.0058,
 
[20]  M. Faizal and S. Upadhyay, Phys. Lett. B 736 (2014) 288.
 
[21]  M. Faizal and T. S. Tsun, arXiv:1407.3119.
 
[22]  M. Faizal and S. I. Kruglov, arXiv:1406.2653.
 
[23]  Mohammad Vahid Takook.
 
[24]  A. F. Ali, M. Faizal, B. Majumder, arXiv:1406.1980.
 
[25]  R. R. Metsaev, arXiv:1407.2601.
 
[26]  P. Yu. Moshin and A. A. Reshetnyak, arXiv:1406.5086.
 
[27]  M. Faizal, arXiv:1406.0273 J. MacDonald and D. J. Mullan, Phys. Rev. D80, 043507, 2009.
 
[28]  A. M. Sinev, arXiv:0806.3212.
 
[29]  C. Pagliarone, arXiv:hep-ex/0612037.
 
[30]  M. Faizal, Class. Quant. Grav. 29, 035007, 2012.
 
[31]  A. Pakman, JHEP 0306, 053, 2003.
 
[32]  S. I. Kruglov and M. Faizal, arXiv:1408.3794.
 
[33]  K. Izumi and T. Tanaka, Prog. Theor. Phys. 121, 427, 2009.
 
[34]  M. Faizal and B. Majumder, arXiv:1408.3795.
 
[35]  M. Faizal, J. Phys. A 44, 402001, 2011.
 
[36]  I. A. Batalin and G. A. Vilkovisky, Phys. Lett. B 102, 27, 1981.
 
[37]  I. A. Batalin and G. A. Vilkovisky, Phys. Rev. D 28, 2567, 1983.
 
[38]  C. Bizdadea and S. O. Saliu, J. Phys. A 31, 8805, 1998.
 
[39]  C. Bizdadea, I. Negru and S. O. Saliu, Int. J. Mod. Phys. A 14, 359, 1999.
 
[40]  M. Faizal, Found. Phys. 41, 270, 2011.
 
[41]  M. Faizal, Phys. Lett. B 705, 120, 2011.
 
[42]  J. W. Mo_at, Phys. Lett. B 506, 193, 2001.
 
[43]  J. W. Mo_at, Phys. Lett. B 491, 345, 2000.
 
[44]  M. Faizal, Mod. Phys. Lett. A27: 1250075, 2012.
 
[45]  S. Ahmad, Comm. in Theo.l Phys, 59, 439, 2013.
 
[46]  M. Faizal, Phys. Rev. D 84, 106011, 2011.
 
[47]  M. Faizal and D. J. Smith, Phys. Rev. D85: 105007, 2012.
 
[48]  V. Mader. M. Schaden, D. Zwanziger and R. Alkofer, arXiv:1309.0497.
 
[49]  M. Faizal, JHEP 1204: 017, 2012.
 
[50]  A. Gustavsson, arXiv:1203.5883.
 
[51]  M. Faizal, Comm. Theor. Phys. 57, 637, 2012
 
[52]  M. S. Bianchi, M. Leoni and S. Penati, arXiv:1112.3649.
 
[53]  M. Faizal, Europhys. Lett. 98: 31003, 2012.
 
[54]  M. Marino and P. Putrov, arXiv:1110.4066.
 
[55]  K. Okuyama, arXiv:1110.3555.
 
[56]  M. Faizal, JHEP. 1204, 017, 2012.
 
[57]  A. Belhaj, arXiv:1107.2295.
 
[58]  M. Faizal, arXiv:1303.5477.
 
[59]  D. Zwanziger, AIPConf.Proc.892:121-127, 2007.
 
[60]  M. Faizal, Mod. Phys. Lett. A28: 1350034, 2013.
 
[61]  D. Zwanziger, Phys. Rev. D76: 125014, 2007.
 
[62]  M. Faizal, Int. J. Mod. Phys. A28: 1350012, 2013.
 
[63]  M. Golterman, L. Zimmerman, Phys.Rev. D71, 117502, 2005.
 
[64]  M. Faizal, JHEP. 1301: 156, 2013.
 
[65]  D. Polyakov, Phys.Lett. B611, 173, 2005.
 
[66]  M. Faizal, Europhys. Lett. 103: 21003, 2013.
 
[67]  A. Imaanpur, JHEP 0503, 030, 2005.
 
[68]  M. Faizal, Nucl. Phys. B. 869: 598, 2013.
 
[69]  Jen-Chi Lee, Eur.Phys.J.C1:739-741, 1998.
 
[70]  M. Faizal, Phys. Rev. D87: 025019, 2013.
 
[71]  A. Kapustin, Y. Li, Anton Kapustin, Adv.Theor.Math.Phys. 9, 559, 2005.
 
[72]  M. Faizal, Int. J. Theor. Phys. 52: 392, 2013.
 
[73]  Chuan-Tsung Chan, Jen-Chi Lee, Yi Yang, Phys.Rev. D71 086005, 2005.
 
[74]  M. Faizal,Class. Quant. Grav. 29: 215009, 2012.
 
[75]  R. P. Malik, arXiv:hep-th/0412333.
 
[76]  M. Faizal, Comm. Theor. Phys. 58: 704, 2012.
 
[77]  N. Boulanger, J.Math.Phys. 46, 053508, 2005.
 
[78]  M. Faizal, Mod. Phys. Lett. A27: 1250147, 2012.
 
[79]  W. H. Huang, arXiv:1107.2030.
 
[80]  M. Faizal and M. Khan, Eur. Phys. J. C 71, 1603, 2011.
 
[81]  J. T. Liu and Z. Zhao, arXiv:1108.5179.
 
[82]  M. Fontanini and M. Trodden, Phys. Rev. D 83, 103518, 2011.
 
[83]  V. O. Rivelles, Phys. Lett. B 577, 137, 2003.
 
[84]  B. S. DeWitt, Phys. Rev. 160, 1113, 1967.
 
[85]  M. Faizal, J.Exp.Theor.Phys. 114, 400, 2012, arXiv:gr-qc/0602094.
 
[86]  Y. Ohkuwa, Int. J. Mod. Phys. A 13, 4091, 1998.
 
[87]  M. Faizal, Mod. Phys. Lett. A 27, 1250007, 2012.
 
[88]  I. T. Durham, arXiv:1307.3691.
 
[89]  M. Faizal, Phys. Lett. B727: 536, 2013.
 
[90]  V. Bonzom, Phys.Rev.D84:024009, 2011.
 
[91]  M. Faizal, arXiv:1303.5478.
 
[92]  D. Chowdhury, S. Raju, S. Sachdev, A. Singh and P. Strack, Phys. Rev. B87, 085138 (2013).
 
[93]  S. Singh, C. Ganguly and T. Padmanabhan, Phys. Rev. D 87, 104004 (2013).
 
[94]  M. Faizal, A. F. Ali and A. Nassar, arXiv:1405.4519.
 
[95]  M. Faizal, arXiv:1404.5024.
 
[96]  M. V. Takook, arXiv:1403.1204.
 
[97]  M. Faizal, arXiv:1407.3118.
 
[98]  M. Faizal and T. S. Tsun, arXiv:1402.6802.
 
[99]  Ru-Nan Huang, arXiv:1304.5309.
 
[100]  S. I. Kruglov and M. Faizal, arXiv:1408.3794.
 
[101]  R. Garattini and B. Majumder, Nucl. Phys. B 884, 125 (2014).
 
[102]  A. Awad, A. F. Ali and B. Majumder, JCAP 10,052 (2013).
 
[103]  A. Awad and A. F. Ali, JHEP 1406, 093 (2014).
 
[104]  M. Faizal, arXiv:1301.0224.
 
[105]  M. Faizal and B. Majumder, arXiv:1408.3795.
 
[106]  R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics- University of Chicago Press- (1994) 10.
 
Show Less References

Article

Attenuation in Left-handed Waveguide Structure by Equivalent Current Theory Method

1Physics Department, Al Azhar University, Gaza Strip, Palestinian Authority

2Physics Department, Islamic University, Gaza Strip, Palestinian Authority


Applied Mathematics and Physics. 2015, 3(1), 1-5
doi: 10.12691/amp-3-1-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Hana M. Mousa, Mohammed M. Shabat. Attenuation in Left-handed Waveguide Structure by Equivalent Current Theory Method. Applied Mathematics and Physics. 2015; 3(1):1-5. doi: 10.12691/amp-3-1-1.

Correspondence to: Hana  M. Mousa, Physics Department, Al Azhar University, Gaza Strip, Palestinian Authority. Email: H.mousa @ alazhar.edu.ps

Abstract

In this work, the propagation and attenuation characteristics of both TE and TM waves in a waveguide structure consisting of left handed material (LHM) film by using the equivalent current theory of optical waveguide coupling method have been derived and obtained. The dispersion relations and the attenuation coefficient were numerically solved for a given set of parameters: allowed phase angles; core’s thicknesses; and propagation constants. We found that lower attenuation is realized for higher propagation constants. Moreover, attenuation coefficient has same small positive values for all thickness in phase angles range of values (00-570). Besides that, the attenuation decreases to negative values with thickness increase in phase angles range of values (570-590) which means a gain of the wave is achieved for wider buffer layer and at larger phase angles. We also found that, TE waves have lower attenuation than that of TM waves.

Keywords

References

[1]  Wu, Y., “Introduction to equivalent current theory of optical waveguide coupling,” J. Chin. Inst. Commun. 3, 1-8, 1982.
 
[2]  Wu, Y. “Derivation of general coupling equation of coupler and its verification,” Sci. Sin. 26, 894-900, 1983.
 
[3]  Harris, J.H., Shubert R., and Polky, J.N. “Beam coupling to films,” J. Opt. Soc. Am. 60, 1007-1016, 1970.
 
[4]  Gruchmann, D. Petermann, K., Satudige,L. l, and Weidel, E. “Optic polarizers with high extinction ratio,” in Proc.9th European Conf.Opt. Commun., 305-308, 1983.
 
[5]  Wu, Y., “Equivalent current theory of optical waveguide coupling,” J. Opt. Soc. Am. A, 4 (10) 1902-1910, 1987.
 
Show More References
[6]  Yu,T. and Wu,Y. “Theoretical study of metal –clad optical waveguide polarizer,” IEEE, J. of Qun.Elec. 25, (6) 1209-1213-1989.
 
[7]  Boifot A. M., Lier E., Schaug T., Petersen T., “Simple and broadband orthomode transducer,: Proc. of IEEE, 137, 396-400, 1990.
 
[8]  Yeap, K. H., Tham C.Y., Yassin, G., Yeong, K.C., “Attenuation in rectangular waveguides with finite conductivity walls,” Radioengineering, 20, (2), 472-478, 2011.
 
[9]  Mousa, H.M. and Shabat, M.M., “TM waves in cylindrical Superlattices (LANS) bounded by left handed materials,” App. Phys A 111, 1057-1063, 2013.
 
[10]  Mousa, H. M., and Shabat, M. M. 'Electromagnetic Guided Waves in a Metamaterial-Magnetic Waveguide structure,' Int. J. Modern Physics B, 25 (32) 2011.
 
[11]  Mousa, H. M., and Shabat, M. M.,” TM waves in cylindrical superlattices (LANS) bounded by left-handed material (LHM),” Appl. Phys.A, 111, 1057-1063, 2012.
 
[12]  Tang, T. T.,. Liu, W. L, He X. J. and Gao, X. Y., Optik- International Journal for Light and Electron Optics, Vol. 123, 2012.
 
[13]  Caloz, C. and Itoh, T., “Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications,” IEEE Press and Wiley, New York, 2005.
 
[14]  Zhang S., Fan, W., Mallo, K. J. y and Brueck, S. R. J., “Near-infrared double negative metamaterials', Optics Express, 13, (13), pp.4922-4930(2005).
 
Show Less References

Article

Atom Bond Connectivity Index of Carbon Nanocones and An Algorithm

1Department of Mathematics, Faculty of Science and Arts, Celal Bayar University, Manisa, Turkey

2Turgutlu Vocational Training School, Celal Bayar University, Manisa, Turkey


Applied Mathematics and Physics. 2015, 3(1), 6-9
doi: 10.12691/amp-3-1-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Ömür Kıvanç Kürkçü, Ersin Aslan. Atom Bond Connectivity Index of Carbon Nanocones and An Algorithm. Applied Mathematics and Physics. 2015; 3(1):6-9. doi: 10.12691/amp-3-1-2.

Correspondence to: Ömür  Kıvanç Kürkçü, Department of Mathematics, Faculty of Science and Arts, Celal Bayar University, Manisa, Turkey. Email: omurkivanc@outlook.com

Abstract

Let G be a chemical graph, where V(G) and E(G) are represented set of vertices and edges respectively. Atom bond connectivity index ABC(G) is related to degree of vertices of graph G. In this paper, we calculate the index for generalized carbon nanocones. Subsequently, an useful algorithm (pseudocode) are given. The goal of this paper is to further the study of ABC(G) index for generalized carbon nanocones.

Keywords

References

[1]  Khaksar, A., Ghorbani, M. and Maimani, H.R., “On atom bond connectivity and GA indices of nanocones,” Optoelectron. Adv. Mater. – Rapid Commun., 4 (11). 1868-1870. 2010.
 
[2]  Furtula, B., Graovac, A. and Vukicevic, D., “Atom–bond connectivity index of trees,” Disc. Appl. Math., 157. 2828-2835. 2009.
 
[3]  Trinajstic, N. and Gutman, I., “Mathematical Chemistry,” Croat. Chem. Acta, 75. 329-356. 2002.
 
[4]  West, D.B., Introduction to Graph theory, Prentice Hall, Upper Saddle River, 1996.
 
[5]  Harary, F., Graph Theory, Addison-Wesley, Reading MA, 1969.
 
Show More References
[6]  Iijima, S., “Helical microtubules of graphitic carbon,” Nature, 354. 56-58. 1991.
 
[7]  Ge, M. and Sattler, K., “Observation of fullerene cones,” Chem. Phys. Lett., 220. 192. 1994.
 
[8]  Todeschini, R. and Consonni, V., Handbook of Molecular Descriptors, Wiley-VCH: Weinheim, 2000.
 
[9]  Diudea, M.V. QSPR/QSAR Studies by Molecular Descriptors, Nova Science Publishers: Huntington, NY, 2000.
 
[10]  Wiener, H., “Structural determination of paraffin boiling points,” J. Am. Chem. Soc., 69. 17-20. 1947.
 
[11]  Alipour, M.A. and Ashrafi, A.R., “A numerical method for computing the Wiener index of one heptagonal carbon nanocone,” Journal of Computational and Theoretical Nanoscience, 6. 1-4. 2009.
 
[12]  Ashrafi, A.R. and Gholami-Nezhaad, F., “The PI and Edge Szeged Indices of One-Heptagonal Carbon Nanocones,” Current Nanoscience, 5 (1). 51-53. 2009.
 
[13]  Gan, L., Hou, H. and Liu, B., “Some results on atom-bond connectivity index of graphs,” MATCH Commun. Math. Comput. Chem., 69. 669-680. 2011.
 
[14]  Ediz, S., “The Ediz eccentric connectivity index of one pentagonal carbon nanocones,” Fullerenes, Nanotubes, and Carbon Nanostructures, 21. 113-116. 2013.
 
[15]  Nejati, A. and Alaeiyan, M., “The edge version of MEC index of one-pentagonal carbon nanocones,” Bulgarian Chemical Communications, 46 (3). 462-464. 2014.
 
[16]  Yang, L. and Hua, H., “The harmonic index of general graphs, nanocones and triangular benzenoid graphs,” Optoelectron. Adv. Mater. – Rapid Commun., 6 (5-6). 660-663. 2012.
 
[17]  Alaeiyan, M., Asadpour, J. and Mojarad, R., “A Study of an Infinite Family of Carbon Nanocones by the Eccentricity Connectivity Polynomial,” Fullerenes, Nanotubes, and Carbon Nanostructures, 21. 849-860. 2013.
 
[18]  Das, K.Ch., Gutman, I. and Furtula, B., “On atom–bond connectivity index,” Filomat, 26 (4). 733-738. 2012.
 
[19]  Farahani, M.R., “The Edge Version of Geometric–Arithmetic Index of Benzenoid Graph,” Proc. Rom. Acad., Series B, 15 (2). 83-86. 2013.
 
[20]  Ashrafi, A.R. and Mohammad-Abadi, Z., “On Wiener Index of One-Heptagonal Nanocone,” Current Nanoscience, 8 (1). 180-185. 2012.
 
Show Less References