Welcome to American Journal of Water Resources

American Journal of Water Resources is a peer-reviewed, open access journal that provides rapid publication of articles in all areas of water resources. The goal of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of water resources.

ISSN (Print): 2333-4797

ISSN (Online): 2333-4819

Editor-in-Chief: Apply for this position

Website: http://www.sciepub.com/journal/AJWR



Spatial and Seasonal Variations of Heavy Metals in Water and Sediments at the Northern Red Sea Coast

1Marine Pollution Laboratory, National Institute of Oceanography and Fisheries, Egypt

American Journal of Water Resources. 2015, 3(3), 73-85
doi: 10.12691/ajwr-3-3-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Ahmed S. Abouhend, Khalid M. El-Moselhy. Spatial and Seasonal Variations of Heavy Metals in Water and Sediments at the Northern Red Sea Coast. American Journal of Water Resources. 2015; 3(3):73-85. doi: 10.12691/ajwr-3-3-2.

Correspondence to: Ahmed  S. Abouhend, Marine Pollution Laboratory, National Institute of Oceanography and Fisheries, Egypt. Email: aabouhend@umass.edu, ahmed_salah7257@yahoo.com


The spatial and seasonal variations of heavy metals concentrations (Cd, Cu, Ni, Zn, Pb, Co, Mn, Fe) in water and sediments of different sites at the Northern Red Sea coast during the year 2012 were investigated. The results revealed a small range of variation and regional irregularities. Site III (Hurgaha Harbor) recorded the highest metal concentrations in water and sediments except Co during the different seasons. The annual means of metal concentrations in water were 0.14 ± 0.04 - 0.42 ± 0.03, 0.39 ± 0.11 - 4.71 ± 0.87, 0.16 ± 0.04 - 2.15 ± 0.10, 0.94 ± 0.07 - 12.07 ± 2.78, 0.73 ± 0.43 - 5.84 ± 0.74, 0.10 ± 0.02 - 0.42 ± 0.01, 0.06 ± 0.04 - 0.39 ± 0.07 and 8.68 ± 0.80 - 36.53 ± 2.76 µg l-1 for Cd, Cu, Ni, Zn, Pb, Co, Mn and Fe, respectively, while in sediments were 1.73 ± 0.36 - 4.40 ± 1.99, 8.5 ± 0.37 - 111.3 ± 23.89, 16.20 ± 1.39 - 39.00 ± 1.95, 19.23 ± 3.01 - 190.33 ± 13.02, 16.00 ± 0.82 - 80.33 ± 4.19, 10.10 ± 1.68 - 19.23 ± 2.47, 106.00 ± 10.20 - 323.33 ± 46.35 and 4172.00 ± 430.37 - 14222.33 ± 691.02 µg g-1, respectively. According to different standard marine water and sediments quality guidelines, heavy metals concentrations at the most of studied sites appeared within the normal range.



[1]  Morcos, S. A. (1970): Physical and chemical oceanography of the Red Sea. Oceanogr. Mar. Biol. Ann. Rev., 8: 73-202.
[2]  Murty, T. S. and El-Sabh, M. T. (1984): Weather system storm surges and sea state in the red sea and the Gulf of Aden. Proc. Symp. Coral Reef Envi. Red sea. Jeddah, pp 8-38.
[3]  Ormond, R. F. G. and Edwards, A. (1987): Red Sea Fishes, in: Edwards, A.J. and Head S.M. (eds), Red Sea. Pergamon Press, Oxford, U.K. pp 252-287.
[4]  El-Shenawy, M. A. and Farag, A. M. (2005): Spatial and temporal variability of saprophytic and water quality bacteria along the coast of Aqaba, Suez Gulfs and Red Sea, Egypt. Egy. J. Aqua. Res., 31(1): 157-169.
[5]  Turner, A. (1996): Trace metals portioning in estuaries importance of salinity and particulate concentration. Mar. Chem., 54: 27-39.
Show More References
[6]  Arcadi, F. A.; De Luca, R.; Trimarchi, G. R.; Costa, G.; Rapisarda, A.; Williamson, R. B.; Van Dam, L. F.; Bell, R. G.; Green, M. O.; Kim, J. P. (1996): Heavy metal and suspended sediments fluxes from a contaminated intertidal inlet (Manukau Harbour, New Zealand). Mar. Poll. Bull., 32(11): 812-822.
[7]  Rainbow, P. S. (2002): Trace metal concentrations in aquatic invertebrates: why and so what?. Envi. Poll., 120: 497-507.
[8]  Adham, K. G.; Hassan, I. F.; Taha, N. and Amin, T. H. (1999): Impact of hazardous exposure to metals in the Nile and Delta lakes on the catfish, Clarias lazera. Envi. Monit. Assess., 54: 107-124.
[9]  Ozertic, B. and Krajnovic-Ozretic, M. (1993): Plasma sorbitol dehydrogenase glutamate dehydrogenase and alkaline phosphatase as potential indicators of liver intoxication in grey mullet (Mugil auratus Risso). Bull. Envi. Contam. Toxicol., 50: 586-592.
[10]  Bervoets, L.; Panis, L. and Verheyen, R. (1994): Trace metal levels in water, sediment and Chironomus grthumni, from different water courses in Flanders (Belgium). Chemosphere, 29: 1591-1601.
[11]  Bruder, H. V.; Lagarde, F.; Leroy, M. J. F.; Conghanowr, C. and Engelhard, F. (2002): Application of a Sequential extraction proc-edure to study the release of elements from municipal solid waste Incineration bottom ash. Anal. Chim. Acta., 451(2): 285-295.
[12]  Forstner, U. and Salamons, W. (1980): Trace metal analysis on polluted sediments, I: assessment of sources and intensities. Envi. Tech. Letters, 1: 494-505.
[13]  Forstner, U. and Wittmann, G. T. W. (1981): Metal Pollution in the Aquatic Environment, Springer- Verlag, Berlin, Heidelberg, Pp. 486.
[14]  Madkour, H. A. and Dar, M. A. (2007): The anthropogenic effluents of the human activities on the Red Sea coast at Hurghada harbour (case study). Egy. J. Aqua. Res., 33: 43-58.
[15]  Brown B. E. and Holley M. C. (1982): Metal levels associated with tin dredging and smelting, and their effect upon intertidal reef flats at Ko Phuket, Thailand. Coral Reefs, 1: 131-137.
[16]  Amini, G. H. R. (1998): Heavy metal concentration in surficial sediments from Anzali Wetland, Iran. Water, Air and Soil Poll., 104: 305-312.
[17]  Boniforti, R.; Ferraroli, I. R.; Frigileri, P.; Heltai, D. and Queirazza, G. (1984): Intercomparison of five methods for the determination of trace metals in sea water, Anal. Chim. Acta. 16: 233-46
[18]  Fukai, L. and Ngoc, H. (1976): Zinc and cadmium in coastal waters of the NW Mediterranean. Mar. Poll. Bull., 7(1): 9-13.
[19]  Oregioni, B. and Aston, S.R. (1984): The determination of selected trace metals in marine sediments by flameless/flame atomic absorption spectrophotometry. IAEA Manaco laboratory, Internal Report. Cited from Reference Method in pollution studies N. 38, UNEP. 1986.
[20]  ANZECC (1992): Australian water quality guidelines for fresh and marine waters. National Water Quality Management Strategy Paper No 4, Australian and New Zealand Environment and Conservation Council, Canberra.
[21]  ANZECC (2000): Aquatic Ecosystems - Rationale and Background Information: Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Vol. 2.
[22]  Bennet, J. B.; and Cubbage, J. (1991): Summary of Criteria and Guidelines for Contaminated Freshwater Sediments. Washington State Department of Ecology, Olympia, WA.
[23]  Persaud, D.; Jaagumagi, R. and Hayton, A. (1990): The provincial sediment quality guidelines. Ontario Ministry of the Environment
[24]  MacDonald, D. D.; Carr, R. S.; Calder, F. D.; Long, E. R. and Ingersoll, C. G. (1996): Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5: 253-278.
[25]  Fallon, S. J.; White, J. C. and McCulloch, M. T. (2002): Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea. Geochim. Cosmochim. Acta., 66(1): 45-62.
[26]  Al-Rousan, S. A.; Al-Shloul, R. N.; Al-Horani, F. A. and Abu-Hilal, A. H. (2007): Heavy metal contents in growth bands of Porites corals: record of anthropogenic and human developments from the Jordanian Gulf of Aqaba. Mar. Poll. Bull., 24(12): 1912-1922.
[27]  Jayaraju, N.; Raja, S.; Reddy, B. C. and Reddy, K. R. (2009): Heavy metal pollution in reef corals of Tuticorin Coast, Southeast Coast of India. Soil Sedi. Contam., 18(4): 445-454.
[28]  Guzman, H. M. and Jimenez, C. E. (1992): Contamination of coral reefs by heavy metals along the Caribbean coast of Central America (Costa Rica and Panama). Mar. Poll. Bull., 24(11): 554-561.
[29]  Metwally, M. E. S.; Al-Muzaini, S.; Jacob, P. G.; Bahloul, M.; Urushigawa, Y.; Sato, S. and Matsmura, A. (1997): Petroleum hydrocarbons and related heavy metals in the near-shore marine sediments of Kuwait. Envi. Int., 23(1):115-121.
[30]  Mansour, A. M.; Nawar, A. H. and Madkour, H. A. (2005): Metals concentration of recent invertebrates along the Red Sea Coast of Egypt: A Tool for monitoring environmental hazards. Sedimentology of Egypt, 13: 171-185.
[31]  Reeder, S. W.; Demayo, A. and Taylor, M. C. (1979): Cadmium. In Guidelines for surface water quality. Vol. 1: Inorganic chemical substances, Water Quality Branch, Inland Waters Directorate, Environment Canada, Ottawa.
[32]  De Carlo, E. H. and Spencer, K. J. (1995): Records of lead and other heavy metal inputs to sediments of the Ala Wai Canal, O’ahu, Hawaii, Pacific Sci., Uni. of Hawaii Press, 49(4): 471-491.
[33]  Sadiq, M. (1992): Toxic metal chemistry in marine environments. Marcel Dekker, New York, p 390.
[34]  Chester, R. (1990): Marine geochemistry. Allen and Unwin, Australia, p 698.
[35]  Schiff, K.; Diehl, D. and Valkirs, A. (2004): Copper emission from antifouling paint on recreational vessels. Mar. Poll. Bull., 48: 371-377.
[36]  Al-Abdali, F.; Massoud, A. and Al-Ghadban, A. N. (1996): Bottom sediments of the Arabian Gulf. Trace metal contents as indicators of pollution and implications for the effect and fate of the Kuwait oil slick. Envi. Poll., 93(3): 285-301.
[37]  Hart, B. T. (1982): A water quality criteria for heavy metals. Australian Governmental Publishing Services, Canberra, Australia.
[38]  Riley, J. P. and Chester, R. (1989): Introduction to marine chemistry. St. Edmundsbury Press, Great Britain, p 465.
[39]  CCREM (1987): Canadian water quality guidelines. Canadian Council of Resource and Environment Ministers, Ontario.
[40]  Patterson, C. C.; Settle, D. and Glover, B. (1976): Analysis of lead in polluted coastal seawater. Mar. Chem., 4: 305-319.
[41]  USEPA (1976): Quality criteria for water. Office of Planning and Water, US Environmental Protection Agency, Washington DC. EPA-440-9-76-023.
[42]  Jaques, A. P. (1985): National inventory of sources and releases of lead 1982. Environmental Protection Service, Environment Canada, Ottawa.
[43]  Clark, R. B. (1992): Marine pollution. Claredon Press ; New York : Oxford University, pp. 220.
[44]  NSW Health (2000): Grey Water Reuse in Sewered Single Domestic Premises, NSW Department of Health, Sydney.
[45]  EPA (2000): NSW State of the Environment Report (2000), NSW Environment Protection Authority, Sydney.
[46]  Stubblefield, W. A.; Brinkman, S. E.; Davies, P. H.; Garrison, T. D.; Hockett, J. R. and McIntyre, M. W (1997): Effects of water hardness on the toxicity of manganese to developing brown trout (Salmo trutta). Envi. Toxi. Chem., 16: 2082-2089.
[47]  USEPA (1986): Quality criteria for water. US Department of Commerce, National Technical Information Service, US Environmental Protection Agency, Springfield, Virginia. PB87-226759, EPA 440/5 86-001.
[48]  Wong, C. K. C.; Cheung, R. Y. H. and Wong, M. H. (2000): Heavy metal concentrations in green-lipped mussels collected from Tolo Harbour and markets in Hong Kong and Shenzhen. Envi. Poll., 109: 165-171.
[49]  Lalah, J. O.; Ochieng, E. Z. and Wandiga, S. O. (2008): Sources of heavy metal input intoWinam Gulf, Kenya. Bull. Environ. Contam. Toxicol., 8: 277-284.
[50]  Coulibaly, S.; Atse, B. C.; Koffi, K. M.; Sylla, S.; Konan, K. J. and Kouassi, N. J.(2012): Seasonal accumulations of some heavy metal in water, sediment and tissues of black-chinned tilapia Sarotherodon melanotheron from Biétri Bay in Ebrié Lagoon, Ivory Coast. Bull. Envi. Contam. Toxi., 88: 571-576.
[51]  Pan, K. and Wang, W. X. (2011): Trace metal contamination in estuarine and coastal environments in China. Sci. Total Envi., 421(422): 3-16.
[52]  Duman, F. and Kar, M. (2012): Temporal variation of metals in water, sediment and tissues of the European Chup (Squalius cephalus). Bull. Envi. Contam. Toxi., 89: 428-433.
[53]  Joksimovic, D.; Tomic, I.; Stankovic, R. A.; Jovic, M. and Stankovic, S. (2011): Trace metal concentrations in Mediterranean blue mussel and surface sediments and evaluation of the mussels quality and possible risks of high human consumption. Food Chem., 127: 632-637.
[54]  Karadede, H. and Unlu, E. (2000): Concentrations of some heavy metals in water, sediment, fish and some benthic organisms from Tigris River, Turkey. Envi. Monit. Assess., 131: 323-333.
[55]  Cevik, U.; Damla, N.; Kobya, A. I.; Bulut, V. N.; Duran, C.; Dalgic, G. and Bozacı, R. (2008): Assessment of metal element concentrations in mussel (M. Galloprovincialis) in Eastern Black Sea, Turkey. J. Haz. Mater., 160: 396-401.
[56]  Hamed, A. M. and Emara, M. A. (2006): Marine molluscs as biomonitors for heavy metal levels in the Gulf of Suez, Red Sea. J. Mar. Sys., 60: 220-234.
[57]  Zhao, L.; Yang, F.; Wang, Y.; Huo, Z. and Yan, X. (2013): Seasonal Variation of Metals in Seawater, Sediment, and Manila Clam Ruditapes philippinarum from China. Biol. Trace Elem. Res., 152: 358-366.
[58]  ObuidAllah, A. M.; Abdallah, A. T.; Abu-Eldahab, H. M.; Abdul-Rahman, M. N. and Mahdy, A. D. A. (2005): Impact of heavy metal contamination on seasonal abundance of planktonic copepods inhabiting mangrove area in Safaga, Red Sea, Egypt. Egy. J. Exp. Biol. (Zool.), 1: 123-130.
[59]  Ali, A. A. M.; Hamed, M. A. and Abd El-Azim, H. (2011): Heavy metals distribution in the coral reef ecosystems of the Northern Red Sea. Helgol. Mar. Res., 65: 67-80.
[60]  Shriadah, M. A.; Okbah, M. A. and El-Deek, M. S. (2004): Trace metals in the water column of the Red Sea and the Gulf of Aqaba, Egypt. Water, Air and Soil Poll., 153: 115-124.
[61]  Dar, M. A. (2002): Geological basis to study the environmental defect in the marine ecosystem as a result of tourist activities in Hurghada area and surroundings, Red Sea, Egypt. Suez (Doctoral Thesis Suez Canal University), p 218.
[62]  El-Moselhy, Kh. M. and Abd El-Azim, H. (2005): Heavy metals content and grain size of sediments from Suez Bay, Red Sea, Egypt. Egy. J. Aqua. Res., 31(2): 224-238.
[63]  Madkour, H. A.; Nawar, A. A. and Mohamed, A. W. (2006): Coastal sediments and their polluting metals of El- Hamrawein Harbour, Egyptian Red Sea coast: Clues for monit. Envi. haz. Sedi of Egypt, 14: 155-131.
[64]  Mansour, A. M.; Nawar, A. H. and Madkour, H. A. (2011): Metal pollution in marine sediments of selected harbours and industrial areas along the Red Sea coast of Egypt. Ann. Naturhist. Mus., 113: 225-244.
[65]  Dar, M. A. (2012): Distribution patterns of some heavy metals in the surface sediment fractions at northern Safaga Bay, Red Sea, Egypt. Arab. J. Geosci..
[66]  Mansour, A. M.; Nawar, A. H. and Mohamed, A.W. (2000): Geochemistry of coastal marine sediments and their contaminant metals, Red Sea, Egypt: A legacy for the future and a tracer to modern sediment dynamics. Sedimentology of Egypt, 8: 231-242.
[67]  Madkour, H. A. (2005): Distribution and relationships of heavy metals in the gaint clam (Tridacna Maxima) and associated sediments from different sites in the Egyptian Red Sea coast. Egy. J. Aqua. Res., 31(2): 45-59.
[68]  Madkour, H. A. (2011): Impacts of human activities and natural inputs on heavy metal contents of many coral reef environments along the Egyptian Red Sea coast. Arab. J. Geosci., on line: doi: 10.1007/s12517-011-0482-5.
[69]  El-Sayed, G. F. and Youssef, D. H. (2013): Ecotoxicological impact assessment of some heavy metals and their distribution in some fractions of mangrove sediments from Red Sea, Egypt. Envi. Monit. Assess., 185(1): 393-404.
Show Less References


Water Resource Management through Isotope Technology in Changing Climate

1Uttarakhand Science Education and Research Centre (USERC), Dehradun, India

2Department of Chemistry, DBS (PG) College, Dehradun, India

3Department of Chemistry, DAV (PG) College, Dehradun, India

4Uttarakhand Council of Science & Technology (UCOST), Dehradun, India

American Journal of Water Resources. 2015, 3(3), 86-91
doi: 10.12691/ajwr-3-3-3
Copyright © 2015 Science and Education Publishing

Cite this paper:
Bhavtosh Sharma, Rakesh Singh, Prashant Singh, DP Uniyal, Rajendra Dobhal. Water Resource Management through Isotope Technology in Changing Climate. American Journal of Water Resources. 2015; 3(3):86-91. doi: 10.12691/ajwr-3-3-3.

Correspondence to: Bhavtosh  Sharma, Uttarakhand Science Education and Research Centre (USERC), Dehradun, India. Email: bhavtoshchem@gmail.com


The water system plays an indispensable role on the planet earth for the survival of living species as well as for the sustainability of ecosystem. However, numerous factors like population growth, industrial activities, rapid urbanization, depletion of aquifers, climate change, several anthropogenic activities, geogenic activities etc. influence the water system. Therefore, the proper management of water resources has become the need of the time because its management and study will be much helpful to cater the safe water for the increasing population globally. In such direction, isotope technology has been emerged and established as an efficient scientific tool to combat the water related issues like ground water recharge studies, its quality management, surface water studies, salinization and contamination studies etc. The present paper highlights the importance of isotope technology for the management of water resources in changing climatic conditions.



[1]  Sharma B., Tyagi S., Singh P., Dobhal R., Jaiswal V., Application of Remote Sensing and GIS in Hydrological Studies in India: An Overview, Natl. Acad. Sci. Lett., 38(1), 1-8, 2015.
[2]  Central Ground Water Board (CGWB) year book 2013-2014, Uttaranchal Region, April 2015.
[3]  Gat, J.R., Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 24, 225-262, 1996.
[4]  Shivanna K., Tirumalesh K., Noble J., Joseph T.B., Singh G., Joshi A.P. and Khati V. S., Isotope techniques to identify recharge areas of springs for rainwater harvesting in the mountainous region of Gaucher area, Chamoli District, Uttarakhand, Current Science, 94 (8) 1003-1011, 2008.
[5]  Subramanya K., Engineering Hydrology, Tata McGraw-Hill, New Delhi, 2012.
Show More References
[6]  Bowen, G.J., Kennedy, C.D., Liu, Z.F., Stalker, J., Water balance model formean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous United States. J. Geophys. Res. Biogeosci. 116, G04011, 2011.
[7]  Tyagi S., Singh P, Sharma B, Singh R, Assessment of water quality for drinking purpose in District Pauri of Uttarakhand, India, Appl. Ecol. Environ. Sci, 2(4), 94-99, 2014.
[8]  Jain C.K., Bandyopadhyay A., Bhadra A., Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India. Environment Monitoring Assessment, 166, 663-676, 2010..
[9]  Tyagi S., Dobhal R., Kimothi P.C., Adlakha L.K., Singh P., Uniyal D.P., Studies of river water quality using river bank filtration in Uttarakhand, India. Water Quality Exposure and Health, 5, 139-148, 2013.
[10]  Deodhar A.S., Ansari M.A., Sharma S., Jacob N., Kumar U.S., Singh G., “Isotope Techniques for Water Resources Management”, BARC News Letter, Issue no. 337 pp. 29-35, March-April 2014.
[11]  IAEA/WMO, Global Network of Isotopes in Precipitation, 2006.
[12]  Rao S. M., Injected radio tracer techniques in hydrology. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 99, 319-335, 1984.
[13]  Sharma B., Uniyal D.P., Dobhal R., Kimothi P.C., Grischek T., A sustainable solution for safe drinking water through bank filtration technology in Uttarakhand, India, Current Science, 107(1187), 1118-1124, 2014.
[14]  Sharma B. and Tyagi S., Significance of Environmental Isotopes in Ground water Studies, Current trends in Environmental Resources Management, Edited by Suneet Naithani, Girdhar Joshi and Siba Sankar Mohanty, Gaura Books Pvt. Ltd. New Delhi, pp. 215-221, 2014.
[15]  Sharma B. and Uniyal D.P., “Water Resources” in “Uttarakhand: State of the Environment Report (SOER)-2012”, edited by R. Dobhal, Published by Bishen Singh Mahendra Pal Singh, Dehradun for Uttarakhand State Council for Science & Technology (UCOST) Dehradun and Uttarakhand Science Education & Research Centre (USERC), Dept. of Science & Technology, Govt. of Uttarakhand, Dehradun, pp. 144-209, 2012.
[16]  Todd, D. K., Ground water hydrology, John Wiley, New York, p.321, 1959.
[17]  Clark, I. and Fritz, P., Environmental Isotopes in Hydrogeology, Lewis Publ., Boca Raton, p. 328, 1997.
[18]  Kendall, C. and McDonnell, J.J., Isotope Tracers in Catchment Hydrology, Elsevier Science, the Netherlands, p. 840, 1998.
[19]  Krishan G., Rao M.S., Kumar B., Study of Climatological conditions using isotopic signature of air moisture at Roorkee, Uttarakhand, India. India Water Week 2012 – Water, Energy and Food Security : Call for Solutions, 10-14 April 2012, New Delhi.
[20]  Kumar B., Rai S.P., Krishan G., Rawat Y.S., Identification of Recharge Areas and Sources of Springs in Mountainous Region using Environmental Isotopes, Drinking Water: Source Treatment and Distribution edited by R. Dobhal, T Grischek, H.P. Uniyal, D.P. Uniyal, C. Sandhu, published by Bishen Singh Mahendra Pal Singh, pp 61-73, Dehradun, 2011.
[21]  Ehleringer J.R., Bowen G.J., Chesson L.A., West A.G., Podlesak, D.W., Cerling, T.E., Hydrogen and oxygen isotope ratios in human hair are related to geography. Proc. Natl. Acad. Sci. U. S. A. 105, 2788-2793, 2008a.
[22]  Killingley J.S., Newman W.A., 18O fractionation in barnacle calcite: a barnacle paleotemperature equation. J. Mar. Res. 40, 893-902, 1982.
[23]  Roden J.S., Lin G.G., Ehleringer J.R., A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim. Cosmochim. Acta 64, 21-35, 2000.
[24]  Ehleringer J.R., Cerling T.E., West J.B., Podlesak D.W., Chesson L.A., Bowen G.J., Spatial considerations of stable isotope analyses in environmental forensics. In:Hester, R.E., Harrison, R.M. (Eds.), Issues in Environmental Science and Technology. Royal Society of Chemistry Publishing, Cambridge, pp. 36-53, 2008b.
[25]  Craig H., Isotopic variations in meteoric waters. Science, 133, 1702-1703, 1961.
[26]  Dansgaard W., Stable isotopes in precipitation. Tellus 16, 436-468, 1964.
[27]  Gat J.R. and Matsui E., Atmospheric water balance in the Amazon basin: an isotopic evapotranaspiration model. J. Geophys. Res., 96 (D7), 13179-13188, 1991.
[28]  Salati E., Dall’olio A., Matusi E., Gat J.R., Recycling of water in Amazon Basin: an isotopic study. Water Resour. Res., 15, 1250-1258, 1979.
[29]  Burde G.I., Zangvil A., The estimation of regional precipitation recycling. Part 1: review of recycling models. J. Climate, 14, 2497-2508, 2001.
[30]  Rangarajan R. and Athavale R.N., Annual replenishable groundwater potential of India – An estimate based on injected tritum studies. J. Hydrology., 234, 38-53, 2000.
[31]  Tirumalesh, K., Shivanna, K., Noble, J., Narayan, K.K. and Xavier, K.T., Nuclear techniques to investigate source, origin of groundwater pollutants and their flow path at the Indian Rare Earths Ltd, Cochin, Kerala. J. Radioanal. Nucl. Chem., 274, 307-313, 2007.
[32]  Bowen G.J., Revenaugh J., Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res. 39, 1299, 2003.
[33]  Wassenaar L.I., Van Wilgenburg S.L., Larson K., Hobson K.A., A groundwater isoscape (δD, δ18O) for Mexico. J. Geochem. Explor. 102, 123-136, 2009.
[34]  West A.G., E.C., Bowen G.J., Spatial analysis of hydrogen and oxygen stable isotopes (“isoscapes”) in ground water and tap water across South Africa, Journal of Geochemical Exploration 145, 213-222, 2014.
[35]  Aina Su., Zongyu Chen, Jun Liu, Wen Wei, “Sustainability of Intensively Exploited Aquifer Systems in the North China Plain: Insights from Multiple Environmental Tracers” Journal of Earth Science, 25 (3), 605-611, 2014.
[36]  West J.B., Bowen G.J., Cerling T.E. Ehleringer J.R., Stable isotopes as one of nature's ecological recorders. Trends Ecol. Evol. 21, 408-414, 2006.
[37]  Coplen T.B., New guidelines for reporting stable hydrogen, carbon and oxygen isotope-ratio data. Geochim. Cosmochim. Acta 60: 3359-3360, 1996.
[38]  Gonfiantini R., Environmental isotopes in lake studies. In Handbook of Environmental Isotope Geochemistry (eds Fritz, P. and Fontes, J. – Ch.), B. Elsevier, Amsterdam, vol. 2, The Terrestrial Environment, pp. 113-168, 1986.
[39]  Rozanski K., Araguas-Araguas L., Gonfiantini R., Isotopic patterns in modern global precipitation. In Continental isotope indicators of climate, American Geophysical Union Monograph, 78, 1-36, 1993.
[40]  Seeyan S. and Merkel B., “Determination of Recharge by Means of Isotopes and Water Chemistry in Shaqlawa-Harrir Basin, Kurdistan Region, Iraq”, Hydrology Current Research, 5(3) 179, 2014.
[41]  Shivanna K., Kulkarni U.P., Joseph T.B., Navada S.V., Contribution of storms to groundwater recharge in the semi-arid region of Karnataka, India. Hydrology. Process., 18, 473-485, 2004.
[42]  Sukhija B.S., Reddy D.V., Nagabhushanam P., Hussain S., Giri V.Y., Patil D.J., Environmental and injected tracers methodology to estimate direct precipitation recharge to a confined aquifer. J. Hydrol., 177, 77-97, 1996.
[43]  Navada S.V., Nair A.R., Rao S.M., Paliwal B.L., Doshi C.S., Groundwater recharge studies in arid region of Jalore, Rajasthan using isotope techniques. J. Arid Environ., 24, 125-133, 1993.
[44]  Rao S.M. and Kulkarni, K.M., Isotope hydrology studies on water resources in western Rajasthan. Curr. Sci., 72, 55-61, 1997.
[45]  Jain S.K., Navada S.V., Nair A.R., Shivanna K., Isotopic study on seawater intrusion and interrelations between water bodies: Some field examples. In Isotope Techniques in Water Resources Development, IAEA, Vienna, pp. 403-421, 1987.
[46]  Navada S.V. and Rao S.M., Study of Ganga River-groundwater interaction using environmental oxygen – 18. Isotopenpraxis, 27, 382-384, 1991.
[47]  Aggarwal M., Gupta S. K., Deshpande, R. D., Yadava, M. G., Helium, radon and radiocarbon studies on a regional aquifer system of the North Gujarat – Cambay region, India. Chem. Geol., 228, 209-232, 2006.
[48]  Sukhija B.S., Reddy D.V., Nagabhushanam P., Isotopic fingerprint of palaeoclimates during the last 30,000 years in deep confined groundwaters of Southern India. Quat. Res., 50, 252-260, 1998.
[49]  Zuber A., Chapter 1. Mathematical models for the interpretation of environmental radioisotopes in groundwater systems. In: P. Fritz and J. Ch. Fontes (Editors), Handbook of Environmental Isotope Geochemistry Vol. 2, Elsevier, Amsterdam: l-59, 1986.
[50]  Möller P., Rosenthal E., Geyer S., Guttman J., Dulski P., Rybakov M., Zilberbrand M., Jahnke C., Flexer, A., Hydrochemical processes in the lower Jordan valley and in the Dead Sea area. Chemical Geology 239 (1-2), 27-49, 2007a.
[51]  Möller P., Rosenthal E., Geyer S., Flexer A., Chemical evolution of saline waters in the Jordan-Dead Sea transform and in adjoining areas. International Journal of Earth Sciences 96 (3), 541-566, 2007b.
[52]  Tweed S.O.; Weaver T.R.; Cartwright I., Schaefer B., Behavior of rare earth elements in groundwater during flow and mixing in fractured rock aquifers : An example from the Dandenong Ranges, southeast Australia, Chemical geology, 234 (3-4) 291-307, 2006.
[53]  Harvey F.E., Sibray S.S., Delineating Ground Water Recharge from Leaking Irrigation Canals Using Water Chemistry and Isotopes. Ground Water 39, 408-421, 2001.
[54]  Mook W.G., Environmental isotopes in the hydrological cycle Principles and applications, Volume IV, Groundwater Saturated and Unsaturated zone By Mebus Geyh, No. 39, Vol. IV, UNESCO, Paris, 2000.
[55]  Gaye C.B., “Isotope techniques for monitoring groundwater salinization”, First International Conference on Salt Water Intrusion and Coastal Aquifers—Monitoring, Modeling, and Management. Essaouira, Morocco, April 23-25, 2001.
[56]  Mongelli G., Monni S., Oggiano G., Paternoster M., Sinisi R., Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy, Hydrol. Earth Syst. Sci., 17, 2917-2928, 2013.
[57]  Wang Y. and JiaoJ.J., Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta, China, Journal of Hydrology 438-439, 112-124, 2012.
[58]  Heaton T.H.E., Isotopic study of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem. Geology (Isot. Geosci. Sect.), 59, 87-102, 1986.
[59]  Eggenkamp H.G.M., The geochemistry of Chlorine isotopes. Geologica Ultraiectina, Mededelingen van de Faculteit Aardwetenschappen, Rijksunversiteit Utrecht: pp. 116, 1994.
[60]  Frape S.K., Bryant G., Blomquist R., Ruskeeniemi T., Evidence from stable chlorine isotopes for multiple sources of chlorine in groundwaters from crystalline shield environments. In: Isotopes in Water Resources Management Vol. I, IAEA Vienna: 19-30, 1995.
Show Less References


Social Stratification in the Drinking Water Scarcity Context: Empirical Evidence of Coastal Bangladesh

1Institute of Regional Science (IfR), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

2Foreign Research Fellow at Political Science Department of Vanderbilt University, Nashville, USA

American Journal of Water Resources. 2015, 3(3), 92-99
doi: 10.12691/ajwr-3-3-4
Copyright © 2015 Science and Education Publishing

Cite this paper:
Bishawjit Mallick, Luisa Fernanda Roldan-Rojas. Social Stratification in the Drinking Water Scarcity Context: Empirical Evidence of Coastal Bangladesh. American Journal of Water Resources. 2015; 3(3):92-99. doi: 10.12691/ajwr-3-3-4.

Correspondence to: Bishawjit  Mallick, Institute of Regional Science (IfR), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. Email: bishawjit_mallick@biari.brown.edu, bishawjit.mallick@kit.edu


Water is life, but getting safe water is a question of scarcity. In addition, water sources are being affected by extreme weather and climatic events creating pressure on quality of and access to fresh water. Therefore, it is urgent to know what are the easiest and well-managed ways of ensuring drinking water for everyone, how does the social structure influence the water management at community level. This study explores the importance and influence of societal structure in drinking water management. Results show that cconflict arises during the collection of water between the households and within the household and it has impact on the social connectedness and responsibilities of the community people. Initiatives should also be taken, so that the community management process ensure the equality and equity of access to drinking water as a basic human right.



[1]  Gleick, P.H., “Basic water requirements for human activities: Meeting Basic Needs”, Water International, 21 (2), 83-92, 1996.
[2]  World Water Assessment Programme [WWAP], The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk, United Nations Educational, Scientific and Cultural Organization, Paris, 2012.
[3]  World Health Organization [WHO] and UNICEF, Progress on sanitation and drinking-water – 2014 update, WHO Press, Geneva, 2014.
[4]  Faisal, I.M. & Kabir, M.R An Analysis of Gender-Water Nexus in Bangladesh, Journal of Developing Societies, Vol. 21(1-2): 175-194, 2005.
[5]  Paavola, J. Livelihoods, vulnerability and adaptation to climate change in Morogoro, Tanzania. Environmental Science & Policy 11(7), 642-654, 2008.
Show More References
[6]  Anand PB, Scarcity, entitlements and the economics of water in developing countries, Cheltenham: Elgar, 2007.
[7]  Banwell C., Stanley U., Dixon J., When Culture Impacts Health:Global Lessons for Effective Health Research, Academic Press, 2013.
[8]  Cosgrove, W.J., Rijsberman, F.R., Making Water everybody’s Business, Earthscan Publications Ltd, London, 2000.
[9]  United Nations Environment Programme [UNEP], Global Environment Outlook: Latin America and the Caribbean (GEO LAC) 3. United Nations Environment Programme, Regional Office for Latin America and the Caribbean. Panama City, 2010.
[10]  Water and Sanitation Program [WSP], Gender in Water and Sanitation, Nairobi, 2010.
[11]  UN Water, Gender, Water and Sanitation: a Policy Brief, United Nations, New York, 2006.
[12]  Women in Eurpoe for a Common future [WECF], Water and Sanitation from a gender perspective at the world Forum 4, Mexico, 13-21 March, Ultrecht/Munich, 2006.
[13]  Food and Agriculture Organizaiton of the United Naitons [FAO], Coping with water scarcity: An action framework for agriculture and food security, Water Reports 38, Rome, 2012.
[14]  Donohue, Styles, Coxon, & Irvine, Importance of spatial and temporal patterns for assessment of risk of diffuse nutrient emissions to surface waters, Journal of Hydrology, 304, Issues 1-4, 10:183-192, 2005.
[15]  Roldan-Rojas, L.F., Megerle, A., Perception of Water Quality and Health Risks in the Rural Area of Medellín, American Journal of Rural Development, 1(5), 106-115, 2013.
[16]  Sarkar, R. “Die Vulnerabilität der Trinkwasserversorgung im ländlichen Küstenraum von Bangladesch bei und nach Extremereignissen”, Masters Thesis, Institute of Regional Science, Karlsruhe Institute of Technology, Germany. 2011.
[17]  Mallick & Vogt, Coastal Livelihood and Physical Infrastructure in Bangladesh after Cylcone Aila, Mitigation and Adaptation of Strategies for Global Change, 16(6), 629-648, 2011.
[18]  Takagi et al., Perfluorooctanesulfonate and perfluorooctanoate in raw and treated tap water from Osaka, Japan, Chemosphere, Vol. 72, Issue 10:1409-1412, 2008.
[19]  Alam, A. M. S., Islam, M. A., Ahmed, E., Islam, S., Siddique, M. N. A., Matin, M. A., Samad, M. A. and Quayum, M. E., Study of the role of arsenic in water resources in Bangladesh, International Seminar on Strengthening Capacity in Developing Countries for Water Resources Research. International Foundation for Science. Stockholm, Sweden, 2003.
[20]  BGS and DPHE, Arsenic contamination of groundwater in Bangladesh, 2001.
[21]  CARE Bangladesh, How can we drink saline water?, Advocacy campaign of the “ Pani Committee” (Water Committee), 2007. [Online]. Available: http://www.carebd.org. [Accessed Jun. 17, 2015].
[22]  Mirza, M.K. Diversion of the Ganges Water at Farakka and Its Effects on Salinity in Bangladesh, Environmental Management Vol. 22(5): 711-722, 1998.
[23]  Mirza, M.K. Vulnerability to the Ganges Water Diversion: Adaptation and Coping Mechanisms, in Mirza, M.K. (ed.): The Ganges Water Diversion: Environmental Effects and Implications, Water Science and Technology Library Volume 49: 247-285, 2004.
[24]  NGO Forum, Annual Report 2007.
[25]  Jakariya, M., Rahman, M., Chowdhury, A. M. R., Rahman, M., Yunus, M., Bhiuya, A., Wahed, M. A., Bhattacharya, P., Jacks, G., Vahter, M. & Persson, L.-Å., Sustainable safe water options in Bangladesh: Experiences from the Arsenic Project at Matlab, London, 2005.
[26]  Haque, S.A. Salinity problem and crop production in Coastal regions of Bangladesh, Pakistan Journal of Botany, 38(5), 1359-1365, 2006.
[27]  BBS. Statistical Year Book, Bangladesh Bureau of Statistics, Government of Bangladesh. 2011.
[28]  Howard, G., Bartram, J., Domestic Water Quality, Service, Level and Health, WHO, 2003.
Show Less References