[6]  A. Kılıc¸man, H. Eltayeb, and K. A. M. Atan, A note on the comparison between Laplace and Sumudu transforms, Iranian Mathematical Society, vol. 37(1) (2011)131141. 

[7]  A. Kılıc¸man and H. E. Gadain, On the applications of Laplace and Sumudu transforms, Journal of the Franklin Institute, vol. 347(5) (2010) 848862. 

[8]  H. Eltayeb, A. Kılıc¸man, and B. Fisher, A new integral transform and associated distributions, Integral Transforms and Special Functions, vol. 21(56) (2010) 367379. 

[9]  A. Kılıc¸man and H. Eltayeb, “A note on integral transforms and partial differential equations,” Applied Mathematical Sciences, vol. 4(14) (2010) 109118. 

[10]  G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., vol. 135(1988) 501544. 

[11]  N.T. Shawagfeh, Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput., vol. 131 (2002)517529. 

[12]  S.S. Ray, R.K. Bera, An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Appl. Math. Comput., vol. 167(2005) 561571. 

[13]  H. Jafari, V. DaftardarGejji, Revised Adomian decomposition method for solving systems of ordinary and fractional differential equations, Appl. Math. Comput., vol. 181(1) (2006)598608. 

[14]  H. Jafari, V. DaftardarGejji, Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method, Appl. Math. Comput., vol. 180 (2) (2006) 700706. 

[15]  A. Golbabai, M. Javidi, Application of homotopy perturbation method for solving eighthorder boundary value problems, Appl. Math. Comput., vol. 191(1) (2007) 334346. 

[16]  J. H. He, A coupling method of a homotopy technique and a perturbation technique for nonlinear problems, Int. J. NonLinear Mech., vol. 35(1)(2000) 3743. 

[17]  J. H. He, The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl. Math. Comput., vol. 151(1) (2004) 287292. 

[18]  J. H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos Solitons Fractals, vol. 26(3) (2005) 695700. 

[19]  J. H. He, Asymptotology by homotopy perturbation method, Appl. Math. Comput., vol. 156 (3) (2004) 591596. 

[20]  J. H. He, Homotopy perturbation method for solving boundary problems, Phys. Lett. A, vol. 350(12) (2006) 8788. 

[21]  Sh. S. Behzadi, Iterative methods for solving nonlinear FokkerPlank equation, Int. J. Industrial Mathematics, vol. 3 (2011) 143156. 

[22]  Sh. S. Behzadi, Numerical solution of SawadaKotera equation by using iterative methods, Int. J. Industrial Mathematics, vol. 4 (2012)269288. 

[23]  M. Ghanbari, Approximate analytical solutions of fuzzy linear Fredholm integral equations by HAM, Int. J. Industrial Mathematics, vol. 4 (2012)5367. 

[24]  S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992. 

[25]  M. Zurigat, S. Momani, A. Alawneh, Analytical approximate solutions of systems of fractional algebraic–differential equations by homotopy analysis method, Comput. Math. Appl., vol. 59 (3) (2010)12271235. 

[26]  G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Acad. Publ., Boston, 1994. 

[27]  Sh. S. Behzadi, Iterative methods for solving nonlinear FokkerPlank equation, Int. J. Industrial Mathematics, vol. 3 (2011) 143156. 

[28]  J.H. He, Variational iteration method a kind of nonlinear analytical technique: some examples, International Journal of Nonlinear Mechanics, vol. 34 (1999) 699708. 

[29]  J.H. He, X.H. Wu, Variational iteration method: new development and applications, Computers & Mathematics with Applications, vol. 54 (2007) 881894. 

[30]  J.H. He, G.C.Wu, F. Austin, The variational iteration method which should be followed, Nonlinear Science Letters A, vol. 1 (2009) 130. 

[31]  E. Hesameddini, H. Latifizadeh, An optimal choice of initial solutions in the homotopy perturbation method, International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10 (2009) 13891398. 

[32]  E. Hesameddini, H. Latifizadeh, Reconstruction of variational iteration algorithms using the Laplace transform, International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10 (2009) 13771382. 

[33]  Yasir Khan, An effective modification of the Laplace decomposition method for nonlinear equations, International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10 (2009) 13731376. 

[34]  S.A. Khuri, A Laplace decomposition algorithm applied to a class of nonlinear differential equations, Journal of Applied Mathematics, vol. 1 (2001) 141155. 

[35]  AR. Vahidi, Gh. A. Cordshooli, On the Laplace transform decomposition algorithm for solving nonlinear differential equations, Int. J. Industrial Mathematics, vol. 3(2011) 1723. 

[36]  Y. Khan, Qingbiao. Wu, Homotopy perturbation transform method for nonlinear equations using He’s polynomials, Computers & Mathematics with Applications, vol.61(8) (2011) 19631967. 

[37]  J. Singh, D. Kumar, Sushila, Homotopy perturbation sumudu transform method for nonlinear equations, Adv. Theor. Appl. Mech., vol. 4(2011) 165175. 

[38]  S. Kumar, A new analytical modelling for fractional telegraph equation via Laplace transform, Applied Mathematical Modelling vol. 38(13) (2014) 31543163. 

[39]  M. S. Mohamed, F. Almalki, M. Alhumyani, Homotopy Analysis Transform Method for TimeSpace Fractional Gas Dynamics Equation, Gen. Math. Notes, vol. 24(1) (2014) 116. 

[40]  S. Kumar, M. M. Rashidi, New analytical method for gas dynamics equation arising in shock fronts, Computer Physics Communications, vol. 185 (7) (2014)19471954. 

[41]  A. Kılıc¸man, H. Eltayeb, and R. P. Agarwal, “On Sumudu transform and system of differential equations,” Abstract and Applied Analysis, Article ID598702, 11 pages, 2010. 

[42]  J. Zhang, “A Sumudu based algorithm for solving differential equations,” Academy of Sciences of Moldova, vol. 15(3) (2007) 303313. 

[43]  V. B. L. Chaurasia and J. Singh, “Application of Sumudu transform in Sch¨odinger equation occurring in quantum mechanics,” Applied Mathematical Sciences, vol. 4(5760), (2010)28432850. 

[44]  N. A. Khan, N.U. Khan, M. Ayaz,A. Mahmood, N. Fatima, Numerical study of time fractional fourthorder differential equations with variable coefficients, Journal of King Saud University – Science, vol. 23(1)(2011) 9198. 

[45]  Y. Luchko, R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnamica, 24 (1999) 207233. 

[46]  O. L. Moustafa, On the Cauchy problem for some fractional order partial differential equations, Chaos Solitons& Fractals, 18 (2003) 135–140. 

[47]  I. Podlubny, Fractional Differential Equations, Academic, New York, 1999. 

[48]  A.M. Wazwaz, Analytical treatment of variable coefficients fourthorder parabolic partial differential equations. Applied Mathematics Computation, vol. 123(2001) 219–227. 

[49]  A.M. Wazwa, Exact solutions for variable coefficient fourth order parabolic partial differential equations in higher dimensional spaces, Applied Mathematics Computation vol. 130 (2002) 415424. 

[50]  J. Biazar, H. Ghazvini, He’s variational iteration method for fourthorder parabolic equation, Computers Mathematics with Applications vol.54 (2007) 10471054. 
