American Journal of Materials Science and Engineering

ISSN (Print): 2333-4665

ISSN (Online): 2333-4673

Editor-in-Chief: Apply for this position

Website: http://www.sciepub.com/journal/AJMSE

   

Article

Improved Optical Properties of Tin Antimony Sulphide Thin Films for Photovoltaics

1Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan

2National Center of Physics, Quaid-i-Azam University Campus Islamabad, Pakistan


American Journal of Materials Science and Engineering. 2016, 4(1), 1-6
doi: 10.12691/ajmse-4-1-1
Copyright © 2016 Science and Education Publishing

Cite this paper:
M. A. Khan, Azhar Ahmed, N. Ali, Tariq Iqbal, Ayaz Arif Khan, Mahboob Ullah, Muhammad Shafique. Improved Optical Properties of Tin Antimony Sulphide Thin Films for Photovoltaics. American Journal of Materials Science and Engineering. 2016; 4(1):1-6. doi: 10.12691/ajmse-4-1-1.

Correspondence to: M.  A. Khan, Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan. Email: rauf_ak@yahoo.com

Abstract

Tin antimony sulphide thin films have been synthesized as an absorber layer for solar cells. These films are deposited by vacuum thermal evaporation on glass substrate at a pressure of 10-5 torr. The films are then annealed at different temperatures in argon atmosphere. XRD analysis reveals that both as deposited and annealed films are found to be in polycrystalline phase. The crystallinity of the films is significantly enhanced with increasing annealing temperatures. The quantum efficiency is higher in the visible and near infrared region for the annealed films whereas the quantum efficiency of as deposited film is comparatively lower. The transmittance of the annealed films is found to be decreasing with increasing temperatures. The thickness and band gap of the films are measured by ellipsometric data. The absorption coefficient of the films is significantly higher (~105cm-1), which is very important factor regarding solar conversion efficiency. Hot point probe measurements show that the films possess n-type electrical conductivity.

Keywords

References

[1]  M. Adachi, J. Jiu, S. Isoda, Curr. Nanosci. 3 (2007) 285.
 
[2]  N. K. Reddy, K. T. R. Reddy, Physica B: Condens. Matter., 368 (2005) 25.
 
[3]  S. Cheng, G. Conibeer, Thin Solid Films, 520 (2011) 837.
 
[4]  P. Nwofe, K. Reddy, J. Tan, I. Forbes, R. Miles, Phys. Procedia, (2012) 25150-25157.
 
[5]  H. Maghraoui-Meherzi, T. Ben Nasr, N. Kamoun, M. Dachraoui, Comptes Rendus Chimie. 14 (2011) 471.
 
Show More References
[6]  H. Dittrich, A. Stadler, D. Topa, H. J. Schimper, A. Basch, Phys. Status Solidi A, 206 (2009) 1034.
 
[7]  A. Gassoumi, M. Kanzari, J. Optoelectron. Adv. Mater. 11 (2009) 414.
 
[8]  Matthieu Y. Versavel, Joel A. Haber, Thin Solid Films 515 (2007) 5767.
 
[9]  H. Dittrich, A. Bieniok, U. Brendel, M. Grodzicki, D. Topa, Thin Solid Films 515 (2007) 5745.
 
[10]  M. Y. Chen, K. A. Rubin, US Patent No. (1992) 5242784.
 
[11]  K. Hoang, S.D. Mahanti, J. Androulakis, M.G. Kanatzidis, Mater. Res. Soc. Symp. Proc. 886 (2006).
 
[12]  T. B. Massalski, H. Okamoto, Binary alloy phase diagrams, ASM International (1990).
 
[13]  A. Gassoumi, M. Kanzari, Chalcogenide Lett., 6 (2009) 163.
 
[14]  P. P. K. Smith, J. B. Parise, Struct. Sci., 41 (1985) 84.
 
[15]  S.F. Bartram, Handbook of X-Rays, edited by E.F. Kaelebe, p.17, McGraw-Hill, New York, (1967).
 
[16]  Abid, M. Eman, M. Inaam, Abdul Majeed, Kadhim A. Aadim., International Journal of Innovative Research in Science, Engineering and Technology, (2013) 2.
 
[17]  A. Gassoumi, M. Kanzari, B. Rezig .Eur. Phys: J. Appl. Phys. 41 (2008) 91.
 
[18]  A. Rabhi, M. Kanzari, B. Rezig, Mater. Lett., 62 (2008) 3576.
 
[19]  P. Agbo, Adv. Appl. Sci. Res., 2 (2011) 399.
 
[20]  S. Ezugwu, F. Ezema, P. Asogwa, Chalcogenide Lett., 7 (2010) 341.
 
[21]  P. Agbo, Adv. Appl. Sci. Res., 3 (2012) 599.
 
[22]  H. B. Lee, Y. M. Yoo, Y. H. Han, Scripta Mater., 55 (2006) 1127.
 
[23]  H. Unlu. Solid State Electronics 35 (1992) 1343.
 
[24]  J. D. Plummer, M. D. Deal, P. B. Griffin, Silicon VLSI Technology, Prentice Hall, (2000).
 
Show Less References

Article

Influence of Grog Size on the Performance of NSU Clay-Based Dense Refractory Bricks

1Department of Ceramic and Glass Technology, Akanu Ibiam Federal Polytechnic, Unwana, Nigeria

2Department of Metallurgical Engineering Technology, Akanu Ibiam Federal Polytechnic, Unwana, Nigeria

3Department of Mechanical Engineering Technology, Akanu Ibiam Federal Polytechnic, Unwana, Nigeria

4Department of Architecture, Akanu Ibiam Federal Polytechnic, Unwana, Nigeria


American Journal of Materials Science and Engineering. 2016, 4(1), 7-12
doi: 10.12691/ajmse-4-1-2
Copyright © 2016 Science and Education Publishing

Cite this paper:
Adindu C. Iyasara, Ekenyem C. Stan, Okafor Geoffrey, Moses Joseph, Nwabuna Nwokedi Patrick, Nnachi Benjamin. Influence of Grog Size on the Performance of NSU Clay-Based Dense Refractory Bricks. American Journal of Materials Science and Engineering. 2016; 4(1):7-12. doi: 10.12691/ajmse-4-1-2.

Correspondence to: Adindu  C. Iyasara, Department of Ceramic and Glass Technology, Akanu Ibiam Federal Polytechnic, Unwana, Nigeria. Email: caiyasara@akanuibiampoly.edu.ng

Abstract

The suitability of using local kaolin (Nsu clay) and Nsu clay grog to enhance efficiency (reduce shrinkage, improve abrasion and reduce porosity) in the production of dense refractory bricks was studied. The chemical analysis, crystal structure examination and microstructural analysis were determined using the atomic absorption spectrophotometer (AAS), x-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The physical properties in terms of refractoriness, linear shrinkage, bulk density and apparent porosity as well as mechanical properties in terms of cold crushing strength (CCS) were carried out using American Society for Testing and Material (ASTM) stipulated standard methods. Test specimens (sample A = 20, sample B = 30 and sample C = 40 % grog sizes) were prepared and tested using the standard methods. The overall chemical and structural analysis of the raw Nsu clay showed that it is rich in SiO2 (59.20 wt. %) and Al2O3 (26.30 wt. %) with trace amounts of MgO, Fe2O3 and K2O, hence an alumino-silicate clay. The refractory properties measured showed acceptable and efficient results. Maximum apparent porosity (20.22 %) and CCS (61.77 MPa) were obtained at sample B = 30 % grog size.

Keywords

References

[1]  Ameh E.M, Obasi N.L, Effect of Rice Husk on Insulating Bricks Produced with Nafuta and Nsu Clays”, Glob. J Eng Technol. 661-8. 2009.
 
[2]  Hassan S.B, Aigbodion V.S, “Effect of Coal Ash On Some Refractory Properties of Alumino-Silicate (Kankara) Clay for Furnace Lining”, Egyptian J Basic & Appl Sc. 107-114. 2014.
 
[3]  Idenyi N.E, Non-Metallic Materials Technology, Strait Gate Communication, Enugu, Nigeria, 2002.
 
[4]  Aparna G and Santosh K, Materials Science for Engineers, CBS Publishers and Distributors, New Deihi, India, 2004.
 
[5]  Aramide F.O, Oke S.R, “Production and Characterization of Clay bonded Carbon Refractory from Carbonized Palm Kernel Shell”, ACTA TEHNICA CORVINIENSIS- Bulletin of Engineering, Tome VII, 2014.
 
Show More References
[6]  Chukwudi B.C, “Characterization and Evaluation of the Refractory Propeeties of Nsu Clay Deposit in Imo State, Nigeria”, Pacific Journal of Science and Technology, 9 (2). 487-494. 2008.
 
[7]  Aramide F.O and Seidu S.O, “Production of Refractory Lining for Diesel Fired Rotary Furnace from Locally Sourced Kaolin and Potter’s Clay”, J Minerals & Materials Characterization and Engineering, 1. 75-79. 2013.
 
[8]  Lee W.E, “Refractories in Comprehensive Composite Materials”, in Ceramic, Carbon and Cement Matrix Composites, eds. A. Kelly and C. Zweben, Elsevier,4 (4). 363. 2000.
 
[9]  Yami A.M and Umaru S, “Characterization of some Nigerian Clays as Refractory Materials for Furnace Lining”, Continental J Engr. Scs. 30-35. 2007.
 
[10]  Abolarin M.S, Olugboji O.A and Ugwuoke I.C, “Experimental Investigation on Local Refractory Materials for Furnace Construction”, 5th Annu. Engr Conf Proc, 82-85. 2004.
 
[11]  David W. Richerson, Modern Ceramic Engineering: Properties, Processing and Use in Design, Marcel Dekker Inc, New York, 1992, 377.
 
[12]  Marwa A.G et al, “Factors affected the performance of Fireclay Refractory bricks”, Gornictwo.Geoinzynieria.Rok 33.Zeszyt 4, 2009.
 
[13]  Ceramic Materials, Grog-Crushed brick, Body aggregate, Available: http://digitalfire.com/4sight/material/grog.html. [Accessed Dec.2015].
 
[14]  Martin S Spiller, “Dental Ceramics”, D.M.D Family Densitry, 208 Main St. Townsand, MA 01469, 2000.
 
[15]  Sabine Grunwald, “Secondary Silicates”, Soil and Water Department, University of Florida. Available: http://soils.ifes.ufl.edu. [Accessed Dec. 18, 2015].
 
[16]  Kutuiba H Mohammed, “Reducing kaolin Shrinkage by using Kaolin Grog”, Non-Metallic Materials engineering department, University of Babylon, 2012
 
[17]  Murray H, “Industrial Clays Case Study:Mining, Minerals and Sustainable Development”, 69. 1-9. 2002
 
[18]  Ewelina Klosek-Wawrzyn, Jan Matolepszy, Pawel Murzyn, “Sintering Behaviour of Kaolin with Calcite”, Procedia Engr, 57. 572-582. 2013
 
[19]  Chukwudi B.C and Remmy uche, “Flocculation of Kaolinite Clay using Natural Polymer”, Pacific Journal of Science and Technology, 9 (2). 495-501.2008
 
[20]  Chukwudi B.C, “Characterization and Evaluation of the Refractory Properties of Nsu Clay Deposit in Imo State, Nigeria”, Pacific Journal of Science and Technology, 9 (2), 487-494. 2008.
 
[21]  Bochraraov S and Gemsimov E.A, Technology of Silicate Materials, Engineering press, Bulgaria, 1977.
 
[22]  Norsker H, “The self-reliant potter: Refractories, and Kilns”, Friedr. Braunschweig/Wiesbaden:Vieweg & Sohn, 1987.
 
[23]  Reginald Griffiths, Charles Radford, Calculations in Ceramics, Elsevier Ltd, 1965.
 
[24]  Aderigbe O.A, “Local sourcing of Raw Materials and Consumables for the Iron and Steel Industries in Nigeria- Challenges for the Future”, Raw Materials Research and Development Council of Nigeria (RMRDC), 1989.
 
[25]  Sani Aliyu, Bashir Garba, B.G Danshehn and A.O Isah, “Studies on the Chemical and Physical Characterisitcs of Selected Clay Samples”, International Journal of Engineering Research & Technology (IJERT), 2 (7). 2013.
 
[26]  Grim R.E, Clay Mineralogy, second edition, McGraw-Hill, New York, NY, 1968, 165-175.
 
[27]  Chester J.H, Refractories, Production and Properties, The Iron and Steel Institute, London, UK, 1973, 4-13, 295-315.
 
[28]  Omowumi O.J, “Characterization of some Nigerian Clays as Refractory Material for Furnace Lining”, Nigerian Journal of Engineering Metallurgy, 2 (3). 3. 2001.
 
[29]  Abdullahi M.Y and Samaila U, “Characterization of some Nigerian Clays as Refractory Materials for Furnace lining”, J Engineering Sciences, Adamawa. 30-35. 2007, 11.
 
Show Less References

Article

Use of Vegetable Fibers as Reinforcement in the Structure of Compressed Ground Bricks: Influence of Sawdust on the Rheological Properties of Compressed Clay Brick

1Laboratory of Geomaterials and building Technology (LGTB), DEPARTMENT of Earth sciences and Mining Resources, Felix Houphouet Boigny University, Abidjan, 22 po box 582 Abidjan 22, Ivory Coast

2Strategic Support Program to Scientific research (financing agency of the study)


American Journal of Materials Science and Engineering. 2016, 4(1), 13-19
doi: 10.12691/ajmse-4-1-3
Copyright © 2016 Science and Education Publishing

Cite this paper:
S. Ouattara, M. O. Boffoue, A. A. Assande, K. C. Kouadio, C. H. Kouakou, E. Emeruwa, Pasres. Use of Vegetable Fibers as Reinforcement in the Structure of Compressed Ground Bricks: Influence of Sawdust on the Rheological Properties of Compressed Clay Brick. American Journal of Materials Science and Engineering. 2016; 4(1):13-19. doi: 10.12691/ajmse-4-1-3.

Correspondence to: S.  Ouattara, Laboratory of Geomaterials and building Technology (LGTB), DEPARTMENT of Earth sciences and Mining Resources, Felix Houphouet Boigny University, Abidjan, 22 po box 582 Abidjan 22, Ivory Coast. Email: ouatsoul@gmail.com

Abstract

The present study aims at understanding the rheological behavior of Compressed Ground Bricks (CGB). It thus uses as raw materials the clay and the sawdust which are an industrial waste with the multiple consequences on the environment. The composites elaborate clay-sawdust of wood are bricks intended to be used like fill material of the walls. Their mechanical properties were studied in order to place at the disposal of the users, of competitive materials; but a particular stress was laid on their behavior at the rupture. Thus, the study shows that the CGB containing clay only have flexural strength and compressive strength respectively of 1.3 MPa and 2.6 MPA. When one adds the sawdust to it, these resistances grow to reach optimal values, before decreasing. For the flexural strength, optimal resistance is of 1.4 MPa, for a content of sawdust of 20%. For the compressive strength, the optimum is reached to sawdust 15% with a resistance of 4.4 MPa. The study of the relations stress-strain shows that the curve of the CGB without sawdust has only one pace rectilinear before the rupture (elastic range); these bricks thus have a fragile behavior. The addition of the sawdust to clay confers on the CGB a quasi ductile behavior characterized by curves which present initially a rectilinear part (elastic range), followed by a curvilinear part (plastic range). One can also note that the addition of the sawdust cause a drop in the dry density of bricks.

Keywords

References

[1]  Kouakou C. H. (2005). Valorisation des argiles de Côte d’Ivoire : étude de la stabilisation à froid de l’argile de Dabou avec un liant hydraulique (le ciment Portland). Thèse de Doctorat des Sciences de la Terre, option Géomatériaux, Université de Cocody, Abidjan 196 p.
 
[2]  Kouadio K. C. (2010). Élaboration et caractérisation de blocs d’argile stabilisée au ciment (Cimarg) : influence de l’apport de dégraissant sur les caractéristiques physiques et mécaniques des blocs. Thèse de Doctorat des Sciences de la Terre option Géomatériaux, Université de Cocody, Abidjan, 151 p.
 
[3]  Ouattara S. (2013). Recherche de briques légères : conception et caractérisation de briques crues à base d’argile et de sciure de bois, stabilisées au ciment Portland. Thèse de Doctorat unique des Sciences de la Terre, option Géomatériaux, Université Félix Houphouët Boigny, Abidjan 150 p.
 
[4]  Rossi P., Acker A. and Maller Y. (1987). Effect of steel fibers at two different stages: the material and the structure. Material and Structure, vol. 20, pp 436-439.
 
[5]  Dardare J. (1975). Contribution à l’étude du comportement mécanique des bétons renforcés de fibres de polypropylène. Fiber reinforced cement and concrete, RILEM, symposium 1975, Edited by A. NEVILLE, Lancaster, Construction Press, pp 227-235.
 
Show More References
[6]  Andonian R., Mai Y. W. and Cotterll B. (1979). Strength and fracture properties of cellulose fiber reinforced cement composites. Journal of Cement Composites, vol. 1, n° 3, pp. 151-158.
 
[7]  Gopalaratman V. S. and Shah S. P (1985). “Softening Response of plain concrete in Direct Tension.” ACI Journal, May-June 1985, Vol. 82, N° 3, pp 310-323.
 
[8]  Coutts R. S. P. and Ni Y. (1995). Autoclaved bamboo pulped fibre reinforced cement. Cement and Concrete Composites, vol. 17, pp 99-106.
 
[9]  Blankenhorn P. R., Silsbee M. R., Blankenhorn B. D. and Dicola M. (1999). Temperature and moisture effect on selected properties of wood fiber-cement composites. Cement and Concrete Research, vol. 29, pp 737-741.
 
[10]  Khenfer M. and Morlier P. (2000). Caractérisation et microstructure de ciments renforcés de fibres de cellulose. Bulletin des Laboratoires des Ponts et Chaussées, vol. 224, n° 4236, pp 49-58.
 
[11]  Ledhem A., Al-Rim K. et Queneudec M. (1996). Étude des paramètres de fabrication d’un composite argile-ciment-bois. Materials and Structures, vol. 29, pp 514-518.
 
[12]  Savastano J. H., Warden P. G. et Coutts R. S. P. (2000). Brazilian waste fibres as reinforcement for cement-based composites. Cement, Concrete Composites Journal, vol. 22, pp 379-384.
 
[13]  Agarwall L. K., (1995). Bagasse-reinforced cement composites. Cement and Concrete Composites, vol. 17, pp. 107-112.
 
[14]  Benmalek M. L., Houari H., Bali A. et Queneudec M. (2000). Comportement d’un composite fine minérale - ciment - bois élaboré à l’aide de déchets industriels solides, Sciences & Technologie n°13 juin (2000), pp 65-72.
 
[15]  Bederina M. (2007). Caractérisation mécanique et physique des bétons de sable à base de déchets de bois. Thèse de Doctorat, École Nationale polytechnique, Alger, Algérie, 166 p.
 
Show Less References