American Journal of Microbiological Research

Current Issue» Volume 2, Number 6 (2014)

Article

Molecular Characterization and in Silico Analysis of a Novel Mutation in TEM-1 Beta-Lactamase Gene among Pathogenic E. coli infecting a Sudanese Patient

1Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan

2Department of microbiology, Faculty of medicine, university of Khartoum, Sudan

3Head department of biotechnology, Biotechnology Park, Africa city of technology, Sudan

4Botany department, Faculty of Science, University of Khartoum, Sudan


American Journal of Microbiological Research. 2014, 2(6), 217-223
DOI: 10.12691/ajmr-2-6-8
Copyright © 2014 Science and Education Publishing

Cite this paper:
Hisham N Altayb, Nagwa M El Amin, Maowia M. Mukhtar, Mohamed Ahmed Salih, Mohamed A M Siddig. Molecular Characterization and in Silico Analysis of a Novel Mutation in TEM-1 Beta-Lactamase Gene among Pathogenic E. coli infecting a Sudanese Patient. American Journal of Microbiological Research. 2014; 2(6):217-223. doi: 10.12691/ajmr-2-6-8.

Correspondence to: Hisham  N Altayb, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan. Email: hishamaltayb@yahoo.com

Abstract

The presence of ESBLs in many E. coli strains are of serious concern, since these organisms are the most common cause of different human infections. In this study we isolate an E. coli bacterium with high hydrolytic activity against cefotaxime. The ESBLs production was confirmed by phenotypic confirmatory test, while the ESBLs genes were detected by polymerase chain reaction (PCR). This isolate was positive for TEM gene and negative for CTX-M and SHV genes. DNA sequencing was done for TEM gene. The nucleotide sequences and translated proteins were subjected to BLAST for sequences similarity and homology, BLASTp result revealed a substitution of aspartic acid in TEM-1(gb: AFI61435.1) to Threonine at position 262. In Silico tools was used for mutation analysis and prediction of secondary and tertiary structure of wild and mutant type genes. We conclude that our mutant gene is completely different from the wild types TEM-1 gene, within phenotypic and genotypic levels. So we conclude a novel mutant TEM gene with ESBLs activity is been detected in Sudan Phylogenetic tree revealed that the possible source of our gene is Iran.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[
[1]  Jacoby, G. A., and A. A. Medeiros (1991). More extended-spectrum beta-lactamases. Antimicrob. Agents Chemother. 35: 1697-1704.
 
[2]  Bush K (2001). New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clinical Infectious Diseases; 32 (7): 1085-9.
 
[3]  Bonnet R, De Champs C, Sirot D, Chanal C, Labia R, Sirot J. (1999). Diversity of TEM mutants in Proteus mirabilis. Antimicrob. Agents Chemother. 43: 2671-2677.
 
[4]  Datta, N., and P. Kontomichalou (1965). Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208: 239-241.
 
[5]  Brun-Buisson, C., P. Legrand, A. Philippon, F. Montravers, M. Ansquer,and J. Duval (1987). Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae. Lancet ii: 302-306.
 
Show More References
[6]  Sirot, D., J. Sirot, R. Labia, A. Morand, P. Courvalin, A. Darfeuille-Michaud, R. Perroux, and R. Cluzel (1987). Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel beta-lactamase. J. Antimicrob. Chemother. 20: 323-334.
 
[7]  Medeiros AA (1997). Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clinical Infectious Diseases 1997; 24Suppl 1: S19-45.
 
[8]  MacFaddin JF (1980). Gram-Negative Enterobacteriaceae and other intestinal bacteria. In Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. Vol. 32.
 
[9]  Clinical Laboratory Standard Institute; Wayne, Pennsylvania, USA: 2012. pp. 70–71.
 
[10]  Thomson KS, Sanders CC (1992). Detection of extended-spectrum β-lactamases in members of the family Enterobacteriaceae: Comparison of the double-disk and three-dimensional tests. Antimicrob. Agents Chemother. 36:1877-1882.
 
[11]  Alsadig G, Mohamed A.Arbab, Sawsan A. H. Aldeaf, Lamya A. Elhassan, Elshibli Elshibli, Ahmed M. Elhassan (2014). Allele Frequency Of P53 Gene Arg72Pro In Sudanese Meningioma Patients And Controls. In.J. of SCIENTIFIC & TECHNOLOGY RES. 2014; 3 (6): 2277-8616.
 
[12]  Cao, V., Lambert, T. & Courvalin, P (2002). ColE1-like plasmid pIP843 of Klebsiella pneumoniae encoding extended-spectrum ß-lactamases CTX-M-17. Antimicrob Agents Chemother 46, 1212-1217.
 
[13]  Atschul SF, Madden TL, Schaffer AA et al. (1997). Gapped BLAST and PSI-BLAST. A new generation of protein database search programmes”. NucleicAcid Res 25: 3389-3402.
 
[14]  Hall TA (1999). “BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT”. Nucl. Acids. Symp. Ser. 41: 95-98.
 
[15]  John Besemer, AlexandreLomsadze and Mark Borodovsky (2001). GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions”. Nucleic Acids Research 29: 2607-2618.
 
[16]  McWilliam H, Li W, Uludag M (2013). Analysis Tool Web Services from the EMBL-EBI” Nucleic acids research: 41(Web Server issue): W597-600.
 
[17]  Kelley LA, Sternberg MJE (2009). Protein structure prediction on the web: a case study using the Phyre server” Nature Protocols 4, 363-371.
 
[18]  Huang CC, Meng EC, Morris JH, et al. (2014), “Enhancing UCSF Chimera through web.” Nucleic Acids Res: 42(Web Server issue): W478-84.
 
[19]  An e-Science approach with life scientist friendly interfaces (2010). “Protein structure analysis of mutations causing inheritable diseases” BMC Bioinformatics. 8; 11(1): 548; PMID: 21059217. Sites in protein structures”. J MolBiol: 339(3): 607-33.
 
[20]  Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A (2005). Protein Identification and Analysis Tools on the ExPASy Server; (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press.
 
[21]  Canton, R., M. I. Morosini, O. M. de la Maza, and E. G. de la Pedrosa. (2008). IRT and CMT beta-lactamases and inhibitor resistance. Clin. Microbiol. Infect.14(Suppl.1): 53-62.
 
[22]  Robin, F., J. Delmas, C. Schweitzer, O. Tournilhac, O. Lesens, C. Chanal,and R. Bonnet (2007). Evolution of TEM-type enzymes: biochemical and genetic characterization of two new complex mutant TEM enzymes, TEM-151 and TEM-152, from a single patient. Antimicrob. Agents Chemother. 51: 1304-1309.
 
[23]  Mekki A H, Hassan A N, Elsayed D M (2010). Extended Spectrum Beta Lactamases among Multi Drug Resistant Escherichia Coli and Klebsiella Species Causing Urinary Tract Infections in Khartoum. J Bact Res.2010; 2(3): 18-21.
 
[24]  Omar BA, Alfadel OO, Atif HA, Mogahid ME (2013). Prevalence of TEM, SHV and CTX-M genes in Escherichia coli and Klebsiella spp Urinary Isolates from Sudan with confirmed ESBL phenotype, Life Science Journal 2013; 10(2) http://www.lifesciencesite.com.
 
[25]  Abdelmoneim Awad, Idris Eltayeb, Lloyd Matowe, Lukman Thalib (2005). Self medication with Antibiotics and Anti-malarial in the community of Khartoum State, Sudan. J Pharm Pharmaceut Sc. 2005; 8(2): 326-331.
 
[26]  Hamedelnil, F.Y, Eltayeb, H.N (2012). Molecular detection of Extended Spectrum β-lactamases (ESBLs) genes in E. coli isolated from urine specimens. Int J of advanced and scientific research October, 2012, ISSN 2249-9954.
 
[27]  Sougakoff, W., S. Goussard, G. Gerbaud, and P. Courvalin (1988). Plasmid-mediated resistance to third-generation cephalosporins caused by point mutations in TEM-type penicillinase genes. Rev. Infect. Dis. 10: 879-884.
 
[28]  Lautenbach, E., J. B. Patel, W. B. Bilker, P. H. Edelstein, and N. O.Fishman (2001). Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin. Infect. Dis. 32: 1162-1171.
 
[29]  Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P (2008). The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32: 234-258.
 
[30]  Paterson DL, Ko WC, Gottberg V, Casellas JM, Mulazimoglu L,Klugman KP. (2001). Outcome of cephalosporin treatment for serious infections due to apparently susceptible organism producing extended spectrum beta-lactamasees: Implications for clinical microbiology laboratory. J Clin Microbiol 2001; 39: 2206-12.
 
[31]  Barthélémy M, Péduzzi J, Labia R. (1985). Distinction entre les structures primaires des β-lactamases TEM-1 et TEM-2. Ann Inst Pasteur Microbiol. 1985; 136A: 311-321.
 
[32]  Sagermann M, Baase WA, Matthews BW. (2006). Sequential reorganization of b-sheet topology by insertion of a single strand. Protein Sci 15: 1085-1092.
 
Show Less References

Article

Antimicrobial Susceptibility, Heavy Metals Tolerance and Plasmid Curing of Shigella Species Isolated from El- Dakahlia, Egypt

1Botany and Microbiology Department, Faculty of Science, Al- Azhar University, Cairo, Egypt


American Journal of Microbiological Research. 2014, 2(6), 211-216
DOI: 10.12691/ajmr-2-6-7
Copyright © 2014 Science and Education Publishing

Cite this paper:
Gamal M. EL-Sherbiny, Shehata M. E.. Antimicrobial Susceptibility, Heavy Metals Tolerance and Plasmid Curing of Shigella Species Isolated from El- Dakahlia, Egypt. American Journal of Microbiological Research. 2014; 2(6):211-216. doi: 10.12691/ajmr-2-6-7.

Correspondence to: Gamal  M. EL-Sherbiny, Botany and Microbiology Department, Faculty of Science, Al- Azhar University, Cairo, Egypt. Email: gamalelsherbiny1970@yahoo.com

Abstract

The aim of this study was carried out determine the antibiotic susceptibility, heavy metals tolerance and plasmid curing of Shigella species isolating from diarrheal stool samples were collected from different hospitals in El- Dakahlia and Nile River waters, Egypt, from January 2012 to August 2014. After characterization and identification the results obtained show that 172 isolates isolated from stool samples belong to four Shigella species (Shigella sonnei 48.25 %, Shigella flexneri 29.65 %, Shigella dysenteriae 13.95 % and Shigella boydii 8.13 %) while 5 isolates isolated from Nile River water were found belong to (Shigella sonnei 40%, Shigella dysenteriae 40 % and Shigella flexneri 20 %).The antibiotics susceptibility of Shigella sp. to11 antibiotics revealed that the most potent antibiotics were found co-amoxyclav, ciprofloxacin and ceftriaxone respectively while penicillin, ampicillin, co-trimoxazole and chloramphenicol respectively give low activity. The tolerance of Shigella sp. to heavy metals, (cadmium, nickel cobalt and zinc) revealed that all isolates sensitive to 1 and 0.1M concentration. Plasmid profile analysis of ten isolates Shigella sonnei shown that this isolates having numerous plasmid ranged from 8.5 to 4.3 kb. Treat isolates with SDS 2% for 24 hours to plasmid curing after recovery subject to antibiotic sensitivity and heavy metals tolerance. In conclusion, Shigella-associated diarrhea remains relatively common in Egypt and can be used ciprofloxacin and ceftriaxone for treat Shigella sp. infection. The heavy metal tolerance of Shigella sp .associated with resistance to antibiotics ampicillin, tetracycline and chloramphenicol. Present Shigella sp. in Nile River waters indicates polluted with sewage waters and becomes sources of some epidemic diseases.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[1]  Shears P. Shigella infections. Ann Trop Med Parasitol 1996, 90(2): 105-11.
 
[2]  Vaccine research and development: new strategies for accelerating Shigella vaccine development. Wkly Epidemiol Rec 1997, 72: 73-79.
 
[3]  World Health Organization. Diarrheal disease due to Shigella disease. In: Vaccines, immunization and biological. Geneva: World Health Organization; 1998, 1-5.
 
[4]  Thomas L.H. and Gerald T.K. Baron's Medical Microbiology. In: Shigella, 4th edn. 2000, 389-400.
 
[5]  Niyogi S.K. Shigellosis. J Microbiol. 2005, 43: 33-143.
 
Show More References
[6]  Sansonetti P.J. Shigellosis: an old disease in new clothes.2006, PLoS Med. 3: 354.
 
[7]  Shiferaw B., Shallow S., Marcus R., Segler S., Soderlund D, Hardnett F.P. and Van Gilder T Trends in population-based active surveillance for shigellosis and demographic variability in Food Net sites, 1996-1999. Clinical Infectious Diseases. 2004, 38: 175-180.
 
[8]  Stothard P., Van Domselaar G., Shrivastava S., Guo A., O'Neill B., Cruz J., Ellison M. and Wishart D.S. BacMap an interactive picture atlas of annotated bacterial genomes. Nucleic Acids Res. 2005, 33: D317-D320.
 
[9]  Geo FB, Janet SB, Stepehn AM,. Jawetz, Melnick and Adelberg’s. Medical Microbiology, 1998. 21st ed. Appleton & Lange publishers, 224-226.
 
[10]  Brito A and Nij B. Antibiotic resistance pattern and plasmid 8. profiles for Shigella spp. isolated in Cordoba, Argentina. J. Antimicrob Chemother 1994, 34: 253-259.
 
[11]  Srinivasa H., Baijayanti M., Raksha Y. Magnitude of drug resistant shigellosis: A report from Bangalore. Indian Journal of Medical Microbiology. 2009, 27: 358-360.
 
[12]  Subekti D, Oyofo BA, Tjaniadi P, Corwin AL, Larasati 10. W, Putri M et al. Shigella spp. surveillance in Indonesia: the emergence or reemergence of S. dysenteriae. Emerg Infect Dis. 2001, 7: 137-140.
 
[13]  Shahid NS, Rahaman MM, Haider K, Banu H, Rahman N. Changing pattern of resistant Shiga bacillus (Shigella dysenteriae type 1) and Shigella flexneri in Bangladesh. J. Infect Dis. 1985, 152: 1114-119.
 
[14]  Thong KL, Hoe CH, Koh YT, Yasim RM. Prevalence 12. of multidrug-resistant Shigella isolated in Malaysia. J. Health Popul Nutr. 2002, 20: 356-8.
 
[15]  Khan S., Priti S., Mukhtar A., Ashish A., Wilson G and Easow JM, Isolation of Shigella species and their resistance patterns to a panel of fifteen antibiotics in mid and far western region of Nepal. Asian Pac J. Trop Dis. 2014, 4(1): 30-34.
 
[16]  Bogaerts J, Verhaegen J, Munyabikali JP, Mukantabana B, Lemmens P, Vandeven J. Antimicrobial resistance and serotypes of Shigella isolates in Kigali, Rwanda (1983 to 1993): increased frequency of multiple resistance. Diagn Microbiol Infect Dis. 1997, 28: 165-171.
 
[17]  Mata LJ, Gangarosa EJ Cáceres A, Perera DR, Mejicanos. ML. Epidemic Shiga bacillus dysentery in Central America. Etiologic investigations in Guatemala, 1969. J. Infect Dis. 1970, 122: 170-180.
 
[18]  Essers B, Burnens AP, Lanfranchini FM, Somaruga SG, 16. von Vigier RO, Schaad UB et al. Acute community-acquired diarrhea requiring hospital admission in Swiss children. Clin Infect Dis. 2000, 31: 192-196.
 
[19]  Torres ME, Pírez MC, Schelotto F, Varela G, Parodi 17. V, Allende F et al. Etiology of children’s diarrhea in Montevideo, Uruguay: associated pathogens and unusual isolates. J. Clin Microbiol. 2001, 39: 2134-219.
 
[20]  Schelz Z, Molnar J and Hohmann J. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia.2006, 77: 279-85.
 
[21]  Collins HC, Lyne MP and Grange MJ. Microbiological Methods: 6th ed. Agency London. 200. 1989.
 
[22]  Holt Jk, Krieg NR, Sneath PH, Staley JT and Williams ST. Bergey’s Manual of Determinative Bacteriology 9th. Baltimore. 1994.
 
[23]  Clinical and Laboratory Standards Institute. Performance standard for antimicrobial susceptibility testing. Approved standard M100-S20-30(1). NationalCommittee for Clinical Laboratory Standards, 2010, Wayne, PA. USA.
 
[24]  Narasimhulu K., Sreenivasa R.P.S. and Vinod A.V. Isolation and identification of bacterial strains and study of their resistance to heavy metals and antibiotics. J. Microbial Biochem. Technol. 2010, 2: 074-076.
 
[25]  Anderson D.G. and McKay L.L. Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl. Environ. Microbiol., 1983, 46: 549-552.
 
[26]  Frere J. Simple method for extracting plasmid DNA from lactic acid bacteria. Lett. Appl. Microbiol. 1994, 18: 227-229.
 
[27]  Durve A., Naphade S., Bhot M., Varghese J. and Chandra N. Plasmid curing and protein profiling of heavy metal tolerating bacterial isolates. Archives of Applied Science Research. 2013, 5(4): 46-54.
 
[28]  Bhattacharya S, Khanal B, Bhattarai NR and Das ML. Prevalence of Shigella species and their antimicrobial resistance patterns in Eastern Nepal. J. Health Popul Nutr, 2005, 23(4): 339-42.
 
[29]  Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ, et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 1999, 77(8): 651-66.
 
[30]  Vrints M, Mairiaux E, Van ME, Collard JM and Bertrand S. Surveillance of antibiotic susceptibility patterns among Shigella sonnei strains isolated in Belgium during the 18-year period 1990 to 2007. J. Clin Microbiol 2009, 47(5): 1379-85
 
[31]  Al-Moyed KA, Harmal NS, Al-Harasy AH and AlShamahy HA. Increasing single and multi-antibiotic resistance in Shigella species isolated from shigellosis patients in Sana'a, Yemen. Saudi Med J. 2006, 27(8): 1157-60.
 
[32]  Mamatha B, Pusapati BR and Rituparna C. Changing patterns of antimicrobial susceptibility of Shigella serotypes isolated from children with acute diarrhea in Manipal, South India, a 5 year study. Southeast Asian J. Trop Med Public Health 2007, 38(5): 863-6.
 
[33]  Mates A, Eyny D and Philo S. Antimicrobial resistance trends in Shigella serogroups isolated in Israel,1990-1995. Eur J. Clin. Microbiol. Infect. Dis. 2000, 19(2): 08-11
 
[34]  Remon R., Abu-ELYazeed, Thomas F., Wierzb A., Robert W., Frenck, Shannon D. et al., Epidemiology of Shigella associated diarrhea in rural Egyptian children. Am. J. Trop. Med. Hyg. 2004, 71(3), 367-372
 
[35]  Herwana E, Surjawidjaja JE, Salim OC, Indriani N, Bukitwetan P, Lesmana M. Shigella-associated diarrhea in children in South Jakarta, Indonesia. Southeast Asian J. Trop Med Public Health. 2010, 41(2): 418-25.
 
[36]  MoezArdalan K, Zali MR, Dallal MM, Hemami MR and Salmanzadeh-Ahrabi S. Prevalence and pattern of antimicrobial resistance of Shigella species among patients with acute diarrhoea in Karaj, Tehran, Iran. J. Health Popul Nutr. 2003, 21(2): 96-102.
 
[37]  Shawky Z. S. and Saleh A. Revaluation of the microbial of the quality of the Nile River waters at Damietta branch Egypt. Egypt. J. of Aquatic. Res.. 2007, 33 1, 301-311
 
[38]  Ahmed S. F., John K., Tupur H., Jesse M., Amel N. and Momtaz O W. Genetic characterization of antimicrobial resistance of Shigella flexneri 1c isolates from patients in Egypt and Pakistan. Annals of Clinical Microbiology and Antimicrobials 2013, 12:9
 
[39]  Mengistu G., Gebru M., Tsehaynesh L. and Abraham A. Prevalence and Antimicrobial Susceptibility Patterns of Salmonella serovars and Shigella species Microbial Biochem Technol. 2014, 2.
 
[40]  Yismaw G, Negeri C and Kassu A. A five-year antimicrobial resistance pattern observed in Shigella species isolated from stool samples in Gondar University Hospital, northwest Ethiopia. Ethiop. J. Health Dev 2006, 20(3): 194-8.
 
[41]  Roma B, Worku ST., Mariam S and Langeland N. Antimicrobial susceptibility pattern of Shigella isolates in Awassa. Ethiop J. Health Dev. 2014, 14(2): 149-54.
 
[42]  Jesudason MV. Shigella isolation in Vellore, south India (1997-2001). Indian J Med Res 2002, 115: 11-3.
 
[43]  Silver S. Bacterial resistances to toxic metal ions-a review. Gene. 1996, 179: 9-19.
 
[44]  Prasad.V. S., Mamatha Ballal, and. Shivananda, P. G action of heavy metals on Pseudomonas aeruginosa strains isolated from infection wound. Journal of Chinese clinical medicine. 2009, 4(3).
 
[45]  Nishino K., Nikaido E. and Yamaguchi A. Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enteric serovar Typhimurium. Journal of Bacteriology. 2007, 189: 9066-9075.
 
[46]  Raafat M. J. And Alaa H. A. Heavy metals resistant bacteria. AV. Akadmikererlag GmbH, Co, KG, Germany 2013, 24-25.
 
[47]  Sansonetti P.J., Kopecko D.J. and Formal S.B. Shigella sonnei plasmids: Evidence that a large plasmid is necessary for virulence. Infect. Immun., 1981, 34: 75-83. PMCID: PMC350823
 
[48]  Shafik M.H., Al-Quattan H.Y. and. Mohamed M.T. Fulminating Shigella encephalopathy (Ekiri syndrome): A case report. Kuwait Med. J. 2007, 39: 369-372.
 
[49]  Tacket C.O, Shahid N, Huq M.I, Alim A.R and.Cohen. M.L. Usefulness of plasmid profiles for differentiation of Shigella isolates in Bangladesh. J.Clin. Microbiol., 1984, 20: 300-301. PMCID: PMC271311.
 
[50]  Litwin C.M., Storm A.L., Chipowsky S. and Ryan, K.J.. Molecular epidemiology of shigella infections: Plasmid profiles, serotype correlation and restriction endonuclease analysis. J. Clin.Microbiol., 1991. 29: 104-108.
 
[51]  Raja S.B, Murali M.R, Malathi G.K, Anbarasu K.and. Devaraj S.N. Effect of aqueous extract of Aegle marmelos fruit on adherence and β-lactam resistance of Enteropathogenic Escherichia coli by down regulating outer membrane protein C. Am. J. Infect. Dis. 2009, 5: 154-162.
 
Show Less References

Article

Bioremediation of Ammonia from Polluted Waste Waters- A Review

1Department of biotechnology, Gitam institute of science, Gitam University, Visakhapatnam, India

2Department of biotechnology, Gitam institute of Technology, Gitam University, Visakhapatnam, India


American Journal of Microbiological Research. 2014, 2(6), 201-210
DOI: 10.12691/ajmr-2-6-6
Copyright © 2014 Science and Education Publishing

Cite this paper:
Sheela. B, Khasim Beebi. Sk. Bioremediation of Ammonia from Polluted Waste Waters- A Review. American Journal of Microbiological Research. 2014; 2(6):201-210. doi: 10.12691/ajmr-2-6-6.

Correspondence to: Sheela.  B, Department of biotechnology, Gitam institute of science, Gitam University, Visakhapatnam, India. Email: sheela_bethapudi@yahoo.com

Abstract

Global water pollution due to industries became a major concern now. Some industrial facilities generate ordinary domestic sewage that can be treated in municipal sewage systems whereas industries that generate waste waters high in conventional pollutants like ammonia need exclusive treatments for their removal from the effluents before discharging. Ammonia can be removed by means of physical, chemical, biological methods. Out of all the methods, bioremediation appears as a promising tool for ammonia pollution as it is a cost effective and converts ammonia into harmless dinitrogen gas. This paper mainly focuses on bioremediation methods available for the removal of ammonia form the industrial effluents and their drawbacks.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[1]  Abeling, U.; Seyfried, C.F. Anaerobic-aerobic treatment of potato-starch wastewater. Water science and Technology, 28 (2): 165-176, 1993.
 
[2]  Ammonia in Ullmanns encyclopedia of Industrial Chemistry. Weinheim, Wiley-VCH, Max Appl, 2006.
 
[3]  Antczak.S.A, Galas.E. Bacillus subtilis cells immobilized in PVA cryogels. Biomol Eng. 17: 55-63, 2001.
 
[4]  Austermann-Haun, U.; Meyer, H.; Seyfried, C.; Rosen Winkel, K.H. Full scale experience with anaerobic/aerobic treatment plants in the food and beverage industry, Water science and Technology, 40 (1), 305-312, 1999.
 
[5]  Bassin, J.P; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; Van Loosdrecht, M.C.M. Effect of elevated salt concentrations on the aerobic granular sludge process:Linking microbial activity with microbial community structure. Appl Environ Microbiol, 77 (22): 7942-7953, 2011.
 
Show More References
[6]  Blackmer, A.M.; Bremner, J.M. Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms. Soil Biol Biochem, 10: 187-191, 1978.
 
[7]  Bonmati, A.; Flotats, X. Air stripping of ammonia from pig slurry: characterization and feasibility as a pre- and post treatment to mesophilic anaerobic digestion. Water manage, 23 (3): 261-272, 2002.
 
[8]  Bonsen, E.M.; Schroeter, S.; Jacobs, H.; Broekaert, J.A.C. photo catalytic degradation of ammonia with TiO2 as photo catalyst in the laboratory and under the use of solar radiation. Chemosphere, 35, 1435-1445, 1997.
 
[9]  Bravo, A.; Garcia, J.; Domenech, X.; Peral, J. Some aspects of photo catalytic oxidation of ammonium ion by titanium dioxide. J Chem Res, 376-377, 1993.
 
[10]  Brettar, I.; Labranz,M.; Flavier, S.; Botel, J.; Kousa,H.; Christen, R.; Hofle, M.G. Identification of Thiomicrospira denitrificans-like Eplisonproteobacterium as a catalyst for autotrophic denitrification in the central Baltic sea. Appl Environ Microbiol, 72: 1364-1372, 2006.
 
[11]  Brindle, K.; Stephenson, T. The application of membrane biological reactors for the treatment of wastewaters. Bio Technol Bioeng, 49: 601-610, 1996.
 
[12]  Brouwer, M.; Van Loosdrecht, M.C.M.; Heijnen, J.J. One reactor system for ammonium removal via nitrite. STOWA report, 96-01, Utrecht, Netherlands, (ISBN 90 74476 554).
 
[13]  Camilla, G.; Gunnel, D. Development of nitrification inhibition assays using pure cultures of Nitrosomonas and Nitrobacter. Water Res, 35 (2): 433-440.
 
[14]  Campos, J.L.; Mosquera-corral, A.; Sachez, M.; Mendez, R.; Lema, J.M. Nitrification in saline wastewater with high ammonia concentration in an activated sludge unit. Water Res, 36: 2555-2560, 2002.
 
[15]  Campos, J.L.; Mosquera-corral, A.; Sachez, M.; Mendez, R.; Lema, J.M. Nitrification in saline wastewater with high ammonia concentration in an activated sludge unit. , 36: 2555-2560, 2002.
 
[16]  Cannova, P.; Richaume, A.; Lafolie, F. Fate of nitrogen and carbon in the Vadose zone: insitu and laboratory measurements of seasonal variations in anaerobic respiratory and denitrifying activities. Soil Biol Biochem, 36: 463-478, 2004.
 
[17]  Cema, G.; Wiszniowski, J.; Zebezynski, S.; Zablocka-Godldewska, E.; Raszka, A.; Surmacz-Gorska, J. Biological nitrogen removal from landfill leachate by deammonification assisted by heterotrophic denitrification in a rotating biological contactor (RBC). Water Sci Technol, 55: 35-42, 2007.
 
[18]  Chang,Y.J.; Tseng, S.K. A double membrane system for simultaneous nitrification and denitrification in a single tank. Lett Appl Microbiol, 28: 453-456, 1999.
 
[19]  Chemical engineering. News report on floral incident. Chemical engineering, July 1971, pp. 334. In Marshall, V.C.(1987) chemical Hazards. Ellis Horwood Ltd, ISBN 085312969X.
 
[20]  Cho, E.; Molof, A. Effect of sequentially combining methanol and acetic acid on the performance of biological nitrogen and phosphorus removal. J Environ Manage, 73, 183-187, 2004.
 
[21]  Chung, J.; Bae, W.; Lee, Y.; Ko,G.; Lee, S.; Park, S.; Investigation of the effect of free ammonia concentration upon leachate treatment by short cut biological nitrogen removal process in: IWA specialty symposium on strong Nitrogenous and Agro-wastewater. Vol. 1, Seoul, Korea, June 11-13, pp. 93-104, 2003.
 
[22]  Ciudad, G.; Rubilar, O.; Munoz, P.; Ruiz, G.; Chamy, R.; Vergara, C.; Jaison, D. Partial nitrification of high ammonia concentration wastewater as a part of short cut biological nitrogen removal process. Process Biochem, 40: 1715-1719, 2005.
 
[23]  Cole, A.C.; Semmens, M.J.; Lapara, T.M. Stratification of activity and bacterial community structure in biofilms grown on membranes transferring oxygen. Appl Environ Microb, 70:1982-1989, 2004.
 
[24]  Cuidad, G.; Rubilar, O.; Munoz, P.; Ruiz, G.; Chamy, R.; vergara, C.; Jeison, D. partial nitrification of high ammonia concentration wastewater as a part of short cut biological nitrogen removal process. Process Biochem, 40: 1715-1719, 2005.
 
[25]  Cuidad, G.; Rubilar, O.; Munoz, P.; Ruiz, G.; Chamy, R.; vergara, C.; Jeison, D. partial nitrification of high ammonia concentration wastewater as a part of short cut biological nitrogen removal process. Process Biochem, 40: 1715-1719, 2005.
 
[26]  Cyplik, P.; Grajek,W.; Merecik, R.; Kroliczak, P. Effect of macro/micro nutrients and carbon sources over the denitrification rate of haloferax denitrificans archaeon. Emzyme Microbiol Technol, 40, 212-220, 2007.
 
[27]  Dalsgaard, T.; Thamdrup, B. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl Environ Microbiol, 68: 3802-3808, 2002.
 
[28]  Daniel, L.M.; Pozzi, E.; Foresti, E.; Fabio Alexendre Chinalia, A. Removal of ammonium via simultaneous nitrification-denitrification nitrite short cut in a single packed bed batch reactor. Bioresour Technol, 100, 1100-1107, 2009.
 
[29]  Dapena Mora, A.; Fernendez, I.; Campos, J.I.; Mosquera-corral, A.; Mendez, R.; Jetten, M.S.M. Evaluation of activity and inhibition effects on anammox process by batch tests based on the nitrogen gas production. Enzyme Microbiol Technol, 40 (4): 859-865, 2007.
 
[30]  Della monica, M.; Agostizno, A.; Ceglie, A. An electrochemical sewage treatment process. J Appl Electrochem, 10, 527-533, 1980.
 
[31]  Deng Petersen,P.; Jensen,K.; Lyngsie, P.; Hendrik, N.; Johansen. Nitrogen removal in industrial wastewater by nitration and denitration-3 years of experience, Water science and Technology, 47 (11): 181-188, 2003.
 
[32]  Dhamole,P.B.; Nair,R.R.; D souza, S.F.; Lele, S.S. Gentrification of high strength wastewater. Bioresour Technol, 98: 247-252, 2007.
 
[33]  Dosta, J.; Fernendez, I.; Vazquez-padin, J.R.; Mosquera-corral, A.; Campos, J.L.; Mata Alvarez, J.; Mendez, R. Short and long term effects of temperature on the anammox process. J of Hazard Master, 154: 688-693.
 
[34]  Egli, K.; Fanger, U.; Alvarez, P.J.J.; Siegrist, H.; Van der meer, J.R.; Zehnder, A.J.B. Enrichment and characterization of an annamox bacterium from a rotating biological contactor treating ammonium rich leachate. Arch Microbiol, 175 (1): 198-207, 2001.
 
[35]  Feleke, Z.; Sakakibara, Y. A bio electro chemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide. Water Res 36, 3092-3102, 2002.
 
[36]  Feng, Y.; Tseng, S.; Hsia, T.; Ho C chou, W. Partial nitrification of ammonium- rich wastewater as pretreatment for anaerobic ammonium oxidation (Anammox) using membrane aeration bioreactor. J of Bio Sci Bioengin 104: 182-187, 2007.
 
[37]  Fliermans, C.B.; Bohlool, B.B.; Schmidt, E.L. Detection of Nitrobacter in natural habitats using fluorescent antibodies. Appl Microbiol, 27: 124-129, 1974.
 
[38]  Foglar, L.; Briski, F.; Sipos, L.; Vukovic, M. High nitrate removal from synthetic wastewater with the mixed bacterial culture. Bioresour Technol 96, 874-888, 2005.
 
[39]  Gill, K.I.; Choi, E.Nitrogen removal by recycle water, Nitration as an attractive for retrofit technologies in municipal wastewater treatment plant. Water science and Technology, 49 (5-6), 39-46, 2004.
 
[40]  Gomez, M.A.; Galvaz, J.M.; Hontoria, E.; Gozalez,-Lopez, J. Influence of concentration on biofilm bacterial composition from a denitrifying submerged filter used for contaminated ground water. J Bio Sci Bioeng, 95, 245-251, 2003.
 
[41]  Gonz, Z.; Yang, F.; Liu, S.; Bao, H.; Hu, S.; Furukawa, K. Feasibility of a membrane- aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on anammox. Chemosphere, 69:776-784, 2007.
 
[42]  Gonzalez, L.E.; Canizares, R.O.; Baena, S. Efficiency of ammonia and phosphorus removal from a Colombian agro industrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol, 60: 259-262, 1997.
 
[43]  Gootzen, J.F.E.; Wonders, A.H.; Visscher, W.; Van Santen, R.Q.; Van Veen, J.A.R.A. DEMS and cyclic voltammetry study of NH3 oxidation on platinized platinum. Electro chem. Acta, 43 1852-1861, 1998.
 
[44]  Groeneweg, J.; Sellner, B.; Tappe, W. Ammonia oxidation in Nitrosomonas at NH3 concentrations near Km: effects of pH and temperature. Water Res, 28 (12): 2561-2566, 1994.
 
[45]  Guo, H.; Zhou, J.; Su, J.; Zhang, Z. Integration of nitrification and denitrificationin air lift bioreactor. Biochem Engin J, 23: 57-62, 2005.
 
[46]  Guo, J.; Peng, Y.; Wang, S.; Zheng, Y.; Huang, H.; Wang, Z. Long term effects of dissolved oxygen on partial nitrification performance and microbial community structure. Bioresour Technol, 100:2796-2802, 2009.
 
[47]  Hao, X.D.; Van Loosdrecht, M.S.M. Model based-evaluation of COD influence on a partial nitrification-anammox biofilm (CANON) process. Water Sci Technol, 49: 83-90, 2004.
 
[48]  Hill, B.C.; Khan, E.A. Comparative study of immobilized nitrifying and co-immobilized nitrifying and denitrifying bacteria for ammonia removal from sludge digester supernatant. Water Air Soil poll, 195: 23-33, 2008.
 
[49]  Hill, D.R.; Webster, T. High pH inhibits nitrifying bacteria. American water works association, 21-22, 2008.
 
[50]  Holgene, J.; Bader, H. Ozonation of water: Kinetics of oxidation of ammonia by ozone and hydroxyl radicals. Environ Sci Technol, 12, 79-84, 1978.
 
[51]  Imajo, U.; Tokutomi, T.; Furukawa, K. Granulation of anammox microorganisms in up flow reactors. Water Sci Technol, 49: 155-163, 2004.
 
[52]  Isaka, K.; Sumino, T.; Tsuneda, S. High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions. J Bio Sci Bioeng, 103; 486-490, 2007.
 
[53]  Isaka,K.; Date, Y.; Sumino, T.; Yoshie, S.; Tsuneda, S. Growth characteristics of anaerobic ammonium-oxidizing bacteria in an anaerobic filtered reactor. Appl Microbiology and Biotechnology. 70: 47-52, 2006.
 
[54]  Jenicek, P.; Svehla,P.; Zebranska, J.; Dohanyos, M. Factors affecting nitrogen removal by nitration/denitration, Water science and Technology, 49 (5-6): 73-79, 2004.
 
[55]  Jetten, M.S.M.; Strous, M.; Van de pas schoonen, K.T.; Schalk, J.; Van Dongen, U.G.J.M.; Van de Graaf, A.A.; Longmann, S.; Muyzer, G.; Van Loosdrecht, M.C.M.; Kunen, J.G. The anaerobic oxidation of ammonium. FEMS Microbiology Reviews, 22, 421-437, 1999.
 
[56]  Kalyuzhnyi,S.; Gladchenko, M. Sequenced anaerobic aerobic treatment of potato starch wastewater, water science and Technology, 28 (2): 165-176,1993.
 
[57]  Kartal, B.; Koleva, M.; Arsov, R.; Vander star, W.; Jetten, M.S.M.; strous, M. Adaptation of freshwater anammox population to high salinity wastewater. J Bio Technol, 126: 546-553, 2006.
 
[58]  Kartal, B.; Rattray, J.; Van Niftrik, I,A.; Van de vossenberg, J.; Schmid, M.I.; Webb, R.I.; Schouten, S.; Furest, J.A.; Damste, J.; Jetten, M S.M.; Strous, M. Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol, 30 (1): 39-49, 2007.
 
[59]  Kartal, B.; Van Niftrik, A.H.; Sliekers, O.; Schmid, M.C.; Schmidt, I.; Van de pas schoonen, K.; Cirpus, I.; Van de star, W.; Van Loosdrecht, M.; Abma,W. et al. Application eco-physiology and bio diversity of anaerobic ammonium-oxidizing bacteria. Rev Environ Sci Bio/Technol, 3 (3): 255-264.
 
[60]  Keller, J.; Subramaniam, K.; Gosswein, J.; Greenfield, P. Nutrient removal from industrial wastewater using single tank sequencing batch reactor. Water science and Technology, 35 (6): 137-144, 1997.
 
[61]  Kim, J.K.; Park, K.J.; Cho, K.S.; Nam, S.; Park, T.; Bajpai, R. Aerobic nitrification- denitrification by heterotrophic Bacillus strains. Bioresour Technol 6, 1897-1906, 2005.
 
[62]  Kim, K.; Kim, Y.; Kim, I.; Park. G.; Lee, E. Electrochemical conversion characteristics of ammonia to nitrogen. Water Res, 40, 1431-1441.
 
[63]  Koenig, A.; Liu, L.H. Use of lime stone for pH control in autotrophic denitrification: continous flow experiments in pilot scale packed bed reactors. J Bio Technol, 99: 161-171, 2002.
 
[64]  Kowalchuk, G.A.; Stephen, J.R. Ammonia oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol. 55: 485-529, 2001.
 
[65]  Kroschwitz,I, and Howe-Grant, M. (Eds). Kirk-othmer encyclopedia of chemical technology, 4th edition, Vol 2:638-691, 1995. John wiley and sons Inc., New York, Chichester, Bristbane, Toronto, Singapore.
 
[66]  Kuai, L.; Verstraete, W. Ammonium removal by the Oxygen-Limited Autotrophic Nitrification-Denitrification system. Appl Environ Microbiol, 64 (11): 4500-4506, 1998.
 
[67]  Kwanyong, L.; Lee, C.G. Nitrogen removal from wastewaters by Microalgae without consuming organic carbon sources. J Microbiol Biotechnol, 12 (2): 979-985, 2002.
 
[68]  Lai, E.; Senkpiel, S.; Solly, D.; Keller, J. Nitrogen removal of high strength wastewater via nitration/denitration using a sequencing batch reactor. Water Sci Technol, 50, 27-33, 2004.
 
[69]  Lapara, J.M.; Cole, A.C.; Shanahan, J.W.; Semmens, M.J. The effect of organic carbon, ammonical-nitrogen, and oxygen partial pressure on the stratification of membrane aerated biofilms. J Ind Microbiol Biotechnol, 33: 315-323, 2006.
 
[70]  Lindsey, M.R.; Webb, R.I.; Strous, M.; Jetten, M.S.M.; Butler, M.K.; Forde, R.J.; Fuerst, J.A. Cell compartmentalization in planctomycetes: Novel types of structural organization for the bacterial cell. Arch Microbiol, 176 (6): 413-429, 2001.
 
[71]  Ma, L.; Sun, X.; Liang, X.; Cui, C. Biological nitrogen removal by nitrification-denitrification constructed rapid infiltration land system to treat municipal wastewater. J Food Agri Environ, 7 (3&8): 795-798, 2009.
 
[72]  Mansell, B.O.; Schroeder, E.D. Hydrogenotrophic denitrification in a micro porous membrane bioreactor. Water Res, 36:4683-4690, 2002.
 
[73]  Marshall,V.C.; Major chemical hazards, Ellis Harwood Ltd, 1987, ISBN 085312969X.
 
[74]  Metcalf and Eddy. Wastewater engineering: treatment and reuse, 4th edition, Mc., Graw-Hill Co., New York, 2003.
 
[75]  Morita, M.; Kudo, N.; Uemoto, H.; Watanable, A.; Shinozaki, H. protective effect of immobilized ammonia oxidizer and phenol-degrading bacteria on nitrification in ammonia and phenol containing wastewater. Eng Life Sci 7: 587-592, 2007.
 
[76]  Mulder, A,; Van de graaf, A.A.; Robertson, I.A.; Kunen, J.G. Anaerobic ammonia oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol, 16 (3): 177-184, 1995.
 
[77]  Mulder, J.W.; Van Loosdrecht, M.C.M.; Hellinga, C.; Van Kimpen, R. Full scale application of the SHARON process for the treatment of rejection water of digested sludge dewatering. Water Sci Technol, 43 (11): 127-134, 2001.
 
[78]  Mulder, J.W.; Van Loosdrecht, M.C.M.; Hellinga,C.; Van Kempen, R. Full scale a[pplication of the SHARON process for the treatment of rejection water of digested sludge dewatering. Water Sci Technol, 43 (11): 127-134, 2001.
 
[79]  N.Sivaraman and Geeta sivaraman, Research news, Current Science, Vol. 84, No. 12, 25th june, 2003.
 
[80]  Nakajima, J.; Sakka, M.; Kimura, T.; Furukawa, K.; Sakka, K. enrichment of anammox bacteria from marine environment for the construction of a bioremediation reactor. Appl microbiol Biotechnol, 77: 1159-1166, 2008.
 
[81]  Nielson, M.; Bollmann, A.; Sliekers, O.; Jetten, M.S.M.; Schmid, M.; Strous, M.; Schmidt, I.; Larsen, L.H.; Nielson, L.P.; Revsbech, N. Kinetics, diffusional limitation and micro scale distribution of chemistry and organisms in a CANON reactor. FEMS Microbiol Ecol, 51: 247-256, 2005.
 
[82]  Obaja, D.; Mace, S.; Costa, J.; Sans, C.; Mata-Alvarez, J. Nitrification-denitrification batch reactor. Bio resour Technol, 87, 103-111, 2003.
 
[83]  Osaka, T.; Shirotani, K.; Yoshie, S.; Tsuneda, S. Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process. Water Res 42, 3709-3718, 2008.
 
[84]  Park, H.D.; Noguera, D.R. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res, 38: 3275-3286, 2004.
 
[85]  Peng,Y.Z.; Chen, T.; Tian, W.J. Nitrogen removal via nitrite at normal temperature in A/O process. J Environ Sci Health, part A, Environ Sci Eng, 39 (7): 1667-1680, 2003.
 
[86]  Penton, C.R.; Devol, A.H.; Tiedje, J.M. Molecular evidence for the broad distribution of anaerobic ammonium oxidizing bacteria in fresh water and marine sediments. Appl Environ Microbiol, 72 (10): 6829-6832, 2006.
 
[87]  Peyton, B.M.; Mormile, M.R.; Peterson, J.N. Nitrate reduction with Halomonas campisalis: kinetics of denitrification at pH 9 and 12.5% Nacl. Water Res, 35: 4237-4242, 2001.
 
[88]  Philips, S.; Laanbrock, H.J.; Verstraete, W. Origin causes and effects of increased nitrite concentrations in aquatic environments. Reviews in environmental science and Biotechnology, 1: 115-141, 2002.
 
[89]  Poo, K.; Jun,B.; Lee, S.; Woo, H.; Kim, C. Treatment of strong nitrogen swine wastewater at a full scale sequencing batch reactor. Water science and Technology, 49 (5-6): 315-323, 2004.
 
[90]  Princic, A.; Mahre, I.; Megusar, F.; Paul, E.A.; Tiedje, J.M. Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl Environ Microbiol, 64 (10): 3584-3590, 1998.
 
[91]  Reginatto, V.; Teixeira, R.M.; Pereira, F.; Schmidell, W.; Furigo Jr, A.; Menes, R.; Etchebehere, C.; Soares, H.M. Anaerobic ammonium oxidation in a bioreactor treating slaughterhouse wastewater. J Brazillan Chem Engin, 22 (4): 593-600, 2005.
 
[92]  Rejn,J.V.; Tal, Y.; Schreier, H.J. Denitrification in recirculating systems: theory and applications. Aquacul Eng, 34: 364-376, 2006.
 
[93]  Rezania, B.; Olesz kiewi, Z.J.A.; Cicek, N. Hydrogen dependent denitrification of water in an anaerobic submerged membrane bioreactor coupled with a novel hydrogen delivery system. Water Res. 41: 1074-1080, 2007.
 
[94]  Risgaard, S.; Glud, R.N.; Risgaard-peterson, N.; Dalsgaard, T. Gentrification and anammox activity in Arctic marine sediments. Limnol Oceanogr, 49: 1493-1502, 2004.
 
[95]  Risgaard, peterson, N; Langezaal, A.M.; Ingvardsen, S.; Schmid, M.C.; Jetten, M.S.M.; Op den camp, H.J. Metal evidence for complete denitrification in a benthic foraminifer. Nature 443:93-96, 2006.
 
[96]  Rittmann,B.E.; Mc Carty P.L. Environmental biotechnology. Principles and applications 10020, Mc Graw-Hill, NewYork, NY; 2001.
 
[97]  Rostron, W.M.; Stuckey, O.C.; Young, A.A. Nitrification of high strength ammonia wastewaters: Comparative study of immobilization media. Water Res, 35:1169-1178.
 
[98]  Schmid, M.; Walsh, K.; Webb, R.; Rijpstra, W.I.C.; Van de pas schoonen, K.; Jan verbruggen, M.; Hill, T.; Muffet, B.; Furest, J.; Schouten, s.; et al. “Cnadidatus scalindua Brodae”, sp nov., “Candidatus scalindua wagneri”, sp nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol, 26 (4): 259-538, 2003.
 
[99]  Schmid, M.C.; Risgaard-peterson, N.; Van de vossenberg, J.; Kuypers, M.M.M.; Lavik, G.; Peterson, J.; Hulth, S.; Thamdrup, B.; Canfield, D.; Dalsgaard, T.; Rysgaard, S.; Sejr, M.M.; Strous, M.; de camp, H.J.M.O.; Jetten, M.S.M. Anaerobic ammonium oxidizing bacteria in marine environments: wide spread occurrence but low diversity. Environ Microbiol, 9: 1479-1484, 2007.
 
[100]  Schmidt, I.; Van spanning, R.J.M.; Jetten, M.S.M. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type,and NirK and NorB-deficient mutants. Microbiol, 150: 4107-4114, 2004.
 
[101]  Sezekeres, K.; Kiss, I.; Bejerano, T.T.; Soares, M.I.M. Hydrogen dependent denitrification in a two reactor bioelectro chemical system. Water Res 35, 715-719, 2001.
 
[102]  Sinnighe Damste, J.S.; Strous, M.; Rijpstra,W.J.C.; Hopmans, E.C.; Geenevasen, J.A.J.; Van Duin, A.C.T.; Van Niftrik, L.A.; Jetten.MSM. Linearly concentrated cyclobutane lipids from a dense bacterial membrane. Nature, 419(6908): 708-712, 2002.
 
[103]  Sliekers, A.O.; Derwort, N.; Gomez, J.L.C.; Strous, M.; Kunen, J.G.; Jetten, M.S.M. Completely autotrophic removal of nitrogen over nitrite in a single reactor. Water Res, 36:2475-2482, 2002.
 
[104]  Sliekers, O.; Third, K.A.; Abma, W.; Kuenen, J.G.; Jetten, M.S.M. Canon and anammox in a gas lift reactor. FEMS Microbiol Lett, 339-344, 2003.
 
[105]  STOWA. Treatment of nitrogen rich return flows of sewage treatment plants. Evaluation of Dutch pilot plant research projects (in Dutch). STOWA report, pp 95-08, 1995.
 
[106]  Sun.J, Liu.J, Liu.Y, Li.Z. Optimization of Entrapping Conditions of Nitrifying Bacteria and Selection of Entraping Agent. Second International Conference on Environmental Science and Technology. IPCBEE. Vol.6. IACSIT press. Singapore, 2011.
 
[107]  Strous, M.; furest, J.A.; Kramer, E.H.M.; Logemann, S.; muyzer, G.; g Van de pas-schoonen, K.T.; Webb, R.; Kunen,, J.G.; Jetten, M.S.M. Missing lithotroph identified as planctomycete. Nature, 400 (6743): 446-449, 1999.
 
[108]  Strous, M.; Heijnen, J.J.; Kuenen, J.G.; Jetten, M.S.M.; and PQ. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium oxidizing microorganisms. Applied Microbiology and Biotechnology, 50: 589-596, 1998.
 
[109]  Strous, M.; Heijnen, J.J.; Kunen, J.G.; Jetten, M.S.M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium oxidizing microorganisms. Applied Microbiology and Biotechnoogy. 50, 589-596, 1998.
 
[110]  Strous, M.; Kuenen, J.G.; Fuerst, J.A.; Wagner, M.; Jetten, M.S.M. The anammox case-a new experimental manifesto for microbiological co-physiology. Antonie Van Leeuwenhoek, 81 (1/4): 693-702, 2002.
 
[111]  Strous, M.; Kunen, J.G.; Jetten, M.S.M. Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol, 65 (7): 3248-3250, 1999.
 
[112]  Strous, M.; Van gerven, E.; Kunen, J.G.; Jetten, M.S.M. effects of aerobic and micro aerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge. Appl Microbiol, 63 (6): 2446-3446, 1997.
 
[113]  Strous, M.; Van gerven, E.; Ping, Z.; Kunen, J.G.; Jetten, M.S.M. Ammonium removal from concentrated waste streams with anaerobic ammonium oxidation (Anammox) process in different reactor configurations. Water Research, 31: 1955-1962, 1997.
 
[114]  Sugiyama, S.; Yokoyama, M.; Ishizuka, H.; Sotowa, K.I.; Tomida, T.; Shigemoto, N. Removal of aqueous ammonia with magnesium phosphates obtained from the ammonium elimination of magnesium ammonium phosphate. J Colloid Interface Sci, 292 (1): 133-138, 2005.
 
[115]  Tal, J.E.M.; Watts, J.; Schreir, H.J. Anaerobic ammonium oxidizing (Anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system. Appl Environ Microbiol, 72: 2896-2904, 2006.
 
[116]  Teixeira, P.; Oliveira, P. Denitrification in a closed rotating biological contactor. Effect of disk submergence. Process Biochem, 37, 345-349, 2001.
 
[117]  Terada, A.; Yamamoto, T.; Igarashi, R.; Tsuneda, S.; Hirata. Feasibility of a membrane-aerated biofilm reactor to achieve controllable nitrification. Biochem Eng J. 28, 123-130, 2006.
 
[118]  Third, K.A.; Olav Sliekers, A.; Kunen, J.G.; Jetten, M.S.M. The CANON system (completely autotrophic removal of nitrogen over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Syst Appl Microbiol, 24: 588-596, 2001.
 
[119]  Tsushmi, I.; Ogasawara, Y.; Kindaichi, T.; Satob, H.; Okabe, S. Development of high rate anaerobic ammonium oxidizing (Anammox) biofilm reactors. Water Res, 41 (8): 1623-1634, 2007.
 
[120]  Uemoto, H.; Saiki, H. Nitrogen removal by tubular gel containing Nitrosomonas europaea and Paracoccus denitrificans. Appl environ Microbiol, 62 (11): 4224-4228, 1996.
 
[121]  Uemoto, H.; Saiki, H. Nitrogen removal reactor using packed gel envelopes containing Nitrosomonas europea and Paracoccus denitrificans. Biotechnol Bioeng, 67; 80-86, 2000.
 
[122]  Van de star, W.R.L.; Abma, W.R.; Blommers, D.; Mulder, J.W.; Tokutomi, T.; Strous, M.; Picioreanu, C.; Van Loosdercht, M.C.M. Startup reactors for anoxic ammonium oxidation: experiences from the first full scale anammox reactors in Rotterdam. Water Res 42: 4149-4163, 2007.
 
[123]  Van de star, W.R.L.; Miclea, A.I.; Van Dongen, U.G.J.M.; Muyzer, G.; Picioreanu, E.; Van Loosdrecht, M.CM. The membrane bioreactor,: a novel tool to grow anammox bacteria as free cells. Biotechnology and Bio engineering, 101:286-294, 2008.
 
[124]  Van de vossenberg, J.; Rattray, J.E.; Geerts, W.; Kartal, B.; Van niftrik, K.L.;Van donselaar, E.G.; Sinninghe Damste, J.S.; Strous, M.; Jetten, M.S.M. Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environ microbiol, 10 (11): 3120-9, 2008.
 
[125]  Van dongen, U.; Jetten, M.; Jetten, M.S.M.; Van Loosdrecht, M.C.M. The SHARON Anammox process for treatment of ammonium rich wastewater. Water Sci Technol, 44 (1): 153-160, 2001.
 
[126]  Van niftrik, K.A.; Fuerst, J.A.; Damste, J.S.S.; Kuenen, J.G.; Jetten, M.S.M.; Strous, M.; and IK. The anammoxosome: an intra cytoplasmic compartment in anammox bacteria. FEMS microbiology letter, 233: 7-13, 2004.
 
[127]  Van Niftririk, L.A.; Sinninghe Damste, J.S.; Kunen, J.G.; Jetten, M.S.M.; Strous, M. The anammoxosome an intracytoplasmic compartment in anammox bacteria. FEMS Microbiology Letters, 233: 7-13, 2004.
 
[128]  Verstraete, W.; Philips, S. Nitrification and denitrification process and technologies in new contexts. Environ Pollution, 102 (51): 717-726, 1998.
 
[129]  Wade, A.; Maher, B.; Lawerence, I.; Davis, N.; Zoppou, C.; Bell, C. Estimating the allowable ammonia concentrations in wastewater treatment plant discharge to ensure protection of aquatic biota. Environ Technol, 19 (7): 749-754, 1998.
 
[130]  Wan, D.; Liu, H.; Qu, J.; Lei, P.; Xiao, S.; Hou, Y. Using the combined bioelectro chemical and sulphur autotrophic denitrification system for ground water denitrification. Bioresour Technol, 100: 142-148, 2009.
 
[131]  Wang, A.; Edwards, J.G.; Davies, J.A. Photooxidation of ammonia with titania-based heterogenous catalysts. Sol Energy, 52, 459-466, 1994.
 
[132]  Wyffels, S.; Boeckx, P.; Pynaert, K.; Zhang, D.; Van cleemput, O.; Chen, G.; Verstraete, W. Nitrogen removal from sludge reject water by a two stage oxygen limited autotrophic nitrification denitrification process. Water Sci Technol, 49 (5-6): 57-64, 2004.
 
[133]  Yan, Y.; Hu, Y.Y. Partial nitrification to nitrite for treating ammonium rich organic wastewater by immobilized biomass system. Bioresour Technol, 100: 2341-2347.
 
[134]  Yang, J.; Jhang, L.; Hira, D.; Fukuzaki,Y.; Furukawa, K. Anammox treatment of high salinity wastewater at ambient temperature.
 
[135]  Yang, M.; Uesugi, K.; Myoga, H. Ammonia reaction in a bubble column by ozonation in presence of bromide. Water Res, 33, 1911-1917, 1999.
 
[136]  Yoshie, S.; Ogawa, T.; Mokino, H.; Hirosawa, H.; Tsuneda, S.; Hirata, A. Characteristics of bacteria showing high denitrification activity in saline wastewater. Lett Appl Microbiol, 42: 277-283, 2006.
 
[137]  Zeng, H.; Zhang, T.C. Evaluation of kinetic parameters of a sulphur-limestone autotrophic denitrification biofilm process. Water Res, 39: 4941-4952, 2005.
 
[138]  Zhang, X.; Zhou, G.; Guo, H.; Qu, V.; Liu, G.; Zhao, L. Nitrogen removal performance in a novel combined biofilm reactor. Process Biochem, 42: 620-626, 2007.
 
[139]  Zhu, X.; Castleberry, S.R.; Nanny, M.A.; Butler, E.C. Effects of pH and catalyst concentration on photo oxidation of aqueous ammonia and nitrite in titanium dioxide suspensions. Environ Sci Technol, 39, 3784-3791, 2005.
 
[140]  Zumft, W.G. Cell biology and molecular basis of denitrification. Microbial Mol Rev 61: 533-616, 1997.
 
Show Less References

Article

Bacteriological Assessement of Vegetables Cultivated in Soils Treated with Poultry Manure and the Manure-Treated Soil Samples

1Department of Microbiology, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria


American Journal of Microbiological Research. 2014, 2(6), 189-200
DOI: 10.12691/ajmr-2-6-5
Copyright © 2014 Science and Education Publishing

Cite this paper:
OBI C. N.. Bacteriological Assessement of Vegetables Cultivated in Soils Treated with Poultry Manure and the Manure-Treated Soil Samples. American Journal of Microbiological Research. 2014; 2(6):189-200. doi: 10.12691/ajmr-2-6-5.

Correspondence to: OBI  C. N., Department of Microbiology, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria. Email: b4brocliff@gmail.com

Abstract

Bacteriological quality of four vegetables: waterleaf (W), pumpkin (P), cucumber (C) and tomatoes (T) cultivated in soils treated with poultry manure and the manure-treated soil samples (S1, S2, S3 and S4) were assessed using standard microbiological methods. Escherichia coli, Staphylococcus aureus, Klebsiella spp., Bacillus spp, Salmonella spp. and Shigella spp were recovered from the soil and vegetable samples. The total bacterial count of the soil samples ranged from 1.75×109 (S3) to 5.9×104cfu/ml (S4) while the total bacterial count for the vegetable samples ranged from 2.65×109 (P) to 1.50×105cfu/ml (W). The total coliform count of the soil samples ranged from 1.65×107(S3) to 6.9×104cfu/ml (S4) while that of the vegetable samples ranged from 1.20×108(P) to 7.2×105cfu/ml (W). S1 was significantly different from S2 and S4 for the total bacteria count for the soil samples while P and W were significantly different for the vegetable samples (P< 0.05). For Salmonella-Shigella plate counts, S1 and S4 were significantly different and S2 and S3 were same (P< 0.05); while for the vegetable samples, P, W, C and T were significantly different (P< 0.05). S1, S2, S3, and S4 were significantly different for the total coliform count for the soil samples and same for P, W and C (P<0.05). Sensitivity screening for the isolates showed that Bacillus spp was most sensitive to Ofloxacin (25mm) while Staphylococcus aureus was most sensitive to Ofloxacin (22mm). Shigella was most sensitive to Ciprofloxacin (25mm) while E. coli showed highest sensitivity to Ciproflacin (25mm) and Ofloxacin (25mm). In addition, Klebsiella spp was most sensitive to Ciprofloxacin (23mm) and Ofloxacin (23mm) and Salmonella showed resistance to all the antibiotics. This study demonstrated that there is a high level of microbial contamination associated with the cultivation of vegetables in soils in which organic manure has been applied to which is of risk to the consumers.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[
[1]  Abdelnoor, A. M., Batshoun, R and Roumani, B. M. (1983). The bacterial flora of fruits and vegetables in Lebanon and the effect of washing on the bacterial content. Zbl. Bakt. Hyg., I. Abt. Orig. B. 177:342-349.
 
[2]  Amoah, P., Drechsel, P., Abaidoo, R. C and Abraham, E. M. (2009): Improving food hygiene in Africa where vegetables are irrigated with polluted water. Regional Sanitation and Hygiene Symposium. 21: 3-5.
 
[3]  Baker, F. J and Breach. M. R. (1980): Medical Microbiology Techniques (1st ed.). Butter worths and co. (publishers) ltd. London. Pp 547.
 
[4]  Beuchat, C. R. (1995). Pathogenic microorganisms associated with fresh produce. Journal of Food Protection. 59(2): 204-216.
 
[5]  Beuchat, L. R. (1998). Pathogenic microorganisms associated with fresh produce. J. Food Prot. 59: 204-216.
 
Show More References
[6]  Beuchat, L. R. (2002). Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes Infect. 4: 413-423.
 
[7]  Buck, J. W., Walcott, R. R and Beuchat, L. R. (2003). Recent trends in microbiological safety.of fruits and vegetables. Plant Health Progress. 10: 1094.
 
[8]  Carmo, L. S., Cummings, C., Linardi V. R., Dias, R. S., Souza, J. M., Sena, M. J., Santos, D. A., Shupp, J. W., Pereira, R. K and Jett, M. (2004): A case study of a massive Staphylococcal food poisoning incident. Foodborne Pathog.Dis. 1: 241-246.
 
[9]  Cheesbrough, M. (2000): District laboratory practice in Tropical Countries. Part 2. Cambridge University Press. U.K. Pp 62-70.
 
[10]  Clinical Laboratory Standard Institute, CLSI. (2009). Performance for antimicrobial susceptibility. 10th edition. Vol 29: Pp1-3.
 
[11]  Cowan, S. T. and steel, K.J. (1985): Manual for the identification of medical Bacteria. Cambridge University press. 45-60.
 
[12]  Djoussé, L., Arnett, D. K., Coon, H., Province, M. A., Moore, L. L and Ellison, R. C. (2004): Fruit and vegetable consumption and LDL cholesterol: the National Heart, Lung, and Blood Institute Family Heart Study. American Journal of Clinical Nutrition. 79: 213-217.
 
[13]  Fisher, T. L and Golden, D. A. (1998). Fate of Escherichia coli O157:H7 in ground apples used in cider production. J. Food Prot. 61:1372-1374.
 
[14]  Fredlund, H., Back, E., Sjoberg, L and Tornquist, E. (1987). Watermelon as a vehicle of transmission of shigellosis. Scand. H. Infect. Dis., 19:219-219.
 
[15]  Houang, E., Bodnaruk, P and Ahmet, Z. (1991). Hospital green salads and the effects of washing them. J. Hosp. Infect., 17:125-131.
 
[16]  John, J. H and Ziebland, S. (2004): Reported barriers to eating more fruit and vegetables before and after participation in a randomized controlled trial: a qualitative study. Health Edu. Res. 19: 165-74.
 
[17]  Kalia, A and Gupta, R. P. (2006). Handbook of Fruit and Fruit processing. Blackwell publishing. Pp 3-28.
 
[18]  Kudva, I. T., Blanch, K and Hovde, C. J. (1998). Analysis of Escherichia coli O157:H7 survival in ovine and bovine manure and manure slurry. Applied Environmental Microbiology. 64: 3166-3174.
 
[19]  Maboko, M. M. and Du Plooy, C. P. (2008). Evaluation of crisp head lettuce cultivars (Lactuca sativa L.) for winter production in a soilless production system. Afr. J. Plant Sci. 2(10): 113-117.
 
[20]  Macklin, K. S., Hess, J. B., Bilgili, S. F and Norton, R. A. (2005). Bacterial levels of pine shavings and sand used as poultry litter. J. Appl. Poult. Res. 14:238-245.
 
[21]  Mullins, G. L. (2002). An investigation in Poutry manure. Poultry Virginia Tech Pub. No. 424-434.
 
[22]  Ofor, M. O., Okorie, V. C., Ibeawuchi, I. I., Ihejirika, G. O., Obilo, O. P and Dialoke, S. A. (2009): Microbial Contaminants in Fresh Tomato Wash Water and Food Safety Considerations in South-Eastern Nigeria. Life Sci. J.1:80-82
 
[23]  Pell, A. N. (1997). Manure and microbes: public and animal health problem. J. Dairy Sci. 80:2673-2681.
 
[24]  Ray, B and Bhunia, A. K. (2007). Fundamental Food Microbiology. 4th Edn.,CRC Press, USA., p 492.
 
[25]  Riboli, E and Norat, T. (2003): Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am. J. Clin. Nutr. 78: 559S-69S.
 
[26]  Schefferle, H. E. (1995). The microbiology of built up poultry litter. J. Appl. Bacteriol. 28(3):403-411.
 
[27]  Solomon, H. M., Kautter, D. A., Lilly, T and Rhodehamel, E. J. (1990). Outgrowth of Clostridium botulinum in shredded cabbage at room temperature under modified atmosphere. J. Food Prot., 53:831-833.
 
Show Less References

Article

Microbial Diversity of Ammonia Oxidizing and Other Bacteria of Activated Sludge

1Industrial Waste Water Research Laboratory, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Gujarat, India


American Journal of Microbiological Research. 2014, 2(6), 182-188
DOI: 10.12691/ajmr-2-6-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
M P. Shah. Microbial Diversity of Ammonia Oxidizing and Other Bacteria of Activated Sludge. American Journal of Microbiological Research. 2014; 2(6):182-188. doi: 10.12691/ajmr-2-6-4.

Correspondence to: M  P. Shah, Industrial Waste Water Research Laboratory, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Gujarat, India. Email: shahmp@uniphos.com

Abstract

Microbial diversity and large quantity of ammonia-oxidizing bacteria (AOB) in activated sludge were compared using PCR-DGGE and real-time PCR assays. Activated sludge samples were collected from different types of wastewater treatment plants (WWTPs). The composition of total bacteria determined by PCR-DGGE was highly diverse between the samples, whereas the community of AOB was similar across all the investigated activated sludge. Total bacterial numbers and AOB numbers in the aerated mixed liquor were in the range of 1.2×109 to 2.8×1012 and 1.9×107 to 2.7×1010 copies/l, respectively. Activated sludge from livestock, textile, and sewage treating WWTPs contained relatively high amoA gene copies (more than 105 copies/l), whereas activated sludge from food and paper WWTPs revealed a low number of the amoA gene (less than 103 copies/l). The value of the amoA gene copy effectively showed the difference in composition of bacteria in different activated sludge samples and this was better than the measurement with the AOB 16S rRNA or total 16S rRNA gene. These results suggest that the quantification of the amoA gene can help monitor AOB and ammonia oxidation in WWTPs.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[
[1]  Maulin P Shah, Patel KA, Nair SS, Darji AM, Shaktisinh Maharaul. Optimization of Environmental Parameters on Decolorization of Remazol Black B Using Mixed Culture. American Journal of Microbiological Research. 2013 (1), 3, 53-56.
 
[2]  Maulin P Shah, Patel KA, Nair SS, Darji AM. Microbial Decolorization of Methyl Orange Dye by Pseudomonas spp. ETL-M. International Journal of Environmental Bioremediation and Biodegradation. 2013 (1), 2, 54-59.
 
[3]  Maulin P Shah, Patel KA, Nair SS, Darji AM. Microbial Degradation and Decolorization of Reactive Orange Dye by Strain of Pseudomonas Spp. International Journal of Environmental Bioremediation and Biodegradation. 2013 (1), 1, 1-5.
 
[4]  Maulin P Shah, Patel KA, Nair SS, Darji AM. An Innovative Approach to Biodegradation of Textile Dye (Remazol Black) by Bacillus spp. International Journal of Environmental Bioremediation and Biodegradation. 2013 (1), 2, 43-48.
 
[5]  Maulin P Shah, Patel KA, Nair SS, Darji AM, Shaktisinh Maharaul. Microbial Degradation of Azo Dye by Pseudomonas spp. MPS-2 by an Application of Sequential Microaerophilic and Aerobic Process. American Journal of Microbiological Research. 2013 (1), 43, 105-112.
 
Show More References
[6]  Maulin P Shah. Microbiological Removal of Phenol by an Application of Pseudomonas spp. ETL: An Innovative Biotechnological Approach Providing Answers to the Problems of FETP. Journal of Applied & Environmental Microbiology. 2014 (2), 1, 6-11.
 
[7]  Wagner, M., G. Rath, G. Amann, H. Koops, and K. Schleifer. 1995 In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 18: 251-264.
 
[8]  Rao, P. S. C., R. E. Jessup, and K. R. Reddy. 1984. Simulation of nitrogen dynamics in flooded soils. Soil Sci. 138: 54-62.
 
[9]  Arlene, K. R., J. R. Snape, D. Fearnside, M. R. Barer, T. P. Curtis, and I. M. Head. 2003. Composition and diversity of ammonia-oxidizing bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol. Ecol. 43: 195-206.
 
[10]  Nicolaisen, M. H. and N. B. Ramsing. 2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods 50: 189-203.
 
[11]  Tawan, L., S. Yuko, K. Futoshi, and Y. Osami. 2005. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol. Ecol. 54:205-217.
 
[12]  Tawan, L., K. Futoshi, and Y. Osami. 2006. Development and application of real-time PCR for quantification of specific ammonia-oxidizing bacteria in activated sludge of sewage treatment systems, Appl. Microbiol. Biotechnol. 72: 1004-1013.
 
[13]  Boon, N., W. D. Windt, W. Verstraete, and E. M. Top. 2002. Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol. Ecol. 39: 101-112.
 
[14]  Juretschko, S., G. Timmermann, M. Schmid, K. Scheifer, A. Pommerening-Roser, H. Koops, and M. Wagner. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospiralike bacteria as dominant populations. Appl. Environ. Microbiol. 64: 3042-3051.
 
[15]  Saikaly, P. E., P. G. Stroot, and D. B. Oerther. 2005. Use of 16S rRNA gene terminal restriction fragment analysis to assess the impact of solid retention time on the bacterial diversity of activated sludge. Appl. Environ. Microbiol. 71: 5814-5822.
 
[16]  Layton, A. C., H. M. Dionisi, H. W. Kuo, K. G. Robinson, V. M. Garrett, A. Meyers, and G. S. Salyer. 2005. Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant. Appl. Environ. Microbiol. 71: 1105-1108.
 
[17]  Okano, Y., K. R. Hristova, C. M. Leutenegger, L. E. Jackson, R. F. Denison, B. Gebreyesus, D. Lebauer, and K. M. Scow. 2004. Amplification of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl. Environ. Microbiol. 70: 1008-1016.
 
[18]  Dionisi, H. M., G. Hamrs, A. C. Layton, I. R. Gregory, J. Parker, S. A. Hawkins, K. G. Robinson, and G. S. Sayler. 2003. Power analysis for real-time PCR quantification of genes in activated sludge and analysis of the variability introduced by DNA extraction. Appl. Environ. Microbiol. 69: 6597-6604.
 
[19]  Harms, G., A. C. Layton, H. M. Dionisi, I. R. Garrett, S. A. Hawkins, K. G. Robinson, and G. Sayler. 2003 Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 37: 343-351.
 
[20]  Baldwin, B., C. H. Nakatsu, and L. Nies. 2003. Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl. Environ. Microbiol. 69: 3350-3358.
 
[21]  Lopez-Gutierrez, J. C., S. Henry, S. Hallet, F. Martin-Laurent, G. Catroux, and L. Philippot. 2004. Quantification of a novel group of nitrate-reducing bacteria in environment by real-time PCR. J. Microbiol. Methods 57: 399-407.
 
[22]  Muyzer, G., E. C. de Waal, and A. Uitterlinden. 1993. Profiling of complex microbial populations using denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
 
[23]  Shannon, C. E. and W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.
 
[24]  Tamura, K., M. Nei, and S. Kumar. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. U.S.A. 101: 11030-11035.
 
[25]  Wagner, M. and A. Loy. 2002. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol. 13: 218-227.
 
[26]  Curtis, T. P. and N. G. Craine. 1998. The comparison of the diversity of activated sludge plants. Water Sci. Technol. 37: 71-78.
 
[27]  Limpiyakorn, T., Y. Shinohara, F. Kurisu, and O. Yagi. 2005. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol. Ecol. 54: 205-217.
 
[28]  Heid, C. A., J. Stevens, K. J. Livak, and P. M. Williams. 1996 Real-time quantitative PCR. Gen. Res. 6: 986-994.
 
[29]  Juretschko, S., G. Timmermann, M. Schmid, K. Scheifer, A. Pommerening-Roser, H. Koops, and M. Wagner. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospiralike bacteria as dominant populations. Appl. Environ. Microbiol. 64: 3042-3051.
 
Show Less References

Article

Antibacterial Activities of Some Medicated Soaps on Selected Human Pathogens

1Department of Microbiology, College Of Natural Sciences, Michael Okpara University of Agriculture, Umudike, P. M. B. 7267, Umuahia, Abia State, Nigeria


American Journal of Microbiological Research. 2014, 2(6), 178-181
DOI: 10.12691/ajmr-2-6-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
OBI. C. N.. Antibacterial Activities of Some Medicated Soaps on Selected Human Pathogens. American Journal of Microbiological Research. 2014; 2(6):178-181. doi: 10.12691/ajmr-2-6-3.

Correspondence to: OBI.  C. N., Department of Microbiology, College Of Natural Sciences, Michael Okpara University of Agriculture, Umudike, P. M. B. 7267, Umuahia, Abia State, Nigeria. Email: b4brocliff@gmail.com

Abstract

Twelve medicated soaps: Crusader, Septol, Carat, 14 days, Funbact, Lifebouy, Safeguard, Tetmosol, TCP, Dettol, Delta and Antigal were investigated for their antibacterial activities against Staphylococcus aureus and Escherichia coli. Two cloth washing soaps (Key and Truck) were used as control. Identification of the bacterial species was by standard microbiological techniques which included colonial examination, Gram staining and biochemical testing. Minimum inhibitory and minimum bactericidal activities of the soaps were determined by disc-agar diffusion method. Profloxacin was employed as a positive control antibiotic. Crusader soap had the highest antibacterial activity (25 mm, against Staphylococcus aureus) while Antigal exhibited the least zone of inhibition (9 mm against Staphylococcus aureus). Significant differences (P<0.05) were observed on the different concentrations of soap preparations used in the work. Staphylococcus aureus was very sensitive to most of the antibacterial soaps used, while Escherichia coli showed higher resistance to the soaps. The medicated soaps analysed have bacteriostatic and bacteriocidal effects on the test pathogens while complete resistance was shown by some of the test isolates even at higher concentrations of the soap preparations used. The cloth washing soaps had no antibacterial effect on the tested pathogens. The use of medicated soaps is thus recommended in homes, schools, offices and hospitals as a way of minimizing or stopping infections that are hitherto spread through the hands.

Keywords

References

[[[[[[[[[[[[[[[
[1]  Bauer, A.W, Kirby, W.M, Sherris, J.C and Jurck, M (1966). Antibiotic susceptibility testing by a standard single disc method. American Journal Clinical Pathology. 451: 493-496
 
[2]  Bhargava, H.N and Leonard, P.A (1996). Triclosan, application and safety. American journal of infection control 24: 209-18.
 
[3]  Cheesbrough M (2005). District laboratory practice in tropical countries, part 2. Cambridge University Press, Cambridge. pp159-162.
 
[4]  Feroze, K., Elsayed, A and Tarek, T. A (2014) Antimicrobial activity of commercial “antibacterial” handwashes and soaps. Indian Dermatol Online J. 5 (3): 344-346.
 
[5]  Fluit, A.C., Schmits, F. J and Verhoef, J (2001). Frequency and isolation of pathogens from blood stream nosocomial pneumonia, skin and soft tissue, and urinary European. Journal of microbiology infection 20: 188-191.
 
Show More References
[6]  Friedman, M and Wolf, R (1996). Chemistry of soaps and detergents various types of commercial products and their ingredient. Clinical dermatology 14: 7-13.
 
[7]  Higaki, S., Kitagawa, T., kagoura, M., Morohashi, M and Yamagishi T (2000).Predominant Staphylococcus aureus isolated from various skin disease. Journal of International Medical Research 28 : 87-190.
 
[8]  Johnson, S.A., Goddard, P.A., Ilife,C.. Timmens, B., Richard., A.H., Robson, G and Handley, P.S (2002). Comparative susceptibility of resident and transient hand bacteria to para-chlorometa-xylenol and triclosan. Journal of Applied Microbiology. 93: 336-344
 
[9]  Kimel, L.S (1996). Hand washing education can decreases illness absenteeism. Journal of School Nursery. 12: 14-18.
 
[10]  Larson, E,. McGinley, K., Grove, G.L., Leyden. J.J and Talbot, G.H (1989). Physiologic, microbiologic and seasonal effects of hand washing on the skin of health care personnel. American Journal of Infection control 14: 5-90.
 
[11]  Ndukwe, I.G., Ampitan, J.O., and Isha, Y. (2005) Phytochemical and antimicrobial screening of crude extracts from the root stem bark and leaves Vitellaria paradoxa African Journal of Micro Biology 6 (16): 1905-1909.
 
[12]  Nwambete, K.D and Lyombe, F (2011).Antimicrobial activity of medicated soaps commonly used by Dares Salam residents in Tanzania. Indian Journal of Pharmaceutical sciences 73(1): 92-98.
 
[13]  Osborne, R.C and Grube, J (1982). Hand disinfection in dental practice, Journal of Clinical Preview. Dent 4:11-15.
 
[14]  Poole, K (2002). Mechanisms of bacterial bioade and antibiotic resistance. Journal of Applied Microbiology. 92: 555-564.
 
[15]  Rama Bhat P., Prajna, P.S., Vinita Preethi Menezez and Pavithra Shettuy (2011): Anitmicrobial activities of soaps and detergent. Advances in Biotechnology Research
 
[16]  Richards, M.J, Edwards,J.E., Culver, D.H and Gaynes, R.P (1999). Nosocomial infections in medical intensive care units in the United States. National Nosocomial infections surveillance system. Critical Care Medicine journal 27. 887-892.
 
[17]  Saba Riaz, Adeel Ahmad and Shahida Hasnain. (2009). Antibacterial activity of soaps against daily encountered bacterial. African Journal of Biotechnology 8 (8): 1431-1436.
 
[18]  Selvamohan,, V and Sandhya, T. (2012). Studies on the bactericidal activity of different soaps against bacterial strains. Journal of Microbiology and Biotechnology Research (5): 646-650
 
[19]  Whitehouse station (NJ): Merck and Co. Inc., (2008): The Merck Veterinary manual-Tropical antifungal agent. Assessable at, www. Merckvetmanual. Com.
 
[20]  White, D.G and McDermolt, P.F ((2001). Biocides, drug resistance and microbial evolution; Current Opinion in Microbiology; 4: 313-317.
 
Show Less References

Article

Bioinformatic Analysis of Surface Proteins of Streptococcus pneumoniae Serotype 19F for Identification of Vaccine Candidates

1Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran


American Journal of Microbiological Research. 2014, 2(6), 174-177
DOI: 10.12691/ajmr-2-6-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Shirin Tarahomjoo. Bioinformatic Analysis of Surface Proteins of Streptococcus pneumoniae Serotype 19F for Identification of Vaccine Candidates. American Journal of Microbiological Research. 2014; 2(6):174-177. doi: 10.12691/ajmr-2-6-2.

Correspondence to: Shirin  Tarahomjoo, Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran. Email: starahomjoo@hotmail.com

Abstract

Streptococcus pneumoniae serotype 19F is one of major pneumococcal serotypes responsible for pneumococcal invasive disease in children less than 5 years worldwide. Pneumococcal conjugate vaccines (PCVs) were developed through chemical coupling of capsular polysaccharides of pneumococci to immunogenic carrier proteins and World Health Organization recommends the inclusion of these vaccines in national immunization programs for children. However, costly manufacture of PCVs can prevent their implementation in developing countries. This issue can be addressed by construction of protein based vaccines against pneumococci. Cell surface proteins are key factors in infectious processes of pathogens and are attractive as vaccine candidates. LPxTG motif containing proteins, lipoproteins, and choline binding proteins are among main groups of pneumococcal surface proteins. In this study, therefore, we aim to identify suitable candidates among these proteins for development of proteinaceous vaccines against S. pneumoniae serotype 19F infection using bioinformatic tools. These proteins were then identified in proteome data of S. pneumoniae 19F-14 through BLAST with LPxTG, lipobox consensus motifs, and the choline binding protein consensus sequence. PRED-LIPO online tool was used to confirm the presence of lipoprotein specific signal peptide. The cellular location of the proteins was analyzed with PSORTb v.3.0. Vaxijen v.2.0 was used to evaluate the protein antigenicity. BLAST against human proteome was done to remove the possibility for autoimmunity induction by the proteins. Moreover, the presence of homolog proteins in other pneumococcal serotype 19F strains including S. pneumoniae A026, S. pneumoniae G54, and S. pneumoniae ST556 were investigated. Our analysis revealed that cell wall surface anchor family protein ( YP_002741626.1), D-alanyl-D-alanyl-carboxy peptidase, surface protein PspC, and choline binding protein D are promising candidates for development of protein based vaccines against S. pneumoniae serotype 19F infection.

Keywords

References

[[[[[[[[[
[1]  Mook-Kanamori, B. B., Geldhoff, M., van der Poll, T. and van de Beek, D, “Pathogenesis and pathophysiology of pneumococcal meningitis,” Clin Microbiol Rev, 24 (3), 557-591, Jul. 2011.
 
[2]  WHO, “Pneumococcal vaccines, WHO position paper,” Wkly Epidemiol Rec, 87 (14), 129-144, Apr. 2012.
 
[3]  Johnson, H. L., Deloria-Knoll, M., Levin, R. S. et al, “Systematic evaluation of serotypes causing invasive pneumococcal disease among children under five: the pneumococcal global serotype project,” PLoS Med, 7 (10), e1000348, Oct. 2010.
 
[4]  Foster, T. J., Geoghegan J. A., Ganesh, V. K. and Hook, M, “Adhesion, invasion and evasion: the many functions of surface proteins of Staphylococcus aureus,” Nature Rev Microbiol, 12 (1), 49-62, Dec. 2014.
 
[5]  Bergmann, S. and Hammerschmidt, S, “Versatility of pneumococcal surface proteins,” Microbiol, 152 (2), 295-303, Feb. 2006.
 
Show More References
[6]  Leenhouts, K., Buist, G. and Kok, J, “Anchoring of proteins to lactic acid bacteria,” Antonie van Leeuwen, 76 (1-4), 367-376, Jul.-Nov. 1999.
 
[7]  Venema, R., Tjalsma, H., van Dijl, J. M. et al, “Active lipoprotein precursors in the gram positive eubacterium Lactococcus lactis,” J Biol Chem, 278 (17), 14739-14746, Apr. 2003.
 
[8]  Tjalsma, H., Kontinent, V. P., Pragai, Z. et al, “The role of lipoprotein processing by signal peptidase II in the gram-positive eubacterium Bacillus subtilis,” J Biol Chem, 274 (3), 1698-1707, Jan. 1998.
 
[9]  Davis, M. N. and Flower, D. R, “Harnessing bioinformatics to discover new vaccines,” Drug Discov Today, 12 (9-10), 389-395, May 2007.
 
[10]  Kelly, D. F. and Rappuoli, R, Hot topics in infection and immunity in children II, Springer, New York, 2005, 217-223.
 
[11]  Blank, M., Krause, I., Fridkin, M. et al, “Bacterial induction of autoantibodies to β2-glycoprotein-I accounts for the infectious etiology of antiphospholipid syndrome,” J Clin Investig, 109 (6), 797-804, March 2002.
 
[12]  Scheffers, D-J. and Pinho, M. G, “Bacterial cell wall synthesis: new insights from localization studies,” Microb Mol Biol Rev, 69 (4), 585-607, Dec. 2005.
 
[13]  Ogunniyi, A. D., Woodrow, M. C., Poolman, J. T., Paton, J.C, “Protection against Streptococcus pneumoniae elicited by immunization with pneumolysin and CbpA,” Infect Immun, 69 (10), 5997-6003, Oct. 2001.
 
[14]  Kausmally, L., Johnsborg, O., Lunde, M., Knutsen, E. and Havarstein, L. S, “Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence induced cell lysis,” J Bacteriol, 187 (13), 4338-4345, July 2005.
 
Show Less References

Article

An Application of Polymerase Chain Reaction in Detection of Ammonia Oxidizing Bacteria

1Industrial Waste Water Research Laboratory, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar, Gujarat, India


American Journal of Microbiological Research. 2014, 2(6), 166-173
DOI: 10.12691/ajmr-2-6-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
M P. Shah. An Application of Polymerase Chain Reaction in Detection of Ammonia Oxidizing Bacteria. American Journal of Microbiological Research. 2014; 2(6):166-173. doi: 10.12691/ajmr-2-6-1.

Correspondence to: M  P. Shah, Industrial Waste Water Research Laboratory, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar, Gujarat, India. Email: shahmp@uniphos.com

Abstract

The PCR was used as the basis for the development of a sensitive and specific assay for the detection of ammonium-oxidizing bacteria belonging to the beta-subclass of the class Proteobacteria. PCR primers were selected on the basis of nucleic acid sequence data available for seven species of nitrifiers in this subclass. The specificity of the ammonium oxidizer primers was evaluated by testing known strains of nitrifiers, several serotyped environmental nitrifier isolates, and other members of the Proteobacteria, including four very closely related, nonnitrifying species (as determined by rRNA sequence analysis). DNA extracts from 19 different samples collected from effluent treatment plant were assayed for the presence of ammonium oxidizers. By using a two-stage amplification procedure, ammonium oxidizers were detected in samples collected from both sites. Chemical data collected simultaneously support the occurrence of nitrification and the presence of nitrifiers. This report describes PCR primers specific for ammonium-oxidizing bacteria and the successful amplification of nitrifier genes coding for rRNA from DNA extracts from different samples. This application of PCR is of particular importance for the detection and study of microbes, such as autotrophic nitrifiers, which are difficult or impossible to isolate from indigenous microbial communities.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[1]  Rennenberg H, Dannenmann M, Gessler A, Kreuzwiesser J, Simon J, Papen H. 2009. Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biology, 11, 4-23.
 
[2]  Shen J P, Zhang L M, Di H J, He J Z. 2012. A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Frontiers in Microbiology, doi: 10.3389/fmicb. 00296, 1-7.
 
[3]  Miao Y X, Bobby A S, Zhang F S. 2011. Long-term experiments for sustainable nutrient management in China. A review of Agronomy Sustain, 31, 397-414.
 
[4]  Chanasyk D S, Whitson I R, Mapfumo E, Burke J M, Prepas E E. 2003. The impacts of forest harvest and wildfire on soils and hydrology in temperate forests: a baseline to develop hypotheses for the Boreal Plain. Journal of Environmental Engineering and Science, 2, 51-62.
 
[5]  Grigal D F. 2000. Effects of extensive forest management on soil productivity. Forest Ecology and Management, 138, 167-185.
 
Show More References
[6]  Prosser J I.1989. Autotrophic nitrification in bacteria. Advances in Microbial Physiology, 30, 125-181.
 
[7]  Wrage N, Velthof G L, van Beusichem M L, Oenema O. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 33, 1723-1732.
 
[8]  Kowalchuk GA, Stephen JR. 2001. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Review of Microbiology, 55,485-529.
 
[9]  Shen X Y, Zhang L M, Shen J P, Li L H, Yuan C L, He J Z. 2011. Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semi-arid temperate grassland. Journal of Soil Sediment, 11, 1243-1252.
 
[10]  Kowalchuk G A, Stephen J R, De Boer W, Prosser J I, Embley T M, Woldendorp J W. 1997. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR- amplified 16S ribosomal DNA fragments. Applied and Environmental Microbiology, 63, 1489-1497.
 
[11]  Bäckman J S K, Klemedtsson A K, Klemedtsson L, Lindgren P. 2004. Clear-cutting affects the ammonia-oxidizing community differently in limed and non-limed coniferous forest soils. Biology and Fertility of Soils, 40, 260-267.
 
[12]  Hastings R C, Ceccherini M T, Miclaus N, Saunders J R, Bazzicalupo M, McCarthy A J. 1997. Direct molecular biological analysis of ammonia oxidizing bacteria populations in cultivated soil plots treated with swine manure. FEMS Microbiology Ecology, 23, 45-54.
 
[13]  Mintie A T, Heichen R S, Cromack K, Myrold D D, Bottomley P J. 2003. Ammonia-oxidizing bacteria along meadow-to-forest transects in the Oregon cascade mountains. Applied and Environmental Microbiology, 69, 3129-3136.
 
[14]  Avrahami S, Conrad R. 2005. Cold-temperature climate: a factor for selection of ammonia oxidizers in upland soil? Canadian Journal of Microbiology, 51, 709-714.
 
[15]  Backman J S K, Hermansson A, Tebbe C C. Liming induces growth of a diverse flora of ammonia-oxidizing bacteria in acid spruce forest soil as determined by SSCP and DGGE. Soil Biology and Biochemistry, 2003, 35, 1337-1347.
 
[16]  Yeager C M, Northup D E, Grow C C, Barns S M, Kuske C R. 2005. Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire. Applied and Environmental Microbiology, 71, 2713-2722.
 
[17]  Boyle-Yarwood S A, Bottomley P J, Myrold D D. 2008. Community composition of ammonia-oxidizing bacteria and archaea in soils under stands of red alder and Douglas fir in Oregon. Environmental Microbiology, 10, 2956-2965.
 
[18]  Nugroho R A, Röling W F M, Laverman A M, Zoomer H R, Verhoef H A. 2005. Presence of Nitrosospira cluster 2 bacteria corresponds to N transformation rates in nine acid Scots pine forest soils. FEMS Microbiology Ecology, 53, 473-481.
 
[19]  Tong D, Xu R. 2012. Effects of urea and (NH4)2SO4 on nitrification and acidification of Ultisols from southern China. Journal of Environmental Science (in China), 24, 682-689.
 
[20]  dos Santos A C F, Marques E L S, Gross E, Souza S S, Dias J C T, Brendel M, Rezende R P. 2012. Detection by denaturing gradient gel electrophoresis of ammonia-oxidizing bacteria in microcosms of crude oil-contaminated mangrove sediments. Genetics and Molecular Research, 11, 190-201.
 
[21]  Muyzer G, De Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695-700.
 
[22]  Nicolaisen M H, Ramsing N B. 2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. Journal of Microbiological Methods, 50, 189-203.
 
[23]  Giovannoni, S. J., T. B. Britschgi, C. L. Moyer, and K. G. Field. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature (London) 345: 60-62.
 
[24]  Schmidt, T. M., E. F. DeLong, and N. R. Pace. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173: 4371-4378.
 
[25]  Stahl, D. A., D. J. Lane, G. J. Olsen, and N. R. Pace. 1985. Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences. Appl. Environ. Microbiol. 49: 1379-1384.
 
[26]  Ward, D. M., R. Weller, and M. M. Bateson. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature (London) 345: 63-65.
 
[27]  Wegmu¨ller, B., J. Lu¨thy, and U. Candrian. 1993. Direct polymerase chain reaction detection of Campylobacter jejuni and Campylobacter coli in raw milk and dairy products. Appl. Environ. Microbiol. 59: 2161-2165.
 
[28]  Amann, R., N. Springer, W. Ludwig, H.-D. Go¨rtz, and K.-H. Schleifer. 1991. Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature (London) 351: 161-164.
 
[29]  Distel, D. L., E. F. DeLong, and J. B. Waterbury. 1991. Phylogenetic characterization and in situ localization of the bacterial symbiont of shipworms (Teredinidae: Bivalvia) by using 16S rRNA sequence analysis and oligodeoxynucleotide probe hybridization. Appl. Environ. Microbiol. 57: 2376-2382.
 
[30]  Head, I. M., W. D. Hiorns, T. Martin, A. J. McCarthy, and J. R. Saunders. 1993. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J. Gen. Microbiol. 139: 1147-1153.
 
[31]  Teske, A., E. Alm, J. M. Regan, S. Toze, B. E. Rittmann, and D. A. Stahl. 1994. Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J. Bacteriol. 176: 6623-6630.
 
[32]  Woese, C. R., W. G. Weisburg, C. M. Hahn, B. J. Paster, L. B. Zablen, B. J. Lewis, T. J. Macke, W. Ludwig, and E. Stackebrandt. 1985. The phylogeny of the purple bacteria: the gamma subdivision. Syst. Appl. Microbiol. 6: 25-33.
 
[33]  Woese, C. R., W. G. Weisburg, B. J. Paster, C. M. Hahn, R. S. Tanner, N. R. Krieg, H.-P. Koops, H. Harms, and E. Stackebrandt. 1984. The phylogeny of the purple bacteria: the beta subdivision. Syst. Appl. Microbiol. 5: 327-336.
 
[34]  Ward, B. B., and M. J. Perry. 1980. Immunofluorescent assay for the marine ammonium-oxidizing bacterium Nitrosococcus oceanus. Appl. Environ. Microbiol. 39: 913-918.
 
[35]  Soriano, S., and N. Walker. 1968. Isolation of ammonia oxidizing autotrophic bacteria. J. Appl. Bacteriol. 31: 493-497.
 
[36]  Carlucci, A. F., and J. D. H. Strickland. 1968. The isolation, purification and some kinetic studies of marine nitrifying bacteria. J. Exp. Mar. Biol. Ecol. 2: 156-166.
 
[37]  Carlucci, A. F., and D. Pramer. 1957. Factors influencing the plate method for determining abundance of bacteria in sea water. Proc. Soc. Exp. Biol. Med. 96: 392-394.
 
[38]  Ward, B. B., and A. F. Carlucci. 1985. Marine ammonia- and nitrite-oxidizing bacteria: serological diversity determined by immunofluorescence in culture and in the environment. Appl. Environ. Microbiol. 50: 194-201.
 
[39]  Liesack, W., H. Weyland, and E. Stackebrandt. 1991. Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixedculture of strict barophilic bacteria. Microb. Ecol. 21: 191-198.
 
[40]  Don, R. H., P. T. Cox, B. J. Wainwright, K. Baker, and J. S. Mattick. 1991. ‘‘Touchdown’’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19: 4008.
 
[41]  Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 1989. Current protocols in molecular biology. Green Publishing Associates and Wiley-Interscience, New York.
 
[42]  Jinks-Robertson, S., R. L. Gourse, and M. Nomura. 1983. Expression of rRNA and tRNA genes in Escherichia coli: evidence for feedback regulation by products of rRNA operons. Cell 33: 865-876.
 
[43]  Ward, B. B. 1987. Nitrogen transformations in the Southern California Bight. Deep-Sea Res. 34: 785-805.
 
[44]  Ward, B. B., and K. A. Kilpatrick. 1993. Methane oxidation associated with mid-depth methane maxima in the Southern California Bight. Cont. Shelf Res. 13: 1111-1122.
 
[45]  Horrigan, S. G., A. F. Carlucci, and P. M. Williams. 1981. Light inhibition of nitrification in sea surface films. J. Mar. Res. 39: 557-565.
 
[46]  Seal, S. E., L. A. Jackson, and M. J. Daniels. 1992. Isolation of a Pseudomonas solanacearum-specific DNA probe by subtraction hybridization and construction of species-specific oligonucleotide primers for sensitive detection by the polymerase chain reaction. Appl. Environ. Microbiol. 58: 3751-3758.
 
[47]  Sykes, P. J., S. H. Neoh, M. J. Brisco, E. Highes, J. Condon, and A. A. Morley. 1992. Quantitation of targets for PCR by use of limiting dilution. BioTechniques 13: 444-449.
 
[48]  Steffan, R. J., and R. M. Atlas. 1988. DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl. Environ. Microbiol. 54: 2185–2191.
 
[49]  Steffan, R. J., J. Goksoyr, A. K. Bej, and R. M. Atlas. 1988. Recovery of DNA from soils and sediments. Appl. Environ. Microbiol. 54: 2908-2915.
 
[50]  Tsai, Y. L., and B. H. Olson. 1992. Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Appl. Environ. Microbiol. 58: 754-757.
 
[51]  Abbaszadegan, M., M. S. Huber, C. P. Gerba, and I. L. Pepper. 1993. Detection of enteroviruses in groundwater with the polymerase chain reaction. Appl. Environ. Microbiol. 59: 1318-1324.
 
[52]  Kopecka, H., S. Dubrou, J. Prevot, J. Marechal, and J. M. Lo´pez-Pila. 1993. Detection of naturally occurring enteroviruses in waters by reverse transcription, polymerase chain reaction, and hybridization. Appl. Environ. Microbiol. 59: 1213-1219.
 
Show Less References