ISSN (Print): 2328-4129

ISSN (Online): 2328-4137

You are here

Currrent Issue: Volume 4, Number 1, 2016


Multiple Heavy Metal and Antibiotic Resistance of Acinetobacter baumannii Strain HAF – 13 Isolated from Industrial Effluents

1Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt

2Department of Biology, Faculty of Science and Arts, Northern Border University (Rafha), Saudi Arabia

American Journal of Microbiological Research. 2016, 4(1), 26-36
doi: 10.12691/ajmr-4-1-3
Copyright © 2016 Science and Education Publishing

Cite this paper:
Mohamed Helal El-Sayed. Multiple Heavy Metal and Antibiotic Resistance of Acinetobacter baumannii Strain HAF – 13 Isolated from Industrial Effluents. American Journal of Microbiological Research. 2016; 4(1):26-36. doi: 10.12691/ajmr-4-1-3.

Correspondence to: Mohamed  Helal El-Sayed, Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt. Email:


The emergence of multiple metal/antibiotic resistance among bacterial populations poses a potential threat to human health. Heavy metal and antibiotic resistance have been shown to have a strong correlation in nature, and their inter-relation is an important subject of study. The present study had an objective to isolate and identify multiple metal/antibiotic resistant bacteria from industrial wastewater of a Plastic Factory at Hafar Al Baten governorate, Saudi Arabia. Initially a total of 14 bacterial cultures (coded HAF – 1 to HAF – 14) were isolated on nutrient agar plates supplemented with different concentrations; 10, 15, 25, 25 and 30 mg/l of the five heavy metals; Hg2+, Pb2+, Cd2+, As5+ and Cr6+ respectively. Out of 14 isolates, 5 (35.71 %) isolates (HAF – 2, HAF – 6, HAF – 7, HAF – 9 & HAF – 13) were selected as a multiple heavy metal resistant (MHMR) organisms with maximum tolerable concentrations (MTCs); 75 – 100 mg/l for Hg2+, 125 – 175 mg/l for Pb2+, 200 mg/l for Cd2+ and 200 – 250 mg/l for Cr6+ and As5+. Antibiotic resistance pattern of the selected MHMR isolates was determined by Kirby-Bauer disc diffusion method against 15 different antibiotics belonging to 10 classes. Out of 5 isolates, 4 (80 %) isolates were multiple antibiotic resistance (MAR) with varying degrees. Among them isolate, HAF – 13 showed a wide range of resistance to all tested antibiotics; Amikacin, Augmentin, Ceftazidime, Chloramphenicol, Ciprofloxacin, Clindamycin, Cotrimoxazole, Erythromycin, Gentamicin, Levofloxacin, Oxacillin, Tetracycline, Vancomycin and Penicillin Gexcept Imipenem. Strain HAF – 13 was selected for its multiple metal/antibiotic resistance and identified by morphological, physiological and biochemical characteristics in addition to the phylogenetic analysis of the nucleotide sequence of 16S rRNA gene, which indicated that this strain is belonged to the genus Acinetobacter with high similarity 98% to Acinetobacter baumannii (accession number KU310899.1) and designated Acinetobacter baumannii strain HAF – 13.



[1]  Dixit R., Wasiullah, Deepti M., Kuppusamy P., Udai B.S., Asha S., Renu S., Bhanu P.S., Jai P.R., Pawan K.S., Harshad L. and Diby P. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability (2015), 7(2): 2189-2212.
[2]  Bhattacharya A. and Gupta A. Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environmental Science and Pollution Research (2013), 20:6628-6637.
[3]  Coen N., Mothersill C., Kadhim M. and Wright E.G. Heavy metals of relevance to human health induce genomic instability. The Journal of Pathology (2001), 195(3):293-299.
[4]  Gleick P.H. The World's Water Volume 8: The Biennial Report on Freshwater Resources, Island Press (2014).
[5]  Wuertz S. and Mergeay M. The impact of heavy metals on soil microbial communities and their activities. In J. D. van Elsas, E. M. H. Wellington, & J. T. Trevors (Eds.), Modern soil microbiology. New York: Marcel Decker (1997), (pp. 1-20).
Show More References
[6]  Nies D.H. Efflux-mediated heavy metal resistance in prokaryotes. FEMES Microbiology Reviews (2003), 27(2-3):313-339.
[7]  Garhwal D., Vaghela G., Panwala T., Revdiwala S., Shah A. and Mulla S. Lead tolerance capacity of clinical bacterial isolates and change in their antibiotic susceptibility pattern after exposure to a heavy metal. International Journal of Medicine and Public Health (2014), 4(3):253-256.
[8]  Boerlin P. and Reid-Smith R.J. Antimicrobial resistance: its emergence and transmission. Animal Health Research Reviews (2008), 9:115-126.
[9]  Jakobsen L., Kurbasic A., Skjot-Rasmussen L., Ejrnaes K., Porsbo L.J. and Pedersen K., et al. Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathogens and Disease (2010), 7:537-547.
[10]  Summers A.O. Generally overlooked fundamentals of bacterial genetics and ecology. Clinical Infectious Diseases (2002), 34(Suppl 3):S85-92.
[11]  Kawane R.S. Studies on antibiotics and heavy metal resistance profiling of Escherichia coli from drinking water and clinical specimens. Bioscience Discovery (2012), 3(3):292-295.
[12]  Abdel El-Haleem D. Acinetobacter: environmental and biotechnological applications. Review article. African Journal of Biotechnology (2003), 2 (4):71-74.
[13]  Ying W., Bin H., Hua-bing Z. and Bin and BAO–li A. Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. Journal of environmental sciences (2007), 19(2): 222-225.
[14]  Foster TJ. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiological Reviews (1983), 47(3):361-409.
[15]  Witte W., Green L., Misra T.K. and Silver S. Resistance to mercury and the cadmium in chromosomally resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy (1986), 29(4):663-669.
[16]  Wang Y., Mahler I., Levinson H.S. and Halvorson H.O. Cloning and expression in Escherichia coli of chromosomal mercury resistance genes from a Bacillus sp. Journal of Bacteriology (1987), 169(10):4848-4851.
[17]  Silver S. and Misra T.K. Plasmid mediated heavy metal resistances. Annual Review of Microbiology (1988), 142:717-743.
[18]  Dhakephalkar P.K. and Chopade B.A. High levels of multiple metal resistance and its correlation to antibiotic resistance in environmental isolates of Acinetobacter. BioMetals (1994), 7(1): 67-74.
[19]  Trevors J.T., Oddie K.M. and Belliveau B.H. Metal resistance in bacteria. FEMS Microbiology Reviews (1985), 1(1):39-54.
[20]  APHA. Standard Methods for the Examination of Water and Wastewater. 18th ed. American Public Health Association, Washington, DC (1992).
[21]  Dick E.M. Water and Wastewater Sampling for Environmental Analysis. Environmental sampling for trace analysis, (1994), 255.
[22]  Halimoon N. and Yin R.S. Removal of heavy metals from textile wastewater using zeolite. Environment Asia (2010), 3:124-130.
[23]  Sabry S.A., Ghozlan H.A. and Abou-Zeid D.M. Metal tolerance and antibiotic resistance patterns of a bacterial population isolated from sea water. Journal of Applied Microbiology (1997), 82(2):245-252.
[24]  APHA. Standard Methods for the Examination of Water and Wastewater. 21st ed. American Public Health Association. Washington, DC. Part, (2005), 8000:94-100.
[25]  Nelson D.W. and Sommers L.E. Total Carbon, Organic Carbon and Organic Matter. In A. L. Page, R. H. Miller, D. R. Keeney (Eds.), Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties. 2nd ed. Agronomy Monogram (1982), 9: 539-580.
[26]  AOAC. Official methods of analysis. Washington DC: Association of Official Analytical Chemists, (1990).
[27]  Grimalt J.G. Sampling, sample handling, and operational methods for the analysis of trace pollutants in the marine environment. In Marine Pollution ed. Albaiges, J. New York, Washington, Philadelphia, London: Hemisphere Publishing Corp, (1989).
[28]  Jamaluddin H., Zaki D.M., Ibrahim Z., Tan S., Zainudin N. and Yusoh O. Isolation of metal tolerant bacteria from polluted wastewater. Pertanika Journal of Tropical Agricultural Science (2012), 35(3):647-662.
[29]  Pandit R., Patel B., Kunjadia P., and Nagee A. Isolation, characterization and molecular identification of heavy metal resistant bacteria from industrial effluents. International Journal of Environmental Science (2013), 3(5):1689-1699.
[30]  Coral M.N., Korkmaz H., Arikan B. Plasmid heavy metal mediated resistances in Enterobacter spp. Isolated from Sofulu landfill. Annals of Microbiology (2005), 55(3):175-179.
[31]  Fasim F., Ahmed N., Parsons R. and Gadd G.M. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiology Letters (2002), 213(1): 1-6.
[32]  Bauer A.W., Kirby W.M.M., Sherries J.C. and Truck M. Antibiotic susceptibility testing by a standardized single disc diffusion method. American Journal of Clinical Pathology (1966), 45(4):493-496.
[33]  Loureiro M.M., De Moraes B.A., Quadra M.R.R., Pinheiro G.S. and Asensi M.D. Study of multi-drug resistant microorganisms isolated from blood cultures of hospitalized newborns in Rio De Janeiro City, Brazil. Brazilian Journal of Microbiology (2002), 33(1): 73-78.
[34]  Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; 21st inform. suppl. CLSI document M100-S21. CLSI, Wayne, Pennsylvania (2011).
[35]  Vitek® microbiology reference manual, Loiaison, appendix F: Method for determining duplicate isolates for Data Trac Reports. BioMerieux France 12, (2004).
[36]  Holt J.G., Krieg N.R., Sneath H.A., Stanley J.T. and Williams S.T. Bergeys Manual of Determinative Bacteriology. (9thed), Baltimore; Wiliams and Wilkins, USA (1994).
[37]  Moore E., Arnscheidt A. and Kruger, A. et al. Simplified protocol for the preparation of genomic DNA from bacterial cultures. Molecular Microbial Ecology Manual Second Edition (2004), 3–18.
[38]  Hookoom M. and Puchooa D. Isolation and identification of heavy metals tolerant bacteria from industrial and agricultural areas in mauritius. Current Research in Microbiology and Biotechnology (2013), 1(3): 119-123.
[39]  Tamura K., Dudley J., Nei M. and Kumar S. MEGA4: molecular evolutionary genetics analysis (mega) software version 4.0. Molecular Biology and Evolution (2007), 24(8):1596-1599.
[40]  Ademiluyi F., Amadi S. and Nimisingha J. Adsorption and treatment of organic contaminants using activated carbon from waste Nigerian Bamboo. Journal of Applied Sciences and Environmental Management (2009), 13(3): 39-47.
[41]  Igwe J.C. and Abia A.A. a Bioseparation process for removing heavy metals from wastewater using biosorbents. African Journal of Biotechnology (2006), 5(12):1167-1179.
[42]  Pazirandeh M., Wells B. and Ryan R.L. Development of bacterium-based heavy metal biosorbents: Enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Applied and Environmental Microbiology (1998), 64(10): 4068- 4072.
[43]  Simon T. PCR and the detection of microbial pathogens in water and wastewater. J. Water Research (1999), 33(17): 3545-3556.
[44]  Clausen C.A. Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood. Waste Management and Research (2000), 18(3): 264-268.
[45]  Mishra A. and Prasad K.M. Bacterial response as determinant of oxidative stress by heavy metals and antibiotic. Journal of Innovations in Pharmaceuticals and Biological Sciences (2015), 2(3): 229-239.
[46]  Hussein K.A. and Joo J.H. Heavy metal resistance of bacteria and its impact on the production of antioxidant enzymes. African Journal of Microbiology Research (2013), 7(20): 2288-2296.
[47]  Hassan S.H.A., Abskharon R.N.N., Gad El-Rab S.M.F. and Shoreit A.A.M. Isolation, characterization of heavy metal resistant strain of Pseudomonas aeruginosa isolated from polluted sites in Assiut city, Egypt. Journal of Basic Microbiology (2008), 48(3): 168-176.
[48]  Rohini B. and Jayalakshmi S. Bioremediation potential of Bacillus cereus against copper and other heavy metals. International Journal of Advanced Research in Biological Sciences (2015), 2(2): 200-209.
[49]  Sevgi E., Coral G., Gizir M.A., Sangün M. Kemal. Investigation of heavy metal resistance in some bacterial strains isolated from industrial soils. Turkish Journal of Biology (2010), 34(4): 423-431.
[50]  Ganiyu O.O., Matthew O.I., Sunday A.A., Oluwafemi S.O. and Olukayode O.A. Bacteria with dual resistance to elevated concentrations of heavy metals and antibiotics in Nigerian contaminated systems. Environmental Monitoring and Assessment (2010), 168(1):305-314.
[51]  Yamina B., Tahar B. and Marie L.F. Isolation and screening of heavy metal resistant bacteria from wastewater: a study of heavy metal co-resistance and antibiotics resistance. Water Science and Technology (2012), 66(10): 2041-2048.
[52]  Aktan Y., Tan S. and Icgen B. Characterizations of lead-resistant river isolate Enterococcus faecalis and assessment of its multiple metal and antibiotic resistance. Environmental Monitoring and Assessment (2013), 185(6): 5285-5293.
[53]  Sobecky P.A. Plasmid ecology of marine sediment microbial communities. Hydrobiologia (1999), 401(0): 9-18.
[54]  Endo G., Narita M., Huang C.C. and Silver S. Microbial heavy metal resistance transposons and plasmids: potential use for environmental biotechnology. Journal of Environmental Biotechnology (2002), 2(2): 71-82.
[55]  Virender S., Chauhan P.K., Kanta R., Tejpal D. and Vinod K. Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. International Journal of Pharmaceutical Sciences Review and Research (2010), 3(2): 164-167.
[56]  Rodríguez C.E., Quesada A. and Rodríguez E. Nickel biosorption by Acinetobacter baumannii and Pseudomonas aeruginosa isolated from industrial wastewater. Brazilian Journal of Microbiology (2006), 37(4):465-467.
[57]  AL-Saffar A.K., Alahmed S.G., Alwesawei Y.A. and Mahdi R.K. Acinetobacter baumannii: isolation, identification and antimicrobial resistance. International Journal of Recent Scientific Research (2015), 6(4):3766-3773.
[58]  Shiri Z., Kermanshahi R.K., Soudi M.R. and Farajzadeh D. Isolation and characterization of an n-hexadecane degrading Acinetobacter baumannii KSS1060 from a petrochemical wastewater treatment plant. International Journal of Environmental Science and Technology (2015), 12(2):455-464.
Show Less References


Antibacterial Activity of Essential Oils and in Combination with Some Standard Antimicrobials against Different Pathogens Isolated from Some Clinical Specimens

1Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt

2Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University

3Department of Microbiology and Immunology, Faculty of Pharmacy, Hail University, KSA

American Journal of Microbiological Research. 2016, 4(1), 16-25
doi: 10.12691/ajmr-4-1-2
Copyright © 2016 Science and Education Publishing

Cite this paper:
Abobakr M. Mahmoud, Rehab Mahmoud Abd El-Baky, Abo Bakr F Ahmed, Gamal Fadl Mahmoud Gad. Antibacterial Activity of Essential Oils and in Combination with Some Standard Antimicrobials against Different Pathogens Isolated from Some Clinical Specimens. American Journal of Microbiological Research. 2016; 4(1):16-25. doi: 10.12691/ajmr-4-1-2.

Correspondence to: Rehab  Mahmoud Abd El-Baky, Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University. Email:


The clinical effectiveness of most of the marketed antimicrobials is found to be threatened by the rapid emergence of multidrug resistant pathogens which increase the need to find alternatives. Hundred years ago, essential oils have been known for their biologic activities in the folkloric medicine in many countries. The objective of our study was to investigate the antibacterial activity of some essential oils against different microorganisms and to study the possible effects between the tested oils and some standard antimicrobials. The antibacterial activity of 11 essential oils was evaluated against Staphylococcus aureus, E. coli, Klebseilla pneumoniae and Pseudomonas aeruginosa and 50 clinical strains isolated from different infections each alone and in combination with some standard antimicrobials using well diffusion method. Minimum inhibitory concentrations were determined using linear regression analysis. Results showed that all tested essential oils have good antimicrobial activity. As Coriander oil showed the highest antimicrobial activity against Staphylococcus aureus and E.coli followed by Origanum and Ivy oil. Cumin oil showed the highest activity against E. coli followed by Origanum oil while Chammomile and Onion oil showed the highest activity against Pseudomonas aeruginosa. In-vitro interaction between the tested antimicrobials and oils showed variable results against the tested bacteria. The results are of significance in health care system and microbial diseases treatment. As our study showed that essential oils possessed good antimicrobial activity against the tested strains. Most of essential oils/antimicrobials combinations showed synergistic effects. Essential oils can be used as adjuvant to antibiotic therapy.



[1]  Murray, C.J.; Lopez, A.D. Mortality by cause for eight regions of the world: Global burden of disease study. Lancet 1997, 349, 1269-1276.
[2]  Wenzel, R.P.; Edmond, M.B. Managing antibiotic resistance. N. Engl. J. Med. 2000, 343, 1961-1963.
[3]  Alanis AJ. Resistance to antibiotics: are we in the postantibiotic era Arch Med Res 2005, 36, 697-705.
[4]  Shah, P.M. The need for new therapeutic agents: What is in the pipeline? Clin. Microbiol. Infect. 2005, 11, 36-42.
[5]  Liu ZH, Nakano H. Antibacterial activity of herbs extracts against food-related bacteria. J Fac Appl Biol Sci Hiroshima Univ 1996, 35, 181-190.
Show More References
[6]  Silva, B.; Silva, T.; Franco, E.S.; Rabelo, S.; Lima, E.R.; Mota, R.; Câmara, C.G.D.; Pontes Filho, N.T.; Lima Filho, J.V. Antibacterial activity, Chemical composition and cytotoxicity of leave’s essential oil from Brazilian pepper tree (Schinus terebinthifolius, Raddi). Braz. J. Microbiol. 2010, 41, 158-163.
[7]  Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M., 2008. Biological effects of essential oils – a review. Food Chem. Toxicol. 46, 446-475.
[8]  Pichersky, E., Noel, J.P., Dudareva, N., 2006. Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311, 808-811.
[9]  Faleiro ML. The mode of antibacterial action of essential oils. In: Me´ndez-Vilas A, editor. Science against microbial pathogens: communicating current research and technological advances. Vol. 2. Badajoz, Spain: Edition Microbiology book series-2011, Formatex Research Center. 2011, p. 1143-56.
[10]  Wayne PA. Clinical and laboratory standards institutes: Performance standards for antimicrobial susceptibility testing. Twenty first informational supplement M100-S21. CLSI: 2011.
[11]  Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, et al. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem 2005, 91: 621-632.
[12]  Esimone CO, Adiukwu MU, Okonta JM. Preliminary Antimicrobial Screening of the Ethanolic Extract from the Lichen Usnea subfloridans (L). IJPRD 1998, 3: 99-102.
[13]  Collins CH, Lyne PM, Grange JM. Microbiological Methods. 6th Edn., Butter worths, London. 1989, p. 410.
[14]  Bradshaw LJ. Laboratory of microbiology, 4 baski, Saunders College Publishing, USA. 1992, p. 435.
[15]  Soboh F, Khoury AE, Zamboni AC, Davidson D, Mittelman MW. Effects of ciprofloxacin and protamine sulfate combinations against catheter-associated Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 1995, 39: 1281-86.
[16]  Kim JW, Huh JE, Kyung SH, Kyung KH. Antimicrobial activity of alk(en)yl sulfides found in essential oils of garlic and onion. Food Sci Biotechnol 2004, 13: 235-239.
[17]  Bouchra C, Achouri M, Idrissi Hassani LM, et al. Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botry tiscinerea Pers:Fr. J Ethnopharmacol 2003, 89: 165-169.
[18]  Baydar H, Sagdic O, Zkan G. et al. Antibacterial activity and composition of essential oils from Origanum, Thymbra and Saturejaspecies with commercial importance in Turkey. Food Control 2004, 15: 169-172.
[19]  Vági E, Simándi B, Suhajda Á, Héthelyi É. Essential oil composition and antimicrobial activity of Origanum majorana L. extracts obtained with ethyl alcohol and supercritical carbon dioxide. Food Res Int 2005, 38: 51-57.
[20]  Nostro A, Blanco AR, Cannatelli MA, Enea V, Flamini G, Morelli I, Roccaro AS, Alonzo V. Susceptibility of methicillin-resistant staphylococci to origanum essential oil, carvacrol and thymol. FEMS Microbiol Lett 2004, 230: 191-195.
[21]  Sivropoulou A, Papanicolau E, Nicolaou C, Kokkini S, Lanaras T, Arsenakis M. Antimicrobial and cytotoxic .activities of Origanum essential oils. J Agric Food Chem 1996, 44: 1202-5.
[22]  Dorman HJD. and Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 2000, 88: 308-316.
[23]  Force M, Sparks WS, Ronzio A. Inhibition of enteric parasites by emulsified oil of origanum in vivo. Phytother Res 2000, 14: 213-214.
[24]  Aligiannis N, Kalpoutzakis E, Mitaku S, Chinou BI. Composition and antimicrobial activity of the essential oils of two Origanum species. J Agric Food Chem 2001, 49: 4168-70.
[25]  Lambert RJW, Skandamis PN, Coote PJ, Nychas GJE. A study of the minimum inhibitory concentration and mode of action of origanum essential oil, thymol and carvacrol. J Appl Microbiol 2001, 91: 453-462.
[26]  Manohar V, Ingram C, Gray J, Talpur NA, Echard BW, Bagchi D, Preus G. Antifungal activities of origanum oil against Candida albicans. Mol Cell Biochem 2001, 228: 111-117.
[27]  Dam K, Sivropoulou A, Kokkini S, LanarasT, Arsenakis M.Antifungal activity of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia, and Salvia fruticosa essential oils against human pathogenic fungi. J Agric Food Chem 1998, 46:1739-45.
[28]  Sienkiewicz M. Wasiela M, Głowacka A. The antibacterial activity of origanum essential oil (Origanum heracleoticum L.) against clinical strains of Escherichia coli and Pseudomonas aeruginosa Med Dosw Mikrobiol 2012, 64(4): 297-307.
[29]  Bouhdid S, Abrinin J, Zhiri A, Espuny MJ, Munresa A. Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil. J Appl Microbiol 2009, 106: 1558-68.
[30]  Mann C and Staba E. The chemistry, pharmacology, and commercial formulations of chamomile. Herbs, spices and medicinal plants 1. 1986, 235-280.
[31]  Aggag ME and Yousef RT. Study of antimicrobial activity of chamomile oil. Planta Medica. 1972, 22:140-144.
[32]  Kedzia B. Antimicrobial Activity of Chamomile and Its Components. Herba Polonica 1991, 37: 29-38.
[33]  Lu T, Cantrell CL, Robbs SL, Franzblau SG, Fischer NH. Antimycobacterial matricaria esters and lactones from astereae species. Planta Medica 1998, 64: 665-667.
[34]  Derakhshan S, Sattari M, Bigdeli M. Effect of subinhibitory concentrations of cumin (Cuminum cyminum L.) seed essential oil and alcoholic extract on the morphology, capsule expression and Urease activity of Klebsiella pneumoniae. Int J Antimicrob Ag 2008, 32: 432-436.
[35]  Salman MT, Khan RA, Shukla I. Antimicrobial activity of Nigella sativa Linn. Seed oil against multi-drug resistant bacteria from clinical isolates. Natural Product Radiance 2008, 7(1): 10-14.
[36]  Masood N, Chaudhry A, Saeed S, Tariq P. Antibacterial effects of Origanum (Origanum Vulgare) against gram negative bacilli. Pak J Bot 2007, 39(2): 609-613.
[37]  Orhan IE, Ozcelik B, Kan Y, Kartal M. Inhibitory effects of various essential oils and individual components against extended-spectrum beta-lactamase produced by Klebsiella pneumoniae and their chemical compositions. J Food Sci 2011, 76: 538-546.
[38]  Opalchenova B and Obreshkova D. Comparative studies on the activity of basildan essential oil from Ocimum basilicum L.d against multidrug resistant clinical isolates of the genera Staphylococcus, Enterococcus and Pseudomonas by using different tests methods. J Microbiol Methods 2003, 54:105-110.
[39]  Azeredo GA, Stamford TLM, de Figueiredo RCBQ, de Souza EL. The cytotoxic effect of essential oils from Origanum vulgare L. and /or Rosmarinus officinalis L. on Aeromonas hydrophila. Foodborne Pathog Dis 2012, 9: 298-304.
[40]  La Storia A, Ercolini D, Marinello F, Di Pasqua R, Villani F, Mauriello G. Atomic force microscopy analysis shows surface structure changes in carvacrol- treated bacterial cells. Res Microbiol 2011, 162: 164-172.
[41]  Rhayour K, Bouchikhi T, Tantaoui-Elaraki A, Sendice K, Remmal A. The mechanism of bactericidal action of origanum and clove essential oils and of their phenolic major components on Escherichia coli and Bacillus subtilis. J Essent Oil Res 2003, 15: 356-562.
[42]  Perry CC, Weatherly M, Beale T, Randriamahefa A. Atomic force microscopy study of the antimicrobial activity of aqueous garlic versus ampicillin against Escherichia coli and Staphylococcus aureus. J Sci Food Agric 2009, 89: 958- 964.
[43]  Chanda S and Rakholiya K. Combination therapy: Synergism between natural plant extracts and antibiotics against infectious diseases. Microbiol Book Series 2011, 520-529.
[44]  Adwan G and Mhanna M. Synergistic effects of plant extracts and antibiotics on Staphylococcus aureus strains isolated from clinical specimens. Asian Pac J Trop Med 2009, 2: 46-51.
[45]  Si H, Hu J, Liu Z, Zeng ZL. Antibacterial effect of origanum essential oil alone and in combination with antibiotics against extended-spectrum beta-lactamase- producing Escherichia coli. FEMS Immunol Med Microbiol 2008, 53:190- 194.
[46]  Van Vuuren SF, Suliman S, Viljoen AM. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett Appl Microbiol 2009, 48: 440-446.
[47]  Rodrigues FF, Costa JG, Coutinho HD. Synergy effects of the antibiotics gentamicin and the essential oil of Croton zehntneri. Phytomedicine 2009, 16:1052-5.
[48]  Rosato A, Piarulli M, Corbo F, Muraglia M, Carone A, Vitali ME, et al. In vitro synergistic antibacterial action of certain combinations of gentamicin and essential oils. Curr Med Chem 2010, 17: 3289-95.
[49]  Coutinho H, Matias E, Santos K, Tintino SR, Souza C, Guedes G, et al. Enhancement of the Norfloxacin antibiotic activity by gaseous contact with the essential oil of Croton Zehntneri. J Young Pharm 2010, 2: 362-364.
[50]  D’Arrigo M, Ginestra G, Mandalari G, Furneri PM, Bisignano G. Synergism and postantibiotic effect of tobramycin and Melaleuca alternifolia (tea tree) oil against Staphylococcus aureus and Escherichia coli. Phytomedicine 2010, 17: 317-22.
Show Less References


The Future Challenges Facing Antimicrobial Therapy: Resistance and Persistence

1Department of Microbiology, Faculty of Pharmacy, Minia University, Minia Egypt

American Journal of Microbiological Research. 2016, 4(1), 1-15
doi: 10.12691/ajmr-4-1-1
Copyright © 2016 Science and Education Publishing

Cite this paper:
Dr. Rehab Mahmoud abd El-Baky. The Future Challenges Facing Antimicrobial Therapy: Resistance and Persistence. American Journal of Microbiological Research. 2016; 4(1):1-15. doi: 10.12691/ajmr-4-1-1.

Correspondence to: Dr.  Rehab Mahmoud abd El-Baky, Department of Microbiology, Faculty of Pharmacy, Minia University, Minia Egypt. Email:


The emergence of resistance to antimicrobial agents is a pressing concern for human health that increases the need for the development of novel antimicrobial drugs. Antimicrobial resistance means that microorganism keep on growing even in the presence of a drug due to specific defense mechanisms [e.g. efflux-pumps]. Many of infectious diseases are difficult to be treated with antimicrobials not due to resistance but persisters [non-multiplying cells]. Distinction is important as persistent cells need an entirely design of new antimicrobial agents. Non-multiplying cells, do not cause overt disease but prolong the duration of therapy, increasing the chance of the emergence of resistance [i.e. bacterial or fungal biofilms and latent tuberculosis] resulting in therapy failure. Persisters are phenotypic variants of the wild type that present in all microorganisms which are able to survive antimicrobial treatment without acquiring resistance-conferring genetic changes and upon re-growth they produce a population of sensitive cells and new persisters. Persistence may arise spontaneously regardless to the presence of drug or environmentally induced due to starvation, DNA damage, oxidative stress and quorum sensing. Many approaches targeting non-multipliers would shorten the duration of therapy and decrease the emergence of resistance. Some depends on studying the effectiveness of the existing therapeutics against non-multipliers [i.e. pyrazinamide and gatifloxacin] and others depend on the discovery of new compounds targeting microbial genes that might be essential to non-multipliers viability or specific enzymatic or metabolic pathway [i.e. TG44 targets outer membrane of Helicobacter pylori and TMC207 targets proton pump of the ATP synthetase in Mycobacterium tuberculosis]. Clinical trials and studies are needed to produce a marketed antimicrobial agent active against both multiplying and non multiplying organisms and to know whether the approach of targeting non-multiplying bacteria is clinically relevant and will produce compounds that reduce the rate of emergence of bacterial resistance.



[1]  Gootz, T.D. Discovery and development of new antimicrobial Agents. Clin. Microbiol. Rev. 3[1]. 13-31. 1990.
[2]  Guardabassi, L., Courvalin, P. Modes of antimicrobial action and mechanisms of bacterial resistance: antimicrobial resistance in bacteria of animal origin. P: 1-18. 2006 FM Aarestrup, ed, ASM Press, Washington DC, USA.
[3]  Braine, T. Bull. World Health Organ, 89. 88-89. 2011.
[4]  Bush, K. et al. Tackling antibiotic resistance. Nat. Rev. Microbiol. 9, 894-896. 2011.
[5]  Spellberg, B. et al. Combating antimicrobial resistance: Policy recommendations to save lives. Clin. Infect. Dis, 52 [Suppl. 5], S397-S428. 2011.
Show More References
[6]  Butler, M.S., Cooper, M.A. Antibiotics in the clinical pipeline in. J. Antibiot. [Tokyo]. 64[6]. 413-425. 2011.
[7]  Baquero, F., Blàazquez, J. Evolution of antibiotic resistance. Trends Ecol. Evol. 12[12]. 482-487. 1997.
[8]  Berger-Bächi, B. Resistance mechanisms of gram positive bacteria. Int. J. Med. Microbiol. 292. 27-35. 2002.
[9]  Lewis, K., Salyers, A., Taber, H., Wax, R. Bacterial Resistance to Antimicrobials: Mechanisms, Genetics, Medical Practice and Public Health, 2002, Marcel Dekker, New York.
[10]  Levy, S.B., Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nature Med. 10. S122-S129. 2004.
[11]  Hu, Y. et al. Detection of mRNA transcripts and active transcription in persistent Mycobacterium tuberculosis induced by exposure to rifampin or pyrazinamide. J. Bacteriol. 182. 6358-6365. 2000.
[12]  Barer, M.R. et al. Relationships between culturability, activity and virulence in pathogenic bacteria. J. Infect. Chemother. 6. 108-111. 2000.
[13]  Coates, A.R., Hu, Y. New strategies for antibacterial drug design: targeting non-multiplying latent bacteria. Drugs R. D. 7 133-151. 2006.
[14]  Coates, A. et al. The future challenges facing the development of new antimicrobial drugs. Nat. Rev. Drug Discov. 1. 895–910. 2002.
[15]  Kardas, P. et al. A systematic review and meta-analysis of misuse of antibiotic therapies in the community. Int. J. Antimicrob. Agents. 26. 106-113. 2005.
[16]  Hobby, G.L., Meyer, K., Chaffee, E. Observations on the mechanism of action of penicillin. Proc. Soc. Exp. Biol. Med. 50. 281-285. 1942.
[17]  Bigger, J.W. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244. 497-500. 1944.
[18]  Allison, K.R. et al. Heterogeneous bacterial persisters and engineering approaches to eliminate them. Curr. Opin. Microbiol. 14. 593-598. 2011.
[19]  Ranall, M.V. et al. Resolving biofilm infections: current therapy and drug discovery strategies. Curr. Drug Targets. 13[11]. 1375-1385. 2012.
[20]  Luidalepp, H., Jõers, A., Kaldalu, N., Tenson, T. Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. J. Bacteriol. 193. 3598-3605. 2011.
[21]  Jayaraman, R. Bacterial persistence: some new insights into an old phenomenon. J. Biosci. 33. 795-805. 2008.
[22]  Lewis, K.. Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol. 322. 107-131. 2008.
[23]  Schuster, C.F., Bertram, R.. Toxin-antitoxin systems are ubiquitousand versatile modulators of prokaryotic cell fate. FEMS Microbiol. Lett. 340. 73-85. 2013.
[24]  Van Melderen, L., Saavedra De Bast, M. Bacterial toxin-antitoxin systems: more than selfish entities? PLoS Genet. 5. e1000437. 2009.
[25]  Leplae, R., Geeraerts, D., Hallez, R., Guglielmini, J., Drèze, P., Van Melderen, L.. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res. 39. 5513-5525. 2011.
[26]  Masuda, H., Tan, Q., Awano, N., Wu, K-P., Inouye, M., Yee, U. enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA [YeeV] toxicity in Escherichia coli. Mol. Microbiol. 84. 979-989. 2012.
[27]  Wang, X., Lord, D.M., Cheng, H-Y., Osbourne, D.O., Hong, S.H., Sanchez-Torres, V., Quiroga, C., Zheng, K., Herrmann, T., Peti, W., Benedik, M.J., Page, R., Wood, T.K.. A new type V toxin-antitoxin system wheremRNAfor toxin GhoT is cleaved by antitoxin GhoS. Nat. Chem. Biol. 8. 855-861. 2012.
[28]  Moyed, H.S., Bertrand, K.P. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155.768-775. 1983.
[29]  Korch, S.B., Henderson, T.A., Hill, T.M. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by [p]ppGpp synthesis. Mol. Microbiol. 50. 1199-1213. 2003.
[30]  Ogura, T., Hiraga, S. Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc. Natl. Acad. Sci. U S A. 80. 4784-4788. 1983.
[31]  Makarova, K.S., Wolf, Y.I., Koonin, E.V. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol. Direct., 4. 19. 2009.
[32]  Falla, T.J., Chopra, I. Joint tolerance to beta-lactam and fluoroquinolone antibiotics in Escherichia coli results from overexpression of hipA. Antimicrob. Agents Chemother. 42. 3282-3284. 1998.
[33]  Keren, I., Shah, D., Spoering, A., Kaldalu, N., Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186. 8172-8180. 2004.
[34]  Korch, S.B., Hill, T.M. Ectopic overexpression of wild-type and mutant hipA genes in Escherichia coli: Effects on macromolecular synthesis and persister formation. J. Bacteriol. 188. 3826-3836. 2006.
[35]  Vazquez-Laslop, N., Lee, H., Neyfakh, A.A. Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. J. Bacteriol. 188. 3494-3497. 2006.
[36]  Dorr, T., Vulic, M., Lewis, K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 8, e1000317. 2010.
[37]  Ren, D., Bedzyk, L.A., Thomas, S.M., Ye, R.W., Wood, T.K.. Gene expression in Escherichia coli biofilms. Appl. Microbiol. Biotechnol. 64. 515-524. 2004.
[38]  González Barrios, A.F., Zuo, R., Hashimoto, Y., Yang, L., Bentley, W.E., Wood, T.K.. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator [MqsR, B3022]. J. Bacteriol. 188. 305-316. 2006.
[39]  Brown, B.L., Grigoriu, S., Kim, Y., Arruda, J.M., Davenport, A., Wood, T.K., Peti, W., Page, R.. Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathog. 5. e1000706. 2009.
[40]  Hong, S.H., Wang, X., O’Connor, H.F., Benedik, M.J., Wood, T.K. Bacterial persistence increases as environmental fitness decreases. Microb. Biotechnol. 5. 509-522. 2012.
[41]  Dalebroux, Z.D., Swanson, M.S. ppGpp: magic beyond RNA polymerase. Nat. Rev. Microbiol. 10. 203-212. 2012.
[42]  Korch, S.B., Henderson, T.A., Hill, T.M.. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by [p]ppGpp synthesis. Mol. Microbiol. 50. 1199-1213. 2003.
[43]  Kwan, B.W., Valenta, J.A., Benedik, M.J., Wood, T.K.. Arrested protein synthesis increases persister-like cell formation. Antimicrob. Agents Chemother. 57. 1468-1473. 2013.
[44]  Li, Y., Zhang, Y. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherchia coli. Antimicrob. Agents Chemother. 51. 2092-2099. 2007.
[45]  Wakamoto, Y,, Dhar, N., Chait, R., Schneider, K., Signorino-Gelo, F., Leibler, S., McKinney, J.D. Dynamic persistence of antibiotic-stressed mycobacteria. Science 339. 91-95. 2013.
[46]  Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L., Leibler, S. Bacterial persistence as a phenotypic switch. Science. 305. 1622-1625. 2004.
[47]  Nguyen, D., Joshi-Datar, A., Lepine, F., Bauerle, E., Olakanmi, O., Beer, K., McKay, G., Siehnel, R., Schafhauser, J., Wang, Y., Britigan, B.E., Singh, P.K. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334. 982-986. 2011.
[48]  Khakimova, M., Ahlgren, H.G., Harrison, J.J., English, A.M., Nguyen, D. The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance. J. Bacteriol. 195. 2011-2020. 2013.
[49]  Orman, M.A.., Brynildsen, M.P. Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob. Agents Chemother. 57. 3230-3239. 2013.
[50]  Vega, N.M., Allison, K.R., Khalil, A.S., Collins, J.J. Signaling-Mediated Bacterial Persister Formation. Nat. Chem. Biol. 8[5]. 431-433. 2012.
[51]  Dorr, T., Lewis, K., Vulic, M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet. 5.e1000760. 2009.
[52]  Möker, N., Dean, C.R., and Tao, J. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J. Bacteriol. 192. 1946-1955. 2010.
[53]  Wu, Y., VuliC. M., Keren, I., and Lewis, K. Role of oxidative stress in persister tolerance. Antimicrob. Agents Chemother. 56. 4922-4926. 2012.
[54]  Debbia, E.A., Roveta, S., Schito, A.M., Gualco, L., Marchese, A. Antibiotic persistence: the role of spontaneous DNA repair response. Microb. Drug Resist. 7. 335-342. 2001.
[55]  Murakami, K., Ono, T., Viducic, D., Kayama, S., Mori, M., Hirota, K., Nemoto, K., and Miyake, Y. Role for rpoS gene of Pseudomonas aeruginosa in antibiotic tolerance. FEMS Microbiol. Lett. 242. 161-167. 2005.
[56]  Poole, K. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol. 20. 227-234. 2012.
[57]  Cardoso, K., Gandra, R.F., Wisniewski, E.S., Osaku, C.A., Kadowaki, M.K., Felipach-Neto, V., Haus, L.F., and Sima˜o, Rde.C. DnaK and GroEL are induced in response to antibiotic and heat shock in Acinetobacter baumannii. J. Med. Microbiol. 59. 1061-1068. 2010.
[58]  Kayama, S., Murakami, K., Ono, T., Ushimaru, M., Yamamoto, A., Hirota, K., and Miyake, Y. The role of rpoS gene and quorum-sensing system in ofloxacin tolerance in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 298. 184-192. 2009.
[59]  Leung, V., Lévesque, C.M. A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. J Bacteriol.  194. 2265-74. 2012.
[60]  Betts, J.C., Lukey, P.T., Robb, L.C., McAdam, R.A., and Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43. 717-731. 2002.
[61]  Fung, D.K., Chan, E.W., Chin, M.L., and Chan, R.C. Delineation of a bacterial starvation stress response network which can mediate antibiotic tolerance development. Antimicrob. Agents Chemother. 54. 1082-1093. 2010.
[62]  Amato, S.M., Orman, M.A., and Brynildsen, M.P. Metabolic control of persister formation in Escherichia coli. Mol. Cell. 50. 475-487. 2013.
[63]  Mitchison, D.A. The diagnosis and therapy of tuberculosis during the past 100 years. Am. J. Respir. Crit. Care Med. 171. 699-706. 2005.
[64]  Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45. 999-1007. 2001.
[65]  Lee, J., Attila, C., Cirillo, S.L., Cirillo, J.D., Wood, T.K.. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb. Biotechnol. 2. 75-90. 2009.
[66]  Lee, J., Bansal, T., Jayaraman, A., Bentley, W.E., Wood, T.K. Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl. Environ. Microbiol. 73. 4100-4109. 2007.
[67]  Lee, J., Jayaraman, A., Wood, T.K.. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol. 7.42. 2007.
[68]  Bansal, T., Alaniz, R.C., Wood, T.K., Jayaraman, A.. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. U. S. A. 107. 228-233. 2010.
[69]  Eng, R.H., Padberg, F.T., Smith, S.M., Tan, E.N., and Cherubin, C.E. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob. Agents Chemother. 35. 1824-1828. 1991.
[70]  Aldridge, B.B., Fernandez-Suarez, M., Heller, D., Ambravaneswaran, V., Irimia, D., Toner, M., and Fortune, S.M. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science. 335. 100-104. 2012.
[71]  Shah, D., Zhang, Z., Kodursky, A., Kaldalu, N., Kurg, K. and Lewis, K. Persisters: a distinct physiological state of E. coli, BMC Microbiol. 6. e53. 2006.
[72]  Levin, B.R., and Rozen, D.E. Non-inherited antibiotic resistance. Nat. Rev. Microbiol.. 4. 556-562. 2006
[73]  Hirakawa, H., Inazumi, Y., Masaki, T., Hirata, T., and Yamaguchi, A. Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol. Microbiol. 55. 1113-1126. 2005.
[74]  Adams, K.N., Takaki, K., Connolly, L.E., Wiedenhoft, H., Winglee, K., Humbert, O., Edelstein, P.H., Cosma, C.L., and Ramakrishnan, L. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145. 39-53. 2011.
[75]  Allison, K.R., Brynildsen, M.P., and Collins, J.J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature. 473. 216-220. 2011.
[76]  Gusarov, I., Shatalin, K., Starodubtseva, M., Nudler, E. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325. 1380-1384. 2009.
[77]  Shatalin, K., Shatalina, E., Mironov, A., Nudler, E. H2S: A universal defense against antibiotics in bacteria. Science 334. 986-990. 2011
[78]  Baek, S.H., Li, A.H., and Sassetti, C.M. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol. 9. e1001065. 2011.
[79]  Dwyer, D.J., Kohanski, M.A., Hayete, B., Collins, J.J. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol Syst Biol 3. 91. 2007.
[80]  Foti, J.J., Devadoss, B., Winkler, J.A., Collins, J.J., and Walker, G.C. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science. 336. 315-319. 2012.
[81]  Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 13. 797-810. 2007.
[82]  Wang, X., Zhao, X. Contribution of oxidative damage to antimicrobial lethality. Antimicrob Agents Chemother 53, 1395-1402. 2009.
[83]  Keren, I., Wu, Y., Inocencio, J., Mulcahy, L.R., and Lewis, K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339. 1213–1216. 2013.
[84]  Liu, Y., and Imlay, J.A. Cell death from antibiotics without the involvement of reactive oxygen species. Science.339. 1210-1213. 2013.
[85]  Belenky, P., and Collins, J.J. Microbiology. Antioxidant strategies to tolerate antibiotics. Science 334. 915-916. 2011.
[86]  Van Acker, H., Sass, A., Bazzini, S., De Roy, K., Udine, C., Messiaen, T., Riccardi, G., Boon, N., Nelis, H.J., Mahenthiralingam, E., and Coenye, T. Biofilm-grown Burkholderia cepacia complex cells survive antibiotic treatment by avoiding production of reactive oxygen species. PLoS ONE 8. e58943. 2013.
[87]  Hoffman, L.R., D’Argenio, D.A., MacCoss, M.J., Zhang, Z., Jones, R.A., and Miller, S.I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436. 1171-1175. 2005.
[88]  He, H., Cooper, J.N., Mishra, A., and Raskin, D.M. Stringent response regulation of biofilm formation in Vibrio cholerae. J. Bacteriol. 194. 2962-2972. 2012.
[89]  Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., and Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35. 322-332. 2010.
[90]  Staley, J.T., Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39. 321-346. 1985.
[91]  Kaeberlein, T., Lewis, K., Epstein, S.S. Isolating ‘uncultivable’ microorganisms in pure culture in a simulated natural environment. Science. 296. 1127-1129. 2002.
[92]  Shleeva, M.O., Mukamolova, G.V., Telkov, M.V., Berezinskaia, T.L., Syroeshkin, A.V., Biketov, S.F., Kaprel'iants, A.S. Formation of nonculturable Mycobacterium tuberculosis and their regeneration Mikrobiologiia.  72[1]. 76-83. 2003.
[93]  Gavrish, E. et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol. 21. 509-518. 2014.
[94]  Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506. 58-62. 2014.
[95]  Ling, L.L., Schneider, T., Peoples, A. J., Spoering, A. L., Engels, I., Conlon, B. P., Mueller, A., Scha¨berle, T. F., Hughes, D. E., Epstein, S., Jones, M., Lazarides, L., Steadman, V. A., Cohen, D. R., Felix, C. R., Fetterman, K. A., Millett, W. P., Nitti, A. G., Zullo, A. M., Chen, C. & Lewis, K. A new antibiotic kills pathogens without detectable resistance. Nature. 517. 455-459. 2015.
[96]  Dunne, W. M. Bacterial adhesion: seen any good biofilm lately?. Clin. Microbiol. Rev. 15. 155-166. 2002.
[97]  Brown, M.R.W. The role of the envelope in resistance. In: Brown MRW, eds. Resistance of Pseudomonas aeruginosa, London: Wiley. 71-107. 1997.
[98]  Lafleur, M.D., Qi, Q., Lewis, K. Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother.. 54. 39-44. 2010
[99]  Costerton, J.W. et al. Bacterial biofilms: a common cause of persistent infections. Science. 284. 1318-1322. 1999.
[100]  McCune, R.M. Jr., McDermott, W., Tompsett, R. The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J Exp Med. 104. 763-802. 1956.
[101]  McCune, R.M. Jr., Tompsett, R. Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence of drug-susceptible tubercle bacilli in thetissues despite prolonged antimicrobial therapy. J Exp Med. 104.737-762. 1956.
[102]  Lee, H.H., Molla, M.N., Cantor, C.R., Collins, J.J. Bacterial charity work leads to population- wide resistance. Nature 467. 82-85. 2010.
[103]  Katneni, R., Hedayati, S.S. Central venous catheter-related bacteremia in chronic hemodialysis patients: epidemiology and evidence-based management. Nat. Clin. Pract. Nephrol. 3. 256-266. 2007.
[104]  Kauffman, C.A. et al. Attempts to eradicate methicillin-resistant Staphylococcus aureus from a long-term-care facility with the use of mupirocin ointment. Am. J. Med.. 94. 371-378. 1993
[105]  Zhao, J., Schloss, P.D., Kalikin, L.M., Carmody, L.A., Foster, B.K., Petrosino, J.F., Cavalcoli, J.D., VanDevanter, D.R., Murray, S.., Li, J.Z.., et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci U S A. 109. 5809-5814. 2012.
[106]  LaCrue, A.N., Scheel, M., Kennedy, K., Kumar, N., Kyle, D.E. Effects of artesunate on parasite recrudescence and dormancy in the rodent malaria model Plasmodium vinckei. PLoS One. 6. e26689. 2011.
[107]  Cohen, N. R., Lobritz, M. A. and Collins, J.J. Microbial persistence and the road to drug resistance Cell Host Microbe. 13. 632-642. 2013.
[108]  Gutierrez, A., Laureti, L., Crussard, S., Abida, H., Rodrı´guez-Rojas, A., Bla´ zquez, J., Baharoglu, Z., Mazel, D., Darfeuille, F., Vogel, J., and Matic, I. b-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat. Commun. 4. 1610. 2013.
[109]  Kohanski, M.A., DePristo, M.A., and Collins, J.J. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol. Cell 37. 311-320. 2010.
[110]  Nair, C.G., Chao, C., Ryall, B., and Williams, H.D. Sub-lethal concentrations of antibiotics increase mutation frequency in the cystic fibrosis pathogen Pseudomonas aeruginosa. Lett. Appl. Microbiol. 56. 149-154. 2013.
[111]  Gullberg, E., Cao, S., Berg, O.G., Ilba¨ck, C., Sandegren, L., Hughes, D., and Andersson, D.I. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 7. e1002158. 2011.
[112]  Zhang, Q., Lambert, G., Liao, D., Kim, H., Robin, K., Tung, C.K., Pourmand, N., and Austin, R.H. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333. 1764-1767. 2011.
[113]  Driffield, K., Miller, K., Bostock, J.M., O’Neill, A.J., and Chopra, I. Increased mutability of Pseudomonas aeruginosa in biofilms. J. Antimicrob. Chemother. 61. 1053-1056. 2008.
[114]  Ryder, V.J., Chopra, I., and O’Neill, A.J. Increased mutability of Staphylococci in biofilms as a consequence of oxidative stress. PLoS ONE 7. e47695. 2012.
[115]  Beaber, J.W., Hochhut, B., and Waldor, M.K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427. 72-74. 2004.
[116]  Zhang, X., McDaniel, A.D., Wolf, L.E., Keusch, G.T., Waldor, M.K., and Acheson, D.W.. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J. Infect. Dis. 181. 664-670. 2000.
[117]  Stecher, B., Denzler, R., Maier, L., Bernet, F., Sanders, M.J., Pickard, D.J., Barthel, M., Westendorf, A.M., Krogfelt, K.A., Walker, A.W., et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc. Natl. Acad. Sci. USA 109. 1269-1274. 2012.
[118]  Savage, V.J., Chopra, I., and O’Neill, A.J.. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob. Agents Chemother. 57. 1968-1970. 2013.
[119]  Perriens, J.H., St Louis, M.E., Mukadi, Y.B., Brown, C., Prignot, J., Pouthier, F., Portaels, F., Willame, J.C., Mandala, J.K., Kaboto, M., et al. Pulmonary tuberculosis in HIV-infected patients in Zaire. A controlled trial of treatment for either 6 or 12 months. N Engl J Med. 332. 779-784. 1995.
[120]  Dagan, R. et al. Evidence to support the rationale that bacterial eradication in respiratory tract infection is an important aim of antimicrobial therapy. J. Antimicrob. Chemother. 47. 129-140. 2001.
[121]  Ball, P. et al. Antibiotic therapy of community respiratory tract infections: strategies for optimal outcomes and minimized resistance emergence. J. Antimicrob. Chemother. 49. 31-40. 2002.
[122]  Hu, Y. et al. Sterilising action of pyrazinamide in models of dormant and rifampicin-tolerant Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 10. 317-322. 2006.
[123]  Zhang, Y. et al. Conditions that may affect the results of susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. J. Med. Microbiol. 51. 42-49. 2002.
[124]  Zhang, Y., Mitchison, D. The curious characteristics of pyrazinamide: a review. Int. J. Tuberc. Lung Dis. 7. 6-21. 2003.
[125]  Trampuz, A., Zimmerli, W. Antimicrobial agents in orthopaedic surgery: Prophylaxis and treatment. Drugs. 66[8]. 1089-1105. 2006.
[126]  Falagas, M.E., Bliziotis, I.A., Fragoulis, K.N. Oral rifampin for eradication of Staphylococcus aureus carriage from healthy and sick populations: a systematic review of the evidence from comparative trials. Am. J. Infect. Control. 35. 106-114. 2007.
[127]  Hu, Y., Coates, A.R., Mitchison, D.A. Sterilizing activities of fluoroquinolones against rifampin-tolerant populations of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 47. 653-657. 2003.
[128]  Osburne, M.S., Rothstein, D.M., Farquhar, R., Murphy, C.K. In vitro time-kill activities of rifalazil, alone and in combination with vancomycin, against logarithmic and stationary cultures of Staphylococcus aureus. J. Antibiot. [Tokyo]. 59. 80-85. 2006.
[129]  Kamoda, O. et al. In vitro activity of a novel antimicrobial agent, TG44, for treatment of Helicobacter pylori infection. Antimicrob. Agents Chemother. 50[9]. 3062-3069. 2006.
[130]  Hu, Y., Shamaei-Tousi, A., Liu, Y., Coates, A. A new approach for the discovery of antibiotics by targeting non-multiplying bacteria: a novel topical antibiotic for staphylococcal infections. PLoS One. 5. e11818. 2010.
[131]  Pethe, K. et al. A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nat. Commun. 1. 57. 2010.
[132]  Zang, R., Li, D., Tang, I., Wang, J., Yang, S. Cell-based assays in high-throughput screening for drug discovery. Int. J. Biotechnol. Wellness Ind. 1. 31-51. 2012.
[133]  Lewis, K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5. 48-56. 2007.
[134]  Kobayashi, A. et al. Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. J. Bacteriol. 188. 5693-5703. 2006.
[135]  Mascher, T. et al. The CiaRH system of Streptococcus pneumoniae prevents lysis during stress induced by treatment with cell wall inhibitors and by mutations in pbp2x involved in beta-lactam resistance. J. Bacteriol. 188. 1959-1968. 2006.
[136]  Koul, A. et al. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat. Chem. Biol. 3. 323-324. 2007.
[137]  Haagsma, A.C. et al. Probing the interaction of the diarylquinoline TMC207with its target mycobacterial ATP synthase. PLoS One. 6. e23575. 2011.
[138]  Diacon, A.H. et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med. 360. 2397-2405. 2009.
[139]  van Soolingen, D. et al. The antipsychotic thioridazine shows promising therapeutic activity in a mouse model of multidrug-resistant tuberculosis. PLoS One. 5. e12640. 2010.
[140]  Williams, K. et al. Sterilizing activities of novel combinations lacking first and second-line drugs in a murine model of tuberculosis. Antimicrob. Agents Chemother. 56. 3114-3120. 2012.
[141]  Katneni, R., Hedayati, S.S. Central venous catheter-related bacteremia in chronic hemodialysis patients: epidemiology and evidence-based management. Nat. Clin. Pract. Nephrol. 3. 256-266. 2007.
[142]  Mak, P.A. et al. A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chem. Biol. 7. 1190-1197. 2012.
[143]  Kim, J.S. et al. Selective killing of bacterial persisters by a single chemical compound without affecting normal antibiotic-sensitive cells. Antimicrob. Agents Chemother. 55. 5380-5383. 2011.
[144]  Wang, J. et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature. 441. 358-361. 2006.
[145]  Wright, H.T., Reynolds, K.A. Antibacterial targets in fatty acid biosynthesis. Curr. Opin. Microbiol. 10. 447-453. 2007.
[146]  Wang, J., Sintim, H.O. Dialkylamino-2,4-dihydroxybenzoic acids as easily synthesized analogues of platensimycin and platencin with comparable antibacterial properties. Chemistry. 17. 3352-3357. 2011.
[147]  Brinster, S. et al. Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens. Nature. 458. 83-86. 2009.
[148]  Yamamoto, Y. et al. The Group B Streptococcus NADH oxidase Nox-2 is involved in fatty acid biosynthesis during aerobic growth and contributes to virulence. Mol. Microbiol. 62. 772-785. 2006.
[149]  Allison, K.R. et al. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature. 473. 216-220. 2011.
[150]  Sayahi, H. et al. Pyrazinamide, but not pyrazinoic acid, is a competitive inhibitor of NADPH binding to Mycobacterium tuberculosis fatty acid synthase I. Bioorg. Med. Chem. Lett. 21. 4804-4807. 2011.
[151]  Ahiwale, S. et al. In vitro management of hospital Pseudomonas aeruginosa biofilm using indigenous T7like lytic phage. Curr. Microbiol. 62. 335-340. 2011.
[152]  Hughes, K.A., Sutherland, I.W., Jones, M.V. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology. 144. 3039-3047. 1998.
[153]  Pearl, S., Gabay, C., Kishony, R., Oppenheim, A., Balaban, N.Q. Nongenetic individuality in the host-phage interaction. PLoS Biol. 6[5]. e120. 2008.
[154]  Projan, S. Phage-inspired antibiotics? Nature Biotech. 22. 167-168. 2004.
[155]  Lu, T.K., and Collins, J.J.. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl. Acad. Sci. USA 106. 4629-4634. 2009.
[156]  Wexselblatt, E., Oppenheimer-Shaanan, Y., Kaspy, I., London, N., Schueler-Furman, O., Yavin, E., Glaser, G., Katzhendler, J., and Ben-Yehuda, S.. Relacin, a novel antibacterial agent targeting the Stringent Response. PLoS Pathog. 8. e1002925. 2012.
[157]  Wright, A., Hawkins, C.H., Anggard, E.E., Harper, D.R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa, a preliminary report of efficacy. Clin. Otolaryngol. 34. 349-357. 2009.
[158]  Fischetti, V.A., Nelson, D., Schuch, R. Reinventing phage therapy: are the parts greater than the sum? Nat. Biotechnol. 24. 1508-1511. 2006.
[159]  Entenza, J.M., Loeffler, J.M., Grandgirard, D., Fischetti, V.A., Moreillon, P. Therapeutic effects of bacteriophage Cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats. Antimicrob. Agents Chemother. 49. 4789-4792. 2005.
[160]  Murray, C.J. Social, economic and operational research on tuberculosis: recent studies and some priority questions. Bull. Int. Union Tuberc. Lung Dis. 66. 149-156. 1991.
[161]  Yew, W.W. Directly observed therapy, short-course: the best way to prevent multidrug-resistant tuberculosis. Chemotherapy. 45 [Suppl 2].26-33. 1999.
[162]  Guillemot, D., Carbon, C., Balkau, B., Geslin, P., Lecoeur, H., Vauzelle- Kervroedan, F. et al. Low dosage and long treatment duration of beta-lactam: risk factors for carriage of penicillin resistant Streptococcus pneumoniae. JAMA. 279[5]. 365-370. 1998.
[163]  Dagan, R., Klugman, K.P., Craig, W.A., Baquero, F. Evidence to support the rationale that bacterial eradication in respiratory tract infection is an important aim of antimicrobial therapy. J. Antimicrob. Chemother. 47. 129-140. 2001.
[164]  Hu, Y.M., Butcher, P.D., Sole, K., Mitchison, D.A., Coates, A.R. Protein synthesis is shutdown in dormant Mycobacterium tuberculosis and is reversed by oxygen or heat shock. FEMS. Microbiol. Lett. 158. 139-145. 1998.
[165]  Hu, Y., Coates, A.R. Transcription of two sigma 70 homologue genes, sigA and sigB, in stationary-phase Mycobacterium tuberculosis. J. Bacteriol. 181. 469-476. 1999.
[166]  Beenken, K.E., Dunman, P.M., McAleese, F., Macapagal, D., Murphy, E., Projan, S.J. et al. Global gene expression in Staphylococcus aureus biofilms. J. Bacteriol. 186, 4665-4684. 2004.
[167]  Johansen, J., Rasmussen, A.A., Overgaard, M., Valentin-Hansen, P. Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins. J. Mol. Biol. 364. 1-8. 2006.
[168]  Hu, Y., Coates, A.R., Mitchison, D.A. Sterilizing activities of fluoroquinolones against rifampin-tolerant populations of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 47. 653-657. 2003.
[169]  Fauvart, M., De Groote, V.N., Michiels, J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J. Med. Microbiol. 60. 699-709. 2011.
[170]  Aberg, V., and Almqvist, F. Pilicides-small molecules targeting bacterial virulence. Org. Biomol. Chem. 5. 1827-1834. 2007.
[171]  Cegelski, L., Pinkner, J.S., Hammer, N.D., Cusumano, C.K., Hung, C.S., Chorell, E., Aberg, V., Walker, J.N., Seed, P.C., Almqvist, F., et al. Small molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat. Chem. Biol. 5 913-919. 2009.
[172]  Boles, B.R., and Horswill, A.R. . Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 4. e1000052. 2008.
[173]  Lu, T.K., and Collins, J.J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 104. 11197-11202. 2007.
[174]  Ferna´ndez, L., and Hancock, R.E. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 25. 661-681. 2012.
[175]  Brynildsen, M.P., Winkler, J.A., Spina, C.S., MacDonald, I.C., and Collins, J.J. Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nat. Biotechnol. 31. 160-165. 2013.
[176]  Grant, S.S., Kaufmann, B.B., Chand, N.S., Haseley, N., and Hung, D.T. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc. Natl. Acad. Sci. USA 109.12147-12152. 2012.
[177]  Barczak, A.K., and Hung, D.T. Productive steps toward an antimicrobial targeting virulence. Curr. Opin. Microbiol. 12. 490-496. 2009.
[178]  NCCLS. Methods for determining bactericidal activity of antibacterial agents; approved guideline. NCCLS document M26 A. Villanova, PA: NCCLS, 1999.
[179]  Estes L. Review of pharmacokinetics and pharmacodynamics of antibacterial agents. Mayo Clin Proc. 73.1114-22. 1998.
[180]  Vogelman B, Craig WA. Kinetics of antibacterial activity. J Pediatr 108. 835-840. 1986.
[181]  Wang X, Kang Y, Luo C, Zhao T, Liu L, Jiang X, Fu R, An S, Chen J, Jiang N, Ren L, Wang Q, Baillie JK, Gao Z, Yu J. Heteroresistance at the single-cell level: adapting to antibiotic stress through a population-based strategy and growth-controlled interphenotypic coordination. mBio 5. 00942-13. 2014.
Show Less References