American Journal of Microbiological Research

ISSN (Print): 2328-4129

ISSN (Online): 2328-4137


Current Issue» Volume 3, Number 1 (2015)


Relationship between Temperature, Ph and Population of Selected Microbial Indicators during Anaerobic Digestion of Guinea Grass (Panicum Maximum)

1Department of Microbiology, Faculty of Biological Science, College of Natural and Applied Sciences, University of Port Harcourt, P.M.B. 5323 Port Harcourt, Nigeria

American Journal of Microbiological Research. 2015, 3(1), 14-24
DOI: 10.12691/ajmr-3-1-3
Copyright © 2015 Science and Education Publishing

Cite this paper:
Ogbonna. C. B., Berebon. D. P., Onwuegbu. E. K.. Relationship between Temperature, Ph and Population of Selected Microbial Indicators during Anaerobic Digestion of Guinea Grass (Panicum Maximum). American Journal of Microbiological Research. 2015; 3(1):14-24. doi: 10.12691/ajmr-3-1-3.

Correspondence to: Ogbonna.  C. B., Department of Microbiology, Faculty of Biological Science, College of Natural and Applied Sciences, University of Port Harcourt, P.M.B. 5323 Port Harcourt, Nigeria. Email:


In this study, the relationship between process temperature, process pH and population of selected microbial indicators during anaerobic digestion of guinea grass (Panicum maximum) at ambient condition was investigated. A one stage batch-type mesophilic anaerobic digestion system was configured using rumen fluid (RF) as inoculums (ADRF) and a low solid loading of approximately 7.0% total solid (TS). Physicochemical parameters such as process temperature (PTMRF), process pHRF and volatile fatty acid (VFARF) were monitored with time. Selected indicator microbial populations were monitored by standard cultural techniques based on metabolic capacity and oxygen sensitivity with respect to time. Result showed that average PTMRF increased from 27.5°C to 35.2°C, average process pHRF ranged from 6.5 to 7.9 and VFARF ranged from 1,080.00 mg/L to 4,800.33 mg/L with time. In terms of metabolic capacity and oxygen sensitivity, the populations of cellulolytic bacteria (CBRF), lactose and glucose fermenting (acidogenic) bacteria (LFBRF and GFBRF), propionate and ethanol oxidizing (acetogenic) bacteria (POBRF and EOBRF), acetate oxidizing methanogens (AOMRF), obligate anaerobic bacteria (OABRF) and total facultative bacteria (FAABRF) increased (about 10-fold) respectively with time. Correlation analysis showed positive relationships between the process temperature (PTMRF) and the population of selected microbial indicators with time. However, there were negative relationships between the process pHRF and the population of selected microbial indicators with time. Furthermore, there were positive relationships between the populations of selected microbial indicators with time. Rumen fluid significantly (P < 0.05) affected the dynamics of the process temperature (PTMRF) and process pHRF inside the ADRF system with time respectively. These kinds of relationships between biotic factors and between biotic and abiotic factors could be used to monitor the state of anaerobic digestion process with respect to time.



[1]  Agdag, O.N. and Sponza, D.T. (2004). Effect of aeration on the performance of a simulated landfilling reactor stabilizing municipal solid waste. Journal of Environmental Science and Health Part A-Toxic and Hazardous Substances and Environmental Engineering, 39: 2955-2972.
[2]  Agdag, O.N., Sponza, D.T. (2007). Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors. J. Hazard. Mat. 140: 75-85.
[3]  Allison and Leek (1993). Rumen microbiology and fermentation in "Dukes’ Physiology of Domestic Animals" by Swenson & Reece, ed. (1993). "," and others.
[4]  Aurora, S.P. (1983). Microbial Digestion in Ruminants. Indian Council of Agricultural Research, New Delhi.
[5]  Azeem, K., Muhammad, A., Muzammil, A., Tariq, M., and Lorna, D. (2011). The anaerobic digestion of solid organic waste. Waste Management, 31: 1737-1744.
Show More References
6]  Bouallagui, H., Rachdi, B., Gannoun, H., Hamdi, M. (2009b). Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable waste in anaerobic sequencing batch reactors. Biodegradation, 20: 401-409.
7]  Briski, F., Vukovic, M., Papa, K., Gomzi, Z., Domanovac, T. (2007). Modelling of compositing of food waste in a column reactor. Chem. Pap. 61: 24-29.
8]  Bryant, M.P. (1972). Commentary on Hungate technique for culture of anaerobic bacteria. American Journal of Clinical Nutritions, 25: 1324-1327.
9]  Buchauer, K. (1998). A Comparison of Two Simple Titration Procedures to Determine the Concentration of Volatile Fatty Acids in Influents of Waste Water and Sludge Treatment Procedures. Water SA, 24 (1): 49-56.
10]  Budiyono, Widiasa, Seno Johari, Sunaro, (2009). Increasing biogas production rate from cattle manure using rumen fluid as inoculums. International Journal of Basic and Applied Sciences, 10: 1.
11]  Chanakya, H.N., and Sreesha, M. (2012). Anaerobic digestion for bioenergy from Agro-Residues and other solid wastes-An over view of science, technology and sustainability. Journal of the Indian Institute of Science, 92: 1.
12]  Chanakya, H.N., Ramachandra, T.V., and Vijayachamundeeswari, M. (2007). Resource recovery potential from secondary components of segregated municipal solid wastes. Environ. Monitoring Assessment, 135: 119-127.
13]  Claudia, J.S.L., Marisol, V.M., Mariela, C.A., and Edgar, F.C.M (2009). Microbiological characterization and specific methanogenic activity of anaerobe sludge used in urban solid waste treatment. Waste Management, 29: 704-711.
14]  Dasonville, F. and Renault, P. (2002). Interactions between microbial processes and geochemical transformations under anaerobic conditions: a review. Agronomie, 22: 51-68.
15]  Dela-Rubia, M.A., Perez, M., Romero, L.I., Sales, D., (2002). Anaerobic mesophilic and thermophilic municipal sludge digestion. Chem. Biochem. Eng. Qual. 16: 119-124.
16]  Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K., and Yu, Z. (2009). Hydrogen production characteristics of organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int. J. Hydr. Energy, 34: 812-820.
17]  Drake, H. L., Gössner, A., and Daniel, S. (2008). Old acetogens, new light.Annual New York Academy of Sciences, 1125: 100-128.
18]  El-Mashad, H.M., Wilko, K.P., Loon, V., Zeeman, G. (2003). A model of solar energy utilisation in the anaerobic digestion of cattle manure. Biosyst. Eng. 84: 231-238.
19]  Fernandez, J., Perez, M., Romero, L.I. (2008). Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Bioresour. Technol. 99: 6075-6080.
20]  Fezzani, B. and Cheikh, R.B. (2010). Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Bioresour. Technol. 101: 1628-1634.
21]  Forster-Carneiro, T., Pérez, M., Romero, L.I., and Sales, D. (2007). Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: focusing on the inoculum sources. Bioresources and Technology, 98: 3195-3203.
22]  Gerardi, M. H. (2003). The microbiology of anaerobic digesters. In: Wastewater microbiology series, John Wiley & Sons Inc. New Jersey, USA.
23]  Guermoud, N., Ouagjnia, F., Avdelmalek, F., Taleb, F., and Addou, A. (2009). Municipal solid waste in Mostagnem city (Western Algeria). Waste Management, 29: 896-902.
24]  Hickey, R. F., Vanderwielen, J., and Switzenbaum, M.S. (1987). “The Effects of Organic Toxicants on Methane Production and Hydrogen Gas Levels during the Anaerobic Digestion of Waste Activated Sludge.” Water Research, 21 (11): 1417-1427.
25]  Huber, H., Thomm, M., Konig, H., Thies, G., Stetter, K.O. (1982). Methanococeus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch. Microbiol. 132: 47-50.
26]  Ike, M., Inoue, D., Miyano, T., Liu, T.T., Sei, K., Soda, S., and Kadoshin, S. (2010). Microbial population dynamics during startup of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project. Bioresource Technology, 101: 3952-3957.
27]  Kashyap, D.R., Dadhich, K.S., Sharma, S.K. (2003). Biomethanation under psychrophilic conditions: a review. Bioresour. Technol. 87: 147-153.
28]  Kim, J., Park, C., Kim, T.H., Lee, M., Kim, S., Kim, S.W., Lee, J. (2003). Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95: 271-275.
29]  Kim, J.K., Nhat, L., Chun, Y.N., and Kim, S.W. (2008). Hydrogen production condition from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785. Journal of Biotechnology and Bioprocess Engineering, 13: 499-504.
30]  Kim, J.K., Oh, B.R., Chun, Y.N., Kim, S.W. (2006). Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J. Biosci. Bioeng. 102: 328-332.
31]  Labat, M. and Garcia, J.L. (1986). Study on the development of methanogenic microflora during anaerobic digestion of sugar beet pulp. Journal of Applied Microbiology and Biotechnology, 25: 163-168.
32]  Labib, F., Ferguson, J.F., Benjamin, M.M., Merigh, M., and Ricker, N.L. (1992). “Anaerobic Butyrate Degradation in a Fluidized-Bed Reactor: Effects of Increased Concentrations of H2 and Acetate.” Environmental Science and Technology, 26 (2): 369-376.
33]  Lee, D.H., Behera, S.K., Kim, J., Park, H.S. (2009b). Methane production potential of leachate generated from Korean food waste recycling facilities: a lab scale study. Waste Manage.29: 876-882.
34]  Levén, L., Eriksson, A., and Schnürer, A. (2007). Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiology Ecology, 59: 683-693.
35]  Liu, C., Yuan, X., Zeng, G., Li, W., Li, J. (2008). Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresour. Technol. 99: 882-888.
36]  Liu, Y. and Whitman, W.B. (2008). Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annual New York Academy of Sciences, 1125: 171-189.
37]  Ljupka, A. (2010). Anaerobic digestion of food waste: Current status, problems and an alternative product. An M.S. Thesis: Submitted to the Department of Earth and Environmental Engineering, Columbia University.
38]  Lopes, W.S., Leite, V.D., and Prasad, S. (2004). Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste. Bioresources and Technology, 94: 261-266.
39]  Ogbonna, C. B., Ibiene, A. A. and Stanley, H. O. (2014). Microbial population dynamics during anaerobic digestion of guinea grass (Panicum maximum). Journal of Applied and Environmental Microbiology, 2 (6): 294-302.
40]  Parkin, G. F. and Owen, W.F. (1986). “Fundamentals of Anaerobic Digestion of Wastewater Sludges.” Journal of Environmental Engineering, 24 (8): 867-920.
41]  Preeti Rao, P., D. Shivaraj and G. Seenayya (1993). “Improvement of methanogenesis from cow dung and poultry litter waste digesters by addition of iron”. Indian Journal of Microbiology, 33: 185-189.
42]  Ramasamy, K., Nagamani, B., and Kalaichelvan, G. (1990). In 31st Annual Conference of AMI held at TNAU, Coimbatore, pp: 96.
43]  Riau, V., De la Rubia, M.A., Pérez, M. (2010). Temperature-phased anaerobic digestion (TPAD) to obtain class A biosolids: a semi-continuous study. Bioresour. Technol. 101: 2706-2712.
44]  Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation. Microbiological Molecular Biological Review, 61: 262-280.
45]  Schnurer, A. and Jarvis, A. (2010). Microbiological handbook for biogas plants. Swedish Gas Centre Report 207, pp: 13-138.
46]  Sousa, D. Z., Pereira, A.M., Stams, A.J.M., Alves, M.M., and Smith, H. (2007). Microbial communities involved in anaerobic degradation of unsaturated long-chain fatty acids. Applied and Environmental Microbiology, 73: 1054-1064.
47]  Susan, B.L. (1995). Cellulose degradation in anaerobic environments. Annual Reviews of Microbiology, 49: 399-426.
48]  Svahn, J. (2006). Energioptimering av biogasproduktion-hur primärenergibehov till biogasanläggning kan minskas med energiåtervinning och isolering. Report Energiteknik, Umeå University.
49]  Trzcinski, A.P., Stuckey, D.C. (2010). Treatment of municipal solid waste leachate using a submerged anaerobic membrane bioreactor at mesophilic and psychrophilic temperatures: analysis of recalcitrants in the permeate using GC-MS. Water Res. 44: 671-680.
50]  Uzodinma, E.O. and Ofoefule, A.U. (2009). Biogas production from blends of field grass (Panicum maximum) with some animal wastes. International Journal of Physical Sciences, 4 (2): 91-95.
51]  Ward, A.J., Hobbs, P.J., Holliman, P.J., Jones, D.L., 2008. Optimization of the anaerobic digestion of agricultural resources. Bioresour. Technol. 99: 7928-7940.
52]  Yang, S.T. and Okos, M.R. (1987). Kinetic study and mathematical modeling of methanogenesis of acetate using pure cultures of methanogens. Biotechnol. Bioeng. 30: 661-667.
53]  Yassar, H.F. (2011). Feasibility of compact, high-rate anaerobic digesters for biogas generation at small dairy farms. NYSERDA 9888, Report 11-02. Albany, NY
54]  Zhou, Z. H., Liu, F.H., and Wang, S.B. (2009). The structure of bacterial and archaeal community in a biogas digester as revealed by denaturation gradient gel electrophoresis and 16S rDNA sequencing analysis. Journal of Applied Microbiology, 106: 952-966.
55]  Zinder, S. H. (1984). Microbiology of anaerobic conversion of organic wastes to methane: recent developments. ASM News, 50: 294-298.
56]  Zinder, S.H. (1993). Physiological ecology of methanogenesis. In Methanogenesis: Ecology, Physiology, Biochemistry and Genetics (Ferry, J.G., ed.). New York, Chapman and Hall, pp: 128-206.
Show Less References


The Effect of the Petroleum Ether Extracts from Mangosteen Pericarp (Garcinia mangostana L.) on Interferon-gammaand, Interleukin-12 Activities in AlbinoWistar Rats (Rattus norvegicus) Infected with Mycobacterium tuberculosis

1Biology Study Programm, Faculty of Mathematic and Sciences, Pattimura University, Ambon, Indonesia

2Department of Internal Medicine, Faculty of Medicine, Hasanudin University, Makassar, Indonesia

3Department of Microbiology, Faculty of Medicine, Mulawarman University, Samarinda, Indonesia

4Molecular Biology and Immunology Laboratory for Infectious Diseases, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia

American Journal of Microbiological Research. 2015, 3(1), 8-13
DOI: 10.12691/ajmr-3-1-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Martha Kaihena, Syamsu, Yadi Yasir, Mochammad Hatta. The Effect of the Petroleum Ether Extracts from Mangosteen Pericarp (Garcinia mangostana L.) on Interferon-gammaand, Interleukin-12 Activities in AlbinoWistar Rats (Rattus norvegicus) Infected with Mycobacterium tuberculosis. American Journal of Microbiological Research. 2015; 3(1):8-13. doi: 10.12691/ajmr-3-1-2.

Correspondence to: Mochammad  Hatta, Molecular Biology and Immunology Laboratory for Infectious Diseases, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia. Email:


Background. Garcinia mangostana L(GML) pericarp extract is known to contain active substances called Xanthones (α, β and γ Mangosteens) which is the biggest derivative and has strong antioxidant effects. This substance also has antiinflammatory, antilipid, anticancer, antibacteria and antituberculosis effects. However, its mechanism is still unclear. Mycobacterium tuberculosis (M. tuberculosis) invasion into the lungs through the respiratory tract can cause severe infection. The body has an immune system which controls infection by eliminating germs to ease the burden of infection. Interferon gamma (IFN- γ) and Interleukin 12 (IL-12) acts as positive feedback in stimulating macrophages to kill M. tuberculosis. During this process, oxidative compounds (ROI,RNI,NO) that plays an important role in the phagolysosome fusion process are produced. Not only does the consumption of GML pericarp extract as an antioxidant becomes the immunomodulator to enhance the immune’s activities, it also functions as an antioxidant that can neutralize the oxidative compounds produced by the immune system. The aim of this study was to determine the effect of EPEBh GML on IFN-γ and IL-12 secretion activities in mice infected with M. tuberculosis. Materials and method. This study used 30 Wistar rats, 150-200g of weight and 8-10 weeks old. Rats were randomly divided into 6 groups each consisting of 5 rats, including the negative control (without infection and without EPEKBh GML intervention) and a positive control (rats were infected with M.tb H37Rv at a dose of 106cfuas much as 0.2 ml through the trachea for 6 weeks). Once infected, the rats were then intervened with EPEKBhGML 30, 60, 120 dose and 180 mg/kg bodyweigh/day for 1 month. Afterward the rats were necropsied and dissected for the blood to be taken directly from the heart. Levels of IFN-γ and IL-12 were analyzed using the ELISA method. Data were then analyzed using One-Way ANOVAtest followed by Post-Hoc test (LSD), a significant P <0.05, to assess the comparison between groups. Results. Results show that EPEKBh GML significantly affect the rise of IFN-γ levels, with a P value 0,000<0,05 and IL-12, with a P value of 0,045 <0,05. Conclusion. EPEKBh GML was effective in increasing the activity of IFN-γ and IL-12 and the most effective dose to increase IFN-γ and IL-12activity was 120 mg/kgbody weight/day. Also, increasing the dose to a higher dosage had no effect on IFN-γ and IL-12 activity, in fact it tended to decline.This results need to further study to understand what the reason.



[1]  WHO: Global Tuberculosis Report 2013. WHO Press 2013:
[2]  Zumla A, Raviglione M, Hafner R, von Reyn CF. Tuberculosis. N Engl J Med. 2013, 368:745-55.
[3]  Smith I. Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clinical Microbiology Reviews 2003, 16(3): 463-496.
[4]  Subagyo A., T.Y Aditama., Sutoyo D.K. dan L.G Partakusuma. Pemeriksaan Interferon-gamma Dalam Darahuntuk DeteksiInfeksi Tuberkulosis, JTI 3(2). 6-15.
[5]  Schluger NW,Ro WN. The Host Immune To Tuberculosis. AmJRespir; Crite Care Med 1998, Vol157. pp 79-691.
Show More References
6]  Gouzy A, Larrouy-Maumus G, Bottai D, Levillain F, Dumas A, et al. Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection. PLoSPathog. 2014, 10(2): e1003928.
7]  Lange C, Abubakar I, Alffenaar J-WC, et al. Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement. The European Respiratory Journal 2014; 44(1): 23-63.
8]  Gaude GS, Hattiholli J, Kumar P. Risk factors and drug-resistance patterns among pulmonary tuberculosis patients in northern Karnataka region, India. Nigerian Medical Journal: Journal of the Nigeria Medical Association 2014, 55(4):327-332.
9]  Mendez AP., RaviglioneMC.,Laszlo A., Binkin N., Rieder HL., Bustreo F., Cohn DL., Weezenbeek CSBI., Kim SJ., Chaulet P., Nun P., Global surveillance for antituberculosis-drug resistance. 1994-1997. NEJM 1998, 338: 1641-9.
10]  Indonesia Health Department,Guideline for Tuberculosis management. 8th Edition, Jakarta. Indonesia 2002.
11]  Muchtar,A. Farmakologi Obat Antituberkulosis (OAT) Sekunder.JTI 2006, 3(2): 24-25.
12]  WHO: Drug-Resistant Tb Surveillance & Response Supplement Global Tuberculosis Report 2014. WHO Press 2014:
13]  vanCrevel R, Ottenhoff THM, van der Meer JWM. Innate immunity to Mycobacterium tuberculosis. Clin. Microbiol. Rev. 2002, 15: 294-309.
14]  Arora A, Nadkarni B, Dev G, Chattopadhya D, Jain AK, Tuli SM, Kumar S.The use of immunomodulators as an adjunct to antituberculous chemotherapy in non-responsive patients with osteo-articular tuberculosis. J Bone Joint Surg Br. 2006 Feb, 88(2): 264-9.
15]  Jing J. Wang a,b, Qing H. Shi a,c, Wei Zhang a,b, Barbara J.S. Sanderson. Anti-skin cancer properties of phenolic-rich extract from the pericarpofmangosteen (Garciniamangostana Linn.). Food and Chemical Toxicology. 2012, 50:3004-3013.
16]  Wang JJ, Zhang W, Sanderson BJS. Altered mRNA Expression Related to the Apoptotic Effect of Three Xanthones on Human Melanoma SK-MEL-28 Cell Line. BioMed Research International 2013, 2013:715603.
17]  Jing J. Wang, Barbara J.S. Sanderson, Wei Zhang. Cytotoxic effect of xanthones from pericarp of the tropical fruit mangosteen (Garciniamangostana Linn.) on human melanoma cells.Food and Chemical Toxicology, Volume 49, Issue 9, September 2011, Pages 2385-2391
18]  Marcin Barański, Dominika Średnicka-Tober, Nikolaos Volakakis,, et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr. 2014; 112(5): 794-811.
19]  Chomnawang MT, Surassmo S, Nukoolkarn VS, Gritsanapan W. Effect of Garciniamangostanaon inflammation caused by Propionibacteriumacnes. Fitoterapia 2007, 78: 401-8.
20]  Supiyanty W, Wulansari ED, Kusmita L. Ujiaktivitasantioksidandanpenebtuankandunganantosianin total kulitbuahmanggis (Garciniamangostana L.) Sekolah Tinggi Ilmu Farmasi Yayasan Pharmasi Semarang. Majalah Obat Tradisional. 2010, 15 (2): 64-70.
21]  Suksamrarn S., Panseeta P., Kunchanawatta S., Distaporn I., Ruktasing S., Suksamrarn A. Ceanothane–and Lupane-Type Triterpenes with Antiplasmodial and Antimycobacterial Activities with Antiplasmodial and from Ziziphuscambodiana. Chem. Pharm. Bull. 2006, 54(4)535 – 537.
22]  Dahlan MS.Statistic for health and medicine (in Indonesia).SPSS : 5th edition. Jakarta:Salemba Medika, Indonesia 2012.
23]  The AVMA Guidelines for the Euthanasia of Animals: 2013 Edition:
24]  Peper A. Aspects of the Relationship Between Drug Dose and Drug Effect. Dose-Response 2009, 7(2): 172-192.
25]  A. Gurib-Fakim. Review: Medicinal plants: Traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine 2006, 1-93.
26]  Susanto M., Zulfian, B. Kurniawan, A. Tjiptaningrum, Effects of Garciniamangostana L. against AST and ALT activity in Rattusnovergicus induced by Isoniazid (in Indonesia). Medical Faculty Lampung University journal. 2013. 23: 378-381.
27]  Pasaribu F, P.Sitorus S.Bahri, Effects of Garcinia Mangostana L.extraction in decreasing level glucosa in blood (in Indonesia). Journal of Fakultas Farmasi USU. 2012. 12: 142-149.
28]  Darwich L, Coma G, Peña R, et al. Secretion of interferon-γ by human macrophages demonstrated at the single-cell level after costimulation with interleukin (IL)-12 plus IL-18. Immunology 2009, 126(3): 386-393.
29]  Michel Denis. Interferon-gamma-treated murine macrophages inhibit growth of tubercle bacilli via the generation of reactive nitrogen intermediates. Cellular Immunology, Volume 132, Issue 1, January 1991, Pages 150-157.
30]  Christian Bogdan, Martin Röllinghoff, Andreas Diefenbach. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Current Opinion in Immunology, Volume 12, Issue 1, 1 February 2000, Pages 64-76.
31]  Kubota K. Innate IFN-γ production by subsets of natural killer cells, natural killer T cells and γδ T cells in response to dying bacterial-infected macrophages. Scand J Immunol 2010, 71: 199-20910.
32]  Janis E. Wigginton and Denise Kirschner. A Model to Predict Cell-Mediated Immune Regulatory Mechanisms During Human Infection with Mycobacterium tuberculosis. J Immunol. 2001, 166: 1951-1967.
33]  Emily Gwyer Findlay and Tracy Hussell, “Macrophage-Mediated Inflammation and Disease: A Focus on the Lung,” Mediators of Inflammation 2012, Article ID 140937, 6 pages, 2012.
34]  Tostman A, Boeree MJ, Aarnouts RE, de Lange WC, Van der Ven AJAM, and Dekhuijen R.. Antituberculosis drug-induced hepatotoxicity: Concise up-to-date review. Journal of Gastroenterology and Hepatology 2007.
35]  Akiibinu MO., Ogunyemi EO, Arinola OG, AdenaikeAf, and Adegoke OD. Level of Oxidatif Metabolites Antioxidants and Neopterin in Nigerian Pulmonary Tuberculosis PatientsEur.J.Gen.Med. 2011, 5(4): 208-211.
36]  Venketaraman V, Dayaram YK, Talaue MT, dan Connell ND. 2005. Glutathione and Nitrosoglutathione in macrophage defense against M. tuberculosis. Infect Immunity.
37]  Guerra C, Johal K, Morris D, et al. Control of Mycobacterium tuberculosis growth by activated natural killer cells. Clinical and Experimental Immunology 2012, 168(1): 142-152.
Show Less References


Effect of Some Non steroidal Anti-Inflammatory Drugs on Growth, Adherence and Mature Biofilms of Candida spp.

1Undergraduate student, faculty of pharmacy, Minia university

2Undergraduate student, Faculty of science, Minia university

3Demonstrator, Department of Microbiology, Faculty of Pharmacy, Minia university

4A researcher, Department of Microbiology, Faculty of Pharmacy, Minia university

5Lecturer of Microbiology, Department of Microbiology, Faculty of Pharmacy, Minia university

American Journal of Microbiological Research. 2015, 3(1), 1-7
DOI: 10.12691/ajmr-3-1-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Ahmad Ashraf, Fatma Yousri, Nora Taha, Omar Abd El-Waly, Abd El-Kareem Ramadan, Esraa Ismail, Reham Hamada, Mohamed Khalaf, Mohamed Refaee, Sameh Ali, Abobakr Madyn, Rehab Mahmoud Abd El-Baky. Effect of Some Non steroidal Anti-Inflammatory Drugs on Growth, Adherence and Mature Biofilms of Candida spp.. American Journal of Microbiological Research. 2015; 3(1):1-7. doi: 10.12691/ajmr-3-1-1.

Correspondence to: Rehab  Mahmoud Abd El-Baky, Lecturer of Microbiology, Department of Microbiology, Faculty of Pharmacy, Minia university. Email:


Candida spp. are the most common cause of fungal diseases and the fourth commonest cause of nosocomial invasive infections which are considered in many cases as life threatening. Among Candida spp., C. albicans is the most common cause of many fungal diseases, but non-albicans spp. infections are in increase. Non-steroidal anti-inflammatory drugs have previously been shown to have antifungal activity. In this study we determine the antifungal activity of the tested NSAIDs using agar well diffusion method, their effect on the dimorphic transition of C. albicans by testing their ability to form germ tube in the presence of human serum. Determining the effect of NSAIDs on the adherence to plastic surfaces and on the mature biofilms formed by the tested Candida spp.. The results indicated that Sodium Diclofenac showed lower MIC against C. albicans and C. glabrata while Ibuprofen had lower MIC against C. krusei. upon examining the effect of Diclofenac sodium, Ibuprofen and ketoprofen on biofilm formed on polyurethane segments by Scanning electron microscope (SEM), a damage to membranes of the tested species was observed. Sodium Diclofenac showed the highest inhibitory effect on the adherence (51.1-76.9% at MIC and 56.6-83.3% at 2XMIC) of C. albicans and C. glabrata but Ibuprofen showed a higher inhibitory effect against the adherence of C. krusei. For mature biofilms, the highest disruptive effect on mature biofilms formed by all tested Candida Spp. (37.72-59.29% at MIC and 42.68-63.06% at 2XMIC) was observed by Diclofenac sodium. Sodium Diclofenac inhibited dimorphic transition of C. albicans but a decrease in germ tube formation was shown by others. In conclusion, the tested drugs showed antifungal, anti-adherent and anti-biofilm activity that make them useful in the treatment of fungal infection and the prevention of biofilm formation on the surface of medical devices.



[1]  Douglas JL, Cobbs CG. Prosthetic valve endocarditis. In: Kaye D, Ed. Infective endocarditis. 2d ed. New York: Raven Press 1992; 375-96.
[2]  Tunney MM, Patrick S, Curran MD, et al. Detection of prosthetic joint biofilm infection using immunological and molecular techniques. Methods Enzymol 1999; 310: 566-76.
[3]  Raad I, Costerton W, Sabharwal U, Sacilowski M, Anaissie E, Bodey GP. Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J Infect Dis 1993; 168 (2): 400-7.
[4]  Ramage G, Martínez JP, López-Ribot JL. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 2006; 6 (7): 979-86.
[5]  Seneviratne CJ, Jin L, Samaranayake LP. Biofilm lifestyle of Candida: a mini review. Oral Dis 2008, 14 (7): 582-90.
Show More References
6]  LaFleur M, Kumamoto CA and Lewis K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 2006, 50: 3839-46.
7]  Characklis W G, and Wilderer P A. Structure and function of biofilms. Wiley, Chichester, United Kingdom. 1989.
8]  Costerton, J. W., K. J. Cheng, G. G. Geesey, T. I. Ladd, J. C. Nickel, M. Dasgupta, and T. J. Marrie. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 1987, 41: 435-464.
9]  Dougherty S H. Pathobiology of infection in prosthetic devices. Rev. Infect. Dis. 1988, 10: 1102-1117.
10]  Elliott T S J. Intravascular device infections. J. Med. Microbiol. 1988, 27: 161-167.
11]  Goldmann D A, and Pier G B. Pathogenesis of infections related to intravascular catheterization. Clin. Microbiol. Rev. 1993, 6: 176-192.
12]  Gristina AG. Biomaterial centered infection: microbial adhesion versus tissue integration. Science 1987, 237: 1588-1595.
13]  Melo L F, Bott T R, Fletcher M, and Capdeville B. Biofilms-science and technology. Kluwer Academic Publishers, Dordrecht, The Netherlands 1992.
14]  Brown M R W, and Gilbert P. Sensitivity of biofilms to antimicrobial agents. J Appl Bacteriol Symp 1993, 74:87S-97S.
15]  Cox G M, and Perfect J R. Fungal infections. Curr Opin Infect Dis 1993, 6: 422-426.
16]  Wey S B, Mori M, and Pfaller M A. Hospital-acquired candidemia. The attributable mortality and excess length of stay. Arch Intern Med 1988, 148: 2642-2645.
17]  Maki D G. Pathogenesis, prevention and management of infections due to intravascular devices used for infusion therapy, 1989, 161-177. In A. L. Bisno and F. A. Waldvogel (ed.), Infections associated with indwelling medical devices. American Society for Microbiology, Washington, D.C.
18]  Odds FC. Candida and candidosis, 2nd ed. Bailliere Tindall, London. 1988
19]  Alem MA, Douglas LJ. Effects of aspirin and other nonsteroidal anti-inflammatory drugs on biofilms and planktonic cells of Candida albicans. Antimicrob Agents Chemother 2004, 48: 41-7.
20]  Dannhardt G, Kiefer W. Cyclooxygenase inhibitors-current status and future prospects. Eur J Med Chem 2001, 36: 109-26.
21]  Alem MA, Douglas LJ. Prostaglandin production during growth of Candida albicans biofilms. J Med Microbiol 2005, 54: 1001-5.
22]  Erb-Downward JR, Noverr MC. Characterization of prostaglandin E2 production by Candida albicans. Infect Immun 2007, 75: 3498-505.
23]  Pina-Vaz C, Rodrigues AG, Costa-de-Oliveira S, Ricardo E and Ma°rdh P. Potent synergic effect between ibuprofen and azoles on Candida resulting from blockade of efflux pumps as determined by FUN-1 staining and flow cytometry. J Antimicrob Chemother 2005 56: 678-685.
24]  Benson HC. Microbiological Application: Laboratory Manual in General Microbiology, 11th ed., McGram-Hill Higher Education, Sanfrancisco, 2002, pp.168.
25]  Christensen GD, Simpson WA, Younger J A, Baddour L M, Barrett F F, Melton D M, et al. Adherence of coagulase negative Staphylococci to plastic tissue cultures: a quantitative model for the adherence of Staphylococci to medical devices. J Clin Microbiol 1985, 22: 996-1006.
26]  O'Toole AG and Kolter R. Initiation of biofilm formation in Pseudomonas fluorescence WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Molecular microbiology 1998, 28: 449.
27]  Bennet JV, Brodie JL, Benner JL, Kirby WMM. “Simplified accurate method for antibiotic assay of clinical specimens. Applied Microbiology 1966, 14: 2170-2177.
28]  Negero Gemeda, Kelbessa Urga, Ashenif Tadele, Hirut Lemma, Daniel Melaku, Kissi Mudie. “Antimicrobial Activity of Topical Formulation Containing Eugenia caryophyllata L. (Krunfud) and Myritus communis L. (Ades) Essential Oils on Selected Skin Disease Causing Microorganisms.” Ethiop. J. Health Sci. 2008, 18(3): 101-107.
29]  Esimone C O, Adiukwu M U, Okonta J M, “Preliminary Antimicrobial Screening of the Ethanolic Extract from the Lichen Usnea subfloridans L,”. IJPRD 1998, 3: 99-102.
30]  Liu H, Kohler J, Fink GR. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science (New York, NY) 1994, 266: 1723-6.
31]  Xiaogang L, Zhun Y and Jianping X. Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology 2003, 149: 353-362.
32]  Soboh F, Khoury AE, Zamboni AC, Davidson D, Mittelman MW. Effects of ciprofloxacin and protamine sulfate combinations against catheter-associated Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother 1995, 39: 1281-1286.
33]  Jacqueline M, Achkar, Bettina C. Candidal Infections of the Genitourinary tract. Clin. Microbiol. Rev. 2010, 23(2):253-72.
34]  Mohandas V, Ballal M. Distribution of Candida Species in Different Clinical Samples and Their Virulence: Biofilm Formation, Proteinase and Phospholipase Production: A Study on Hospitalized Patients in Southern India. J. Glob. Infect. Dis. 2011, 3 (1): 4-8.
35]  Seneviratne CJ, Jin L, Samaranayeke LP. Biofilm lifestyle of Candida: A mini review. Oral. Dis. 2008, 14: 582-590.
36]  Aparna MS, Yadav S. Biofilms: Microbes and Disease. The Braz J. Infect. Dis. 2008, 12: 526-530.
37]  Cederlund H, Màrdh P-A. Antibacterial activities of N-acetylcysteine and some non steroidal anti-inflammatory druga. J. Antimicrob chemother 1993 32: 903-904.
38]  Sanyal AK, Roy D, Chowdhury B, Banerjee AB. Ibuprofen, a unique anti-inflammatory compound with antifungal a activity against dermatophytes. Lett Appl Microbial 1993, 109-111.
39]  Scott E M, Tariq VN, McCrory R M. Demonsteration of synergy with fluconazole and either ibuprofen, sodium salicylate or propylparaben against C. albicans in-vitro. Antimicrob. Agents Chemother 1995, 39: 2610-2614.
40]  Alem MA, Douglas LJ. Effects of aspirin and other nonsteroidal anti-inflammatory drugs on biofilms and planktonic cells of Candida albicans. Antimicrob Agents Chemother 2004, 48:41-7.
41]  Ghalehnoo Z R, Rashki A, Najimi M, Dominguez A. The role of Sodium Diclofenacin the dimorphic transition in Candida albicans Microbial Pathogenesis 2010, 48: 110-115
42]  Bink, A, Kucharíková S, Neirinck B, Vleugels J, Dijck P V, Cammue B P. A. and Thevissen K. The Non-steroidal Anti-inflammatory Drug Diclofenac Potentiates the In Vivo Activity of Caspofungin Against Candida albicans Biofilms JID 2012:206.
43]  Alem MA, Douglas LJ. Prostaglandin production during growth of Candida albicans biofilms. J Med Microbiol 2005, 54:1001-5.
44]  Pina-Vaz C, Sansonetty F, Rodrigues A et al. Antifungal activity of ibuprofen alone and in combination with fluconazole against Candida species. J Med Microbiol 2000, 49: 831-40.
45]  Chowdhury B, Mukhopadhyay S. Ketoprofen, a non-steroidal, anti-inflammatory drug, has antimicrobial activity against dermatophytes Medical Science Research. 1997, 25: 109-110.
46]   Samaranayake Y H, Samaranayake LP. Candida krusei: biology, epidemiology, Pathogenicity and clinical manifestations of an emerging pathogen. J. Med. Microbiol. 1994, 41. 295-310.
47]  Abdelmegeed E and Shaaban M I, Cyclooxygenase inhibitors reduce biofilm formation and yeast-hypha conversion of fluconazole resistant Candida albicans. J microbiol 2013, 51: 598-604.
Show Less References