American Journal of Microbiological Research

Current Issue» Volume 2, Number 6 (2014)

Article

Bioinformatic Analysis of Surface Proteins of Streptococcus pneumoniae Serotype 19F for Identification of Vaccine Candidates

1Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran


American Journal of Microbiological Research. 2014, 2(6), 174-177
DOI: 10.12691/ajmr-2-6-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Shirin Tarahomjoo. Bioinformatic Analysis of Surface Proteins of Streptococcus pneumoniae Serotype 19F for Identification of Vaccine Candidates. American Journal of Microbiological Research. 2014; 2(6):174-177. doi: 10.12691/ajmr-2-6-2.

Correspondence to: Shirin  Tarahomjoo, Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran. Email: starahomjoo@hotmail.com

Abstract

Streptococcus pneumoniae serotype 19F is one of major pneumococcal serotypes responsible for pneumococcal invasive disease in children less than 5 years worldwide. Pneumococcal conjugate vaccines (PCVs) were developed through chemical coupling of capsular polysaccharides of pneumococci to immunogenic carrier proteins and World Health Organization recommends the inclusion of these vaccines in national immunization programs for children. However, costly manufacture of PCVs can prevent their implementation in developing countries. This issue can be addressed by construction of protein based vaccines against pneumococci. Cell surface proteins are key factors in infectious processes of pathogens and are attractive as vaccine candidates. LPxTG motif containing proteins, lipoproteins, and choline binding proteins are among main groups of pneumococcal surface proteins. In this study, therefore, we aim to identify suitable candidates among these proteins for development of proteinaceous vaccines against S. pneumoniae serotype 19F infection using bioinformatic tools. These proteins were then identified in proteome data of S. pneumoniae 19F-14 through BLAST with LPxTG, lipobox consensus motifs, and the choline binding protein consensus sequence. PRED-LIPO online tool was used to confirm the presence of lipoprotein specific signal peptide. The cellular location of the proteins was analyzed with PSORTb v.3.0. Vaxijen v.2.0 was used to evaluate the protein antigenicity. BLAST against human proteome was done to remove the possibility for autoimmunity induction by the proteins. Moreover, the presence of homolog proteins in other pneumococcal serotype 19F strains including S. pneumoniae A026, S. pneumoniae G54, and S. pneumoniae ST556 were investigated. Our analysis revealed that cell wall surface anchor family protein ( YP_002741626.1), D-alanyl-D-alanyl-carboxy peptidase, surface protein PspC, and choline binding protein D are promising candidates for development of protein based vaccines against S. pneumoniae serotype 19F infection.

Keywords

References

[[[[[[[[[
[1]  Mook-Kanamori, B. B., Geldhoff, M., van der Poll, T. and van de Beek, D, “Pathogenesis and pathophysiology of pneumococcal meningitis,” Clin Microbiol Rev, 24 (3), 557-591, Jul. 2011.
 
[2]  WHO, “Pneumococcal vaccines, WHO position paper,” Wkly Epidemiol Rec, 87 (14), 129-144, Apr. 2012.
 
[3]  Johnson, H. L., Deloria-Knoll, M., Levin, R. S. et al, “Systematic evaluation of serotypes causing invasive pneumococcal disease among children under five: the pneumococcal global serotype project,” PLoS Med, 7 (10), e1000348, Oct. 2010.
 
[4]  Foster, T. J., Geoghegan J. A., Ganesh, V. K. and Hook, M, “Adhesion, invasion and evasion: the many functions of surface proteins of Staphylococcus aureus,” Nature Rev Microbiol, 12 (1), 49-62, Dec. 2014.
 
[5]  Bergmann, S. and Hammerschmidt, S, “Versatility of pneumococcal surface proteins,” Microbiol, 152 (2), 295-303, Feb. 2006.
 
Show More References
[6]  Leenhouts, K., Buist, G. and Kok, J, “Anchoring of proteins to lactic acid bacteria,” Antonie van Leeuwen, 76 (1-4), 367-376, Jul.-Nov. 1999.
 
[7]  Venema, R., Tjalsma, H., van Dijl, J. M. et al, “Active lipoprotein precursors in the gram positive eubacterium Lactococcus lactis,” J Biol Chem, 278 (17), 14739-14746, Apr. 2003.
 
[8]  Tjalsma, H., Kontinent, V. P., Pragai, Z. et al, “The role of lipoprotein processing by signal peptidase II in the gram-positive eubacterium Bacillus subtilis,” J Biol Chem, 274 (3), 1698-1707, Jan. 1998.
 
[9]  Davis, M. N. and Flower, D. R, “Harnessing bioinformatics to discover new vaccines,” Drug Discov Today, 12 (9-10), 389-395, May 2007.
 
[10]  Kelly, D. F. and Rappuoli, R, Hot topics in infection and immunity in children II, Springer, New York, 2005, 217-223.
 
[11]  Blank, M., Krause, I., Fridkin, M. et al, “Bacterial induction of autoantibodies to β2-glycoprotein-I accounts for the infectious etiology of antiphospholipid syndrome,” J Clin Investig, 109 (6), 797-804, March 2002.
 
[12]  Scheffers, D-J. and Pinho, M. G, “Bacterial cell wall synthesis: new insights from localization studies,” Microb Mol Biol Rev, 69 (4), 585-607, Dec. 2005.
 
[13]  Ogunniyi, A. D., Woodrow, M. C., Poolman, J. T., Paton, J.C, “Protection against Streptococcus pneumoniae elicited by immunization with pneumolysin and CbpA,” Infect Immun, 69 (10), 5997-6003, Oct. 2001.
 
[14]  Kausmally, L., Johnsborg, O., Lunde, M., Knutsen, E. and Havarstein, L. S, “Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence induced cell lysis,” J Bacteriol, 187 (13), 4338-4345, July 2005.
 
Show Less References

Article

An Application of Polymerase Chain Reaction in Detection of Ammonia Oxidizing Bacteria

1Industrial Waste Water Research Laboratory, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar, Gujarat, India


American Journal of Microbiological Research. 2014, 2(6), 166-173
DOI: 10.12691/ajmr-2-6-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
M P. Shah. An Application of Polymerase Chain Reaction in Detection of Ammonia Oxidizing Bacteria. American Journal of Microbiological Research. 2014; 2(6):166-173. doi: 10.12691/ajmr-2-6-1.

Correspondence to: M  P. Shah, Industrial Waste Water Research Laboratory, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar, Gujarat, India. Email: shahmp@uniphos.com

Abstract

The PCR was used as the basis for the development of a sensitive and specific assay for the detection of ammonium-oxidizing bacteria belonging to the beta-subclass of the class Proteobacteria. PCR primers were selected on the basis of nucleic acid sequence data available for seven species of nitrifiers in this subclass. The specificity of the ammonium oxidizer primers was evaluated by testing known strains of nitrifiers, several serotyped environmental nitrifier isolates, and other members of the Proteobacteria, including four very closely related, nonnitrifying species (as determined by rRNA sequence analysis). DNA extracts from 19 different samples collected from effluent treatment plant were assayed for the presence of ammonium oxidizers. By using a two-stage amplification procedure, ammonium oxidizers were detected in samples collected from both sites. Chemical data collected simultaneously support the occurrence of nitrification and the presence of nitrifiers. This report describes PCR primers specific for ammonium-oxidizing bacteria and the successful amplification of nitrifier genes coding for rRNA from DNA extracts from different samples. This application of PCR is of particular importance for the detection and study of microbes, such as autotrophic nitrifiers, which are difficult or impossible to isolate from indigenous microbial communities.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[1]  Rennenberg H, Dannenmann M, Gessler A, Kreuzwiesser J, Simon J, Papen H. 2009. Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biology, 11, 4-23.
 
[2]  Shen J P, Zhang L M, Di H J, He J Z. 2012. A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Frontiers in Microbiology, doi: 10.3389/fmicb. 00296, 1-7.
 
[3]  Miao Y X, Bobby A S, Zhang F S. 2011. Long-term experiments for sustainable nutrient management in China. A review of Agronomy Sustain, 31, 397-414.
 
[4]  Chanasyk D S, Whitson I R, Mapfumo E, Burke J M, Prepas E E. 2003. The impacts of forest harvest and wildfire on soils and hydrology in temperate forests: a baseline to develop hypotheses for the Boreal Plain. Journal of Environmental Engineering and Science, 2, 51-62.
 
[5]  Grigal D F. 2000. Effects of extensive forest management on soil productivity. Forest Ecology and Management, 138, 167-185.
 
Show More References
[6]  Prosser J I.1989. Autotrophic nitrification in bacteria. Advances in Microbial Physiology, 30, 125-181.
 
[7]  Wrage N, Velthof G L, van Beusichem M L, Oenema O. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 33, 1723-1732.
 
[8]  Kowalchuk GA, Stephen JR. 2001. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Review of Microbiology, 55,485-529.
 
[9]  Shen X Y, Zhang L M, Shen J P, Li L H, Yuan C L, He J Z. 2011. Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semi-arid temperate grassland. Journal of Soil Sediment, 11, 1243-1252.
 
[10]  Kowalchuk G A, Stephen J R, De Boer W, Prosser J I, Embley T M, Woldendorp J W. 1997. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR- amplified 16S ribosomal DNA fragments. Applied and Environmental Microbiology, 63, 1489-1497.
 
[11]  Bäckman J S K, Klemedtsson A K, Klemedtsson L, Lindgren P. 2004. Clear-cutting affects the ammonia-oxidizing community differently in limed and non-limed coniferous forest soils. Biology and Fertility of Soils, 40, 260-267.
 
[12]  Hastings R C, Ceccherini M T, Miclaus N, Saunders J R, Bazzicalupo M, McCarthy A J. 1997. Direct molecular biological analysis of ammonia oxidizing bacteria populations in cultivated soil plots treated with swine manure. FEMS Microbiology Ecology, 23, 45-54.
 
[13]  Mintie A T, Heichen R S, Cromack K, Myrold D D, Bottomley P J. 2003. Ammonia-oxidizing bacteria along meadow-to-forest transects in the Oregon cascade mountains. Applied and Environmental Microbiology, 69, 3129-3136.
 
[14]  Avrahami S, Conrad R. 2005. Cold-temperature climate: a factor for selection of ammonia oxidizers in upland soil? Canadian Journal of Microbiology, 51, 709-714.
 
[15]  Backman J S K, Hermansson A, Tebbe C C. Liming induces growth of a diverse flora of ammonia-oxidizing bacteria in acid spruce forest soil as determined by SSCP and DGGE. Soil Biology and Biochemistry, 2003, 35, 1337-1347.
 
[16]  Yeager C M, Northup D E, Grow C C, Barns S M, Kuske C R. 2005. Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire. Applied and Environmental Microbiology, 71, 2713-2722.
 
[17]  Boyle-Yarwood S A, Bottomley P J, Myrold D D. 2008. Community composition of ammonia-oxidizing bacteria and archaea in soils under stands of red alder and Douglas fir in Oregon. Environmental Microbiology, 10, 2956-2965.
 
[18]  Nugroho R A, Röling W F M, Laverman A M, Zoomer H R, Verhoef H A. 2005. Presence of Nitrosospira cluster 2 bacteria corresponds to N transformation rates in nine acid Scots pine forest soils. FEMS Microbiology Ecology, 53, 473-481.
 
[19]  Tong D, Xu R. 2012. Effects of urea and (NH4)2SO4 on nitrification and acidification of Ultisols from southern China. Journal of Environmental Science (in China), 24, 682-689.
 
[20]  dos Santos A C F, Marques E L S, Gross E, Souza S S, Dias J C T, Brendel M, Rezende R P. 2012. Detection by denaturing gradient gel electrophoresis of ammonia-oxidizing bacteria in microcosms of crude oil-contaminated mangrove sediments. Genetics and Molecular Research, 11, 190-201.
 
[21]  Muyzer G, De Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695-700.
 
[22]  Nicolaisen M H, Ramsing N B. 2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. Journal of Microbiological Methods, 50, 189-203.
 
[23]  Giovannoni, S. J., T. B. Britschgi, C. L. Moyer, and K. G. Field. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature (London) 345: 60-62.
 
[24]  Schmidt, T. M., E. F. DeLong, and N. R. Pace. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173: 4371-4378.
 
[25]  Stahl, D. A., D. J. Lane, G. J. Olsen, and N. R. Pace. 1985. Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences. Appl. Environ. Microbiol. 49: 1379-1384.
 
[26]  Ward, D. M., R. Weller, and M. M. Bateson. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature (London) 345: 63-65.
 
[27]  Wegmu¨ller, B., J. Lu¨thy, and U. Candrian. 1993. Direct polymerase chain reaction detection of Campylobacter jejuni and Campylobacter coli in raw milk and dairy products. Appl. Environ. Microbiol. 59: 2161-2165.
 
[28]  Amann, R., N. Springer, W. Ludwig, H.-D. Go¨rtz, and K.-H. Schleifer. 1991. Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature (London) 351: 161-164.
 
[29]  Distel, D. L., E. F. DeLong, and J. B. Waterbury. 1991. Phylogenetic characterization and in situ localization of the bacterial symbiont of shipworms (Teredinidae: Bivalvia) by using 16S rRNA sequence analysis and oligodeoxynucleotide probe hybridization. Appl. Environ. Microbiol. 57: 2376-2382.
 
[30]  Head, I. M., W. D. Hiorns, T. Martin, A. J. McCarthy, and J. R. Saunders. 1993. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J. Gen. Microbiol. 139: 1147-1153.
 
[31]  Teske, A., E. Alm, J. M. Regan, S. Toze, B. E. Rittmann, and D. A. Stahl. 1994. Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J. Bacteriol. 176: 6623-6630.
 
[32]  Woese, C. R., W. G. Weisburg, C. M. Hahn, B. J. Paster, L. B. Zablen, B. J. Lewis, T. J. Macke, W. Ludwig, and E. Stackebrandt. 1985. The phylogeny of the purple bacteria: the gamma subdivision. Syst. Appl. Microbiol. 6: 25-33.
 
[33]  Woese, C. R., W. G. Weisburg, B. J. Paster, C. M. Hahn, R. S. Tanner, N. R. Krieg, H.-P. Koops, H. Harms, and E. Stackebrandt. 1984. The phylogeny of the purple bacteria: the beta subdivision. Syst. Appl. Microbiol. 5: 327-336.
 
[34]  Ward, B. B., and M. J. Perry. 1980. Immunofluorescent assay for the marine ammonium-oxidizing bacterium Nitrosococcus oceanus. Appl. Environ. Microbiol. 39: 913-918.
 
[35]  Soriano, S., and N. Walker. 1968. Isolation of ammonia oxidizing autotrophic bacteria. J. Appl. Bacteriol. 31: 493-497.
 
[36]  Carlucci, A. F., and J. D. H. Strickland. 1968. The isolation, purification and some kinetic studies of marine nitrifying bacteria. J. Exp. Mar. Biol. Ecol. 2: 156-166.
 
[37]  Carlucci, A. F., and D. Pramer. 1957. Factors influencing the plate method for determining abundance of bacteria in sea water. Proc. Soc. Exp. Biol. Med. 96: 392-394.
 
[38]  Ward, B. B., and A. F. Carlucci. 1985. Marine ammonia- and nitrite-oxidizing bacteria: serological diversity determined by immunofluorescence in culture and in the environment. Appl. Environ. Microbiol. 50: 194-201.
 
[39]  Liesack, W., H. Weyland, and E. Stackebrandt. 1991. Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixedculture of strict barophilic bacteria. Microb. Ecol. 21: 191-198.
 
[40]  Don, R. H., P. T. Cox, B. J. Wainwright, K. Baker, and J. S. Mattick. 1991. ‘‘Touchdown’’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19: 4008.
 
[41]  Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 1989. Current protocols in molecular biology. Green Publishing Associates and Wiley-Interscience, New York.
 
[42]  Jinks-Robertson, S., R. L. Gourse, and M. Nomura. 1983. Expression of rRNA and tRNA genes in Escherichia coli: evidence for feedback regulation by products of rRNA operons. Cell 33: 865-876.
 
[43]  Ward, B. B. 1987. Nitrogen transformations in the Southern California Bight. Deep-Sea Res. 34: 785-805.
 
[44]  Ward, B. B., and K. A. Kilpatrick. 1993. Methane oxidation associated with mid-depth methane maxima in the Southern California Bight. Cont. Shelf Res. 13: 1111-1122.
 
[45]  Horrigan, S. G., A. F. Carlucci, and P. M. Williams. 1981. Light inhibition of nitrification in sea surface films. J. Mar. Res. 39: 557-565.
 
[46]  Seal, S. E., L. A. Jackson, and M. J. Daniels. 1992. Isolation of a Pseudomonas solanacearum-specific DNA probe by subtraction hybridization and construction of species-specific oligonucleotide primers for sensitive detection by the polymerase chain reaction. Appl. Environ. Microbiol. 58: 3751-3758.
 
[47]  Sykes, P. J., S. H. Neoh, M. J. Brisco, E. Highes, J. Condon, and A. A. Morley. 1992. Quantitation of targets for PCR by use of limiting dilution. BioTechniques 13: 444-449.
 
[48]  Steffan, R. J., and R. M. Atlas. 1988. DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl. Environ. Microbiol. 54: 2185–2191.
 
[49]  Steffan, R. J., J. Goksoyr, A. K. Bej, and R. M. Atlas. 1988. Recovery of DNA from soils and sediments. Appl. Environ. Microbiol. 54: 2908-2915.
 
[50]  Tsai, Y. L., and B. H. Olson. 1992. Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Appl. Environ. Microbiol. 58: 754-757.
 
[51]  Abbaszadegan, M., M. S. Huber, C. P. Gerba, and I. L. Pepper. 1993. Detection of enteroviruses in groundwater with the polymerase chain reaction. Appl. Environ. Microbiol. 59: 1318-1324.
 
[52]  Kopecka, H., S. Dubrou, J. Prevot, J. Marechal, and J. M. Lo´pez-Pila. 1993. Detection of naturally occurring enteroviruses in waters by reverse transcription, polymerase chain reaction, and hybridization. Appl. Environ. Microbiol. 59: 1213-1219.
 
Show Less References