American Journal of Microbiological Research

ISSN (Print): 2328-4129

ISSN (Online): 2328-4137


Current Issue» Volume 3, Number 2 (2015)


Prevalence and Resistance Profile of Acinetobacter baumannii Clinical Isolates from a Private Hospital in Khartoum, Sudan

1Department of Medical Microbiology Laboratory at RCIH

2Professor of Microbiology, Head of Microbiology Department at Royal Care International Hospital (RCIH) Khartoum, Sudan

3Department of Medical Microbiology Laboratory at Royal Care International Hospital (RCIH), Khartoum, Sudan

American Journal of Microbiological Research. 2015, 3(2), 76-79
DOI: 10.12691/ajmr-3-2-6
Copyright © 2015 Science and Education Publishing

Cite this paper:
Muntasir I. Omer, Samia A. Gumaa, Abdullatif A. Hassan, Khaled H. Idris, Osama A. Ali, Mustafa M. Osman, Mahmmoud S. Saleh, Nagla A. Mohamed, Mustafa M. Khaled. Prevalence and Resistance Profile of Acinetobacter baumannii Clinical Isolates from a Private Hospital in Khartoum, Sudan. American Journal of Microbiological Research. 2015; 3(2):76-79. doi: 10.12691/ajmr-3-2-6.

Correspondence to: Muntasir  I. Omer, Department of Medical Microbiology Laboratory at RCIH. Email:


Introduction: Acinetobacter baumannii is an important cause of nosocomial infections worldwide. It is difficult to control, and the infections caused by it are difficult to treat, because it is multidrug resistant. Objectives: This retrospective study was conducted to determine the prevalence and antibiotic resistance pattern of A. baumannii at Royal Care International Hospital, Khartoum, Sudan over a 37 month period. Methodology: Antimicrobial susceptibility testing of the isolates was performed by the disk diffusion method as recommended by Clinical Laboratory and Standards Institute CLSI [1]. Result: Non duplicate 275 A. baumannii were isolated out of a total 2899 pathogenic Gram negative isolates (9.5% prevalence). The most frequently isolated A. baumannii was from ICU patients (72%) followed by inpatients (24%) and outpatients (4%). The greatest number of isolates were recovered from sputum (61%) followed by wound (19%). The Resistance rates were higher than most of the internationally reported levels. Cephalosporins, aminoglycoside, aztreonam, fluoroquinolones and carbapenems are becoming practically ineffective, where the colistin elicited the highest susceptibility levels. Conclusion: This report shows for the first time (to our knowledge) the prevalence and resistance profile of A. baumannii in Sudan. The prevalence will help to conduct better infection control policy, and an update the local antibiogram will improve the knowledge of antimicrobial resistance patterns in our region.



[1]  Wayne, PA: Clinical and Laboratory Standards Institute; 2011. CLSI. Performance standards for antimicrobial susceptibility testing. 20th Informational Supplement. CLSI document M100-S21. Schreckenberger PC, Daneshvar MI, Weyant RS, Hollis DG. Acinetobacter, Achromobacter, Chryseobacterium, Moraxella, and other nonfermentative gram-negative rods. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH, editors. Manual of Clinical Microbiology. Washington, DC: ASM Press, 2007; 8: 770-779.
[2]  Fournier, P. E., D. Vallenet, V. Barbe, S. Audic, H. Ogata, L. Poirelet al., Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLOS Genet. 2006; 10: 2-7.
[3]  Eveillard M, Soltner C, Kempf M, Saint-Andre J P, Lemarie C, Randrianarivelo C. et al,.The virulence variability of different Acinetobacter baumannii strains in experimental pneumonia. J Infect. 2010; 60 (2): 154-61.
[4]  Howard A, O'Donoghue M, Feeney A, Sleator RD. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence, 2012; 1: 3 (3): 243-50.
[5]  Kraniotaki E, Manganelli R, Platsouka E, Grossato A, Paniara O, Palù G. Molecular investigation of an outbreak of multidrug-resistant Acinetobacter baumannii, with char-acterisation of class 1 integrons. Int J Antimicrob Agents. 2006; 28: 193-9.
Show More References
6]  Song JY, Kee SY, Hwang IS, Seo YB, Jeong HW, Kim WJ. et al., In vitro activities of carbapenem/sulbactam combination, colistin, colistin/rifampicin combination and tigecycline against carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother. 2007; 60 (2): 317-22.
7]  Rello J. Acinetobacter baumannii infections in the ICU: customization is the key. Chest1999; 115: 1226-1229.
8]  Rice, LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008; 197 (8): 1079-81.
9]  Drummond, Katie. Pentagon to Troop-Killing Superbugs: Resistance Is Futile. Condé Nast. Retrieved 8 April 2013.
10]  Manchanda V, Sanchaita S, and Singh NP. Multidrug Resistant Acinetobacter. J Glob Infect Dis.: 2010; 2 (3): 291-304.
11]  Cisneros JM, Rodriguez-Bano J. Nosocomial bacteremia due to Acinetobacter baumannii: epidemiology, clinical features and treatment. Clin. Microbiol. Infect: 2002; 8: 687-69.
12]  Shakibaie MR, Adeli S, Salehi MH. Antibiotic resistance patterns and extended-spectrum β-lactamase production among Acinetobacter spp. isolated from an intensive care Unit of a hospital in Kerman, Iran. Antimicrob Resist Infect Control: 2012; 1: 1-8.
13]  Patwardhan RB, Dhakephalkar PK, Niphadkar KB, Chopade BA.A study on nosocomial pathogens in ICU with special reference to multiresistant Acinetobacter baumannii harboring multiple plasmids. Indian J Med Res: 2008; 128: 178-187.
14]  AbdAllah S et al., Nosocomial infections and their risk factors at Mubarak Al-Kabeer hospital, Kuwait. Medical Journal of Cairo University, 2009, 78: 123-131.
15]  Al Johani SM1, Akhter J, Balkhy H, El-Saed A, Younan M, Memish Z. Prevalence of antimicrobial resistance among gram-negative isolates in an adult intensive care unit at a tertiary care center in Saudi Arabia. Ann Saudi Med.: 2010; 30: 364-369.
16]  Forbes BA, Sahm DF, Weissfeld AS. Bloodstream infections. In: Wilson L, editor. Bailey and Scott's Diagnostic Microbiology, 12 th ed. St Louis: The Mosby Company; 2007; 778-97.
17]  Jaggi, Namita; Sissodia, Pushpa; Sharma, Lalit, Acinetobacter baumannii isolates in a tertiary care hospital: J Microbiol Infect Dis: 2012; 2 (2) p 57.
18]  H. Siau, KY Yuen, SSY Wong. The epidemiology of Acinetobacter infections in Hongkong, J Med Microbiol 1996; 44: 340-347.
19]  Endo S., Yano H., Hirakata Y., Arai K., Kanamori H., Ogawa M.,et al. Molecular epidemiology of carbapenem-non-susceptible Acinetobacter baumannii in Japan. J. Antimicrob. Chemother: 2012; 67 (7): 1623-1626.
20]  Villers D, Espaze E, Coste-Burel M, Giauffret F, Ninin E, Nicolas F. et al,. Nosocomial Acinetobacter baumannii infections: Microbiological and clinical epidemiology. Ann Intern Med 1998; 129: 182-189.
21]  Dijkshoorn, L, Nemec, A, Seifert, H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol.: 2007; 12: 939-51.
22]  Seifert H, Dolzani L, Bressan R, Van Der RT, van Strijen B, Stefanik D, Heersma H, et al,. Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii. J ClinMicrobiol 2005; 43 (43) 28-35.
23]  Wilks M, Wilson A, Warwick S, Price E, Kennedy D, Ely A, et al,. Control of an outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus colonization and infection in an intensive care unit (ICU) without closing the ICU or placing patients in isolation. Inf Control HospEpidemiol, 2006; 27: 654-8.
24]  Munoz-Price LS, Weinstein RA. Current concept: Acinetobacter Infection. N EnglJ Med 2008; 358: 1271-81.
25]  Glow RH.,Moellering RC, Kunz LJ. Infections with Acinetobacter calcoaceticus (Herelleavaginicola): Medicine (Baltimore): 1977; 56: 79-97.
26]  Evans BA, Hamoud, A, Towner S.A, Khan S.A, Amyes S.G. High prevalence of unrelated multidrug-resistant Acinetobacter baumannii isolates in Pakistani military hospitals. Int J Antimicrob Agents: 2011; 37: 580-581.
27]  Dent L, Dana R M, Siddharth P. Multi-drug resistant Acinetobacter baumannii: a descriptive study in a city hospital. BMC Infectious Diseases: 2010; 10: 196-204.
28]  Rit K, Saha R. Multidrug-resistant Acinetobacter infection and their susceptibility patterns in a tertiary care hospital. Niger Med J.: 2012; 53: 126-8.
29]  Marchaim D, Chopra T, Pogue JM, Perez F, Hujer AM, Rudin S, et al,. Outbreak of colistin-resistant, carbapenem-resistant Klebsiella pneumoniae in metropolitan Detroit, Michigan. Antimicrob. Agents Chemother: 2011; 55 (2): 593-599.
30]  Mammina C, Bonura C, Di Bernardo F, Aleo A, Fasciana T, Sodano al,. Ongoing spread of colistin-resistant Klebsiella pneumoniae in different wards of an acute general hospital, Italy, Euro Surveill: 2011; 17 (33): 20-48.
31]  Lesho E, Yoon EJ, McGann P, Snesrud E, Kwak Y, Milillo M, et al. Emergence of colistin-resistance in extremely drug-resistant Acinetobacter baumannii containing a novel pmrCAB operon during colistin therapy of wound infections. J. Infect. Dis.: 2013; 208 (7): 1142-1151.
32]  Lean SS, Suhaili Z, Ismail S, Rahman NI, Othman N, Abdullah FH, et al,. Prevalence and Genetic Characterization of Carbapenem-and Polymyxin-Resistant Acinetobacter baumannii Isolated from a Tertiary Hospital in Terengganu, Malaysia. ISRN Microbiology Vol 2014 (2014), Article ID 953417, 9.
Show Less References


Isolation and Screening of Indigenous Bambara Groundnut (Vigna Subterranea) Nodulating Bacteria for their Tolerance to Some Environmental Stresses

1Department of Plant Biology, Faculty of Science, University of Douala, Douala, Cameroon

2Laboratory of Soil Microbiology, Biotechnology Centre, University of Yaounde I, Yaounde, Cameroon

3Department of Biological Sciences, University of Ngaoundere, Ngaoundere, Cameroon

4Department of Microbiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon

American Journal of Microbiological Research. 2015, 3(2), 65-75
DOI: 10.12691/ajmr-3-2-5
Copyright © 2015 Science and Education Publishing

Cite this paper:
Ngo Nkot Laurette, Ngo Bisseck Maxémilienne, Fankem Henri, Adamou Souleymanou, Kamguia Kamdem, Ngakou Albert, Nwaga Dieudonné, Etoa François-Xavier. Isolation and Screening of Indigenous Bambara Groundnut (Vigna Subterranea) Nodulating Bacteria for their Tolerance to Some Environmental Stresses. American Journal of Microbiological Research. 2015; 3(2):65-75. doi: 10.12691/ajmr-3-2-5.

Correspondence to: Ngo  Nkot Laurette, Department of Plant Biology, Faculty of Science, University of Douala, Douala, Cameroon. Email:


Environmental stresses are important limiting factors for crops production. The aim of this experiment is to isolate Legume Nodulating Bacteria (LNB) obtained from root nodules of bambara groundnut (Vigna subterranea L.) plants and evaluate their performance under some environmental constraints. Samples were collected in Cameroon from three location sites of the Humid-forest zone: Logbessou in the Littoral region; Mfoua in the South and Boga in the Centre region. Nodulation of bambara groundnut was examined in plastic bags and root nodules were collected from seedling. After their isolation, the bacteria were confirmed as LNB by re-nodulating Macroptilium atropurpureum. The morphological, cultural and phenotypic characteristics (utilization of carbon, tolerance to salt, pH, aluminium) of isolates were determined. The results obtained were analyzed statistically by ANOVA using the software SPSS analysis version 11.5. Duncan test was used to measure the difference among the means at a level of p<0.05. A collection of 18 isolates was obtained on Yeast Extract Mannitol Agar medium. Authentication experiments, confirmed that the majority of the isolates (66.67%) were LNB due to their ability to infect the host plant. Bambara groundnut isolates are different morphologically. Dendrogram of the phenotypic characteristics showed that, below the boundary level of 50% average similarity, isolates fell into at least three distinct groups. All isolates showed fast-growing capacity. Most isolates (66.67%) were able to grow in a medium with pH as low as and Al concentration of 50 µM (58.33 %). Some isolates (50%) showed weak growth capacity at 4% NaCl. The bambara groundnut isolates tested were able to use a broad range of carbohydrates as sole source of carbon. The isolates from the present study may be useful to increase the symbiotic nitrogen fixation in legume.



[1]  Adeparusi EO (2001). Effect of processing on some minerals, anti-nutrients and nutritional composition of African yam bean. J. Sustain. Environ. 3:101-108.
[2]  Allen ON, Allen EK (1981). The Leguminosae. A Source Book of Characteristics, Uses and Nodulation, The University of Wisconsin Press, 812 p.
[3]  Anderson, JM, Ingram JS (1993). Tropical soil biology and fertility: a hand book of methods. 2nd ed. C.A.B. International Wallingford, U.K. 171 p.
[4]  Appunu C, Reddy LML, Reddy CVCM, Sen D, Dhar B (2009). Symbiotic diversity among acid-tolerant bradyrhizobial isolates with cowpea. J. A. S. 4 (3): 126-131.
[5]  Arias A, Martı´nez-Drets G (1976). Glycerol metabolism in Rhizobium. Can. J. Microbiol. 22 (2): 150-153.
Show More References
6]  Athar M, Johnson AD (1996) Nodulation, biomass production and nitrogen in alfalfa under drought. J. Plant Nutr. 19: 185-199.
7]  Azam-Ali SN, Sesay A, Karikari SK, Massawe FJ, Aguilar-Manjarrez J, Brennan M, Hampson KJ (2001). Assessing the potential of an underutilised crop-a case study using bambara groundnut. Exp. Agric. 37: 433-472.
8]  Bado BV (2002). Rôle des légumineuses sur la fertilité des sols ferrugineux tropicaux des zones guinéennes et soudaniennes du Burkina Faso. PhD thesis, Université Laval, Laval, Canada.
9]  Bala A, Murphy PJ, Osunde AO, Giller KE (2003). Nodulation of tree legumes and the ecology of their native rhizobial populations in tropical soils. Appl. Soil Ecol. 22:211-223.
10]  Bamshaiye OM, Adegbol, JA, Bamishaiye EI (2011). Bambara groundnut: an Under-Utilized Nut in Africa. Advances in Agricultural Biotechnology 1: 60-72.
11]  BaoLing H, ChengQun L, Bo W, LiQin F (2007). A rhizobia strain isolated from root nodule of gymnosperm Podocarpus macrophyllus. Science in China Series C-Life Science 50: 1-6.
12]  Bargaz A, Faghire M, Farissi M, Drevon JJ, Ghoulam C (2013). Oxidative stress in the root nodules of Phaseolus vulgaris L. is induced under conditions of phosphorus deficiency. Acta Physiol. Plant. 35: 1633-1644.
13]  Belane AK, Dakora FD (2009). Measurement of N2 fixation in 30 cowpea (Vigna unguiculata L. Walp.) genotypes under field conditions in Ghana using 15N natural abundance technique. Symbiosis 48: 47-57.
14]  Buendia-Claveria AM, Rodriguez-Navaro DN, Santamaria-Linaza C, Ruiz-Sainz JE, Temprano-Vera F (1994). Evaluation of the symbiotic properties of Rhizobium fredii in European soils. Syst. Appl. Microbiol. 17: 155-160.
15]  Cheriet D, Ouartsi A, Chekireb D, Babaarbi S (2014). Phenotypic and symbiotic characterization of rhizobia isolated from Medicago ciliaris L. growing in Zerizer from Algeria. Afr. J. Microbiol. Res. 8 (17): 1763-1778.
16]  Ciani M, Diriye FU (1995). Presence of rhizobia in soils of Somalia. Worl J. Microbiol. Biotechnol. 11:615-617.
17]  Costa, FM, Schiavo JA, Brasi MS, Leite J, Xavier GR, Fernandes-Jr PI (2014). Phenotypic and molecular fingerprinting of fast growing rhizobia of field-grown pigeonpea from the eastern edge of the Brazilian Pantanal. Genet. Mol. Res. 13 (1): 469-482.
18]  Dakora FD, Muofhe LM (1997). Nitrogen fixation and nitrogen nutrition in symbiotic bambara groundnut (Vigna subterranean (L.)Verdc.) and Kerting’s bean (Macrotyloma geocarpum (Harms) Marech et Baud.). In Heller J, Begemann F, Mushonga J (Eds.) Bambara Groundnut Vigna Subterranea (L.) Verdc: Proceedings of the Workshop on Conservation and Improvement of Bambara Groundnut (Vigna Subterranea (L.) at Harare, Zimbabwe. Bioversity International, pp 72-77.
19]  Dogbe W, Fening JO, Kumaga FWK, Danso SKA (2002). Maximizing the benefits of using mucuna on farmers’mixed farming. Trop. Sci. 42: 87-91.
20]  Egbe OM, Godwin Adu Alhassan GA, Ijoyah M (2013). Nodulation, Nitrogen Yield and Fixation by Bambara Groundnut (Vigna Subterranea (L.)Verdc.) Landraces Intercropped with Cowpea and Maize in Southern Guinea Savanna of Nigeria. Agricultural Science 1: 15-28.
21]  ElSheikh EAE, Wood M (1989) Response of chickpea and soybean rhizobia to salt: Influence of carbon source, temperature and pH. Soil Biol. Biochem. 21: 883-887.
22]  Essendoubi M, Brhada F, Eljamali, JE, Filali-Maltouf A, Bonnassie S, Georgeault S, Blanco C, Jebbar M (2007). Osmoadaptative responses in the rhizobia nodulating acacia isolated from south-eastern Moroccan Sahara. Environ. Microbiol. 9 (3): 603-611.
23]  Faghire M, Bargaz A, Farissi M, Palma F, Mandri B, Lluch C, Tejera García NA, Herrera-Cervera JA, Oufdou K, Ghoulam C (2011). Effect of salinity on nodulation, nitrogen fixation and growth of common bean (Phaseolus vulgaris) inoculated with rhizobial strains isolated from the Haouz region of Morocco. Symbiosis 55: 69-75.
24]  Fankem H, Tchuisseu Tchakounte GV, Ngo Nkot L, Nguesseu Njanjouo G, Nwaga D, Etoa FX (2014a). Maize (Zea mays) growth promotion by rock-phosphate solubilising bacteria isolated from nutrient deficient soils of Cameroun. Afr. J. Microbiol. Res. 8 (40): 3770-3579.
25]  Fankem H, Ngo Nkot L, Nguesseu Njanjouo G, Tchuisseu Tchakounte GV, Tchiaze Ifoué A V, Nwaga D (2014b). Rock phosphate solubilisation by strains of Penicillium spp. Isolated from farm and forest soils of three ecological zones of Cameroon. Am. J. Agric. For. 2 (2): 25-32.
26]  Farissi M, Ghoulam C, Bouizgaren A (2013). Changes in water deficit saturation and photosynthetic pigments of alfalfa populations under salinity and assessment of proline role in salt tolerance. Agric. Sci. Res. J. 3: 29-35
27]  Farissi M, Bouizgaren A, Aziz F, Faghire M, Ghoulam C (2014). Isolation and screening of rhizobial strains nodulating alfalfa for their tolerance to some environmental stresses. Pacesetter J. Agric Sci. Res. 2 (2): 9-19.
28]  Fasoyiro SB, Ajibade SR, Omole AJ, Adeniyan ON, Farinde EO (2006). Proximate, minerals and anti-nutritional factors of some underutilized grain legumes in south western Nigeria. Nutr. Food Science 36: 18-23.
29]  Fening JO, Danso SKA (2002). Variation in symbiotic effectiveness of cowpea bradyrhizobia indigenous to Ghanaian soils. Appl. Soil Ecol. 21: 23-29.
30]  Fernandes-Jr PI, Lima AA, Passos SR, Gava CAT (2012). Phenotypic diversity and amylolytic activity of fast growing rhizobia from pigeonpea [Cajanus cajan (L.) Millsp.]. Braz. J. Microbiol. 43: 1604-1612.
31]  Freitas ADS, Borges WL, Andrade MMM, Sampaio EVSB, Santos CERS, Passos SR, Xavier GR, Mulato BM, Lyra MCCP (2014). Characteristics of nodule bacteria from Mimosa spp grown in soils of the Brazilian semiarid region. Afr. J. Microbiol. Res. 8 (8): 788-796.
32]  Hillocks RJ, Bennett C, Mponda OM (2012). Bambara nut: A review of utlisation, market potential and crop improvement. Afr. Crop Sci. J. 20 (1): 1-16.
33]  Hungria M, Vargas MAT (2000). Environmental factors affecting nitrogen fixation in grain legumes in the tropics with an emphasis on Brazil. Field Crops Res. 65: 151-164.
34]  Jida M, Assefa F (2011). Phenotypic and plant growth promoting characteristics of Rhizobium leguminosarum bv. viciae from lentil growing areas of Ethiopia. Afr. J. Microbiol. Res.5: 4133-4142.
35]  Johnston AWB, Beringer JE (1976). Pea root nodules containing more than one Rhizobium species. Nature 264:502-504.
36]  Jordan DC (1984). Family III. Rhizobiaceae. In: Krieg NR, Holt JG. (Eds.) Bergey’s Manual of Systematic Bacteriology, Williams and Wilkins, Baltimore, pp 234-242.
37]  Kishinevsky BD, Zur M, Friedman Y, Meromi G, Ben-Moshe E, Nemas C (1996). Variation in nitrogen fixation and yield in landraces of bambara groundnut (Vigna subterranea L.). Field Crop. Res. 48 (1): 57-64.
38]  Klu GYP, Amoatey HM, Bansa D, Kumaeja FK (2001). Cultivation and use of African yam bean (Sphenostylis stenocarpa ex A Rich) in the Volta region of Chana. J. Food Technol. Africa 6: 74-77.
39]  Kouninki H, Sobda G, Nukenine NE (2014). Screening of Bambara groundnut (Vigna subterranea) lines for Callosobruchus maculatus resistance in the Far North Region of Cameroon. Journal of Renewable Agriculture 2 (1): 18-22.
40]  Küçük C, Kivanc M, Kinaci E (2006). Characterization of Rhizobium sp. Isolated from Bean. Turk. J. Biol. 30: 127-132.
41]  Leite J, Seido SL, Passos SR, Xavier GR, Rumjanek NG, Martins LMV (2009). Biodiversity of rhizobia associated with cowpea cultivars in soils of the lower half of the São Francisco River Valley. R. Bras. Ci. Solo 33: 1215-1226.
42]  Lyra MCCP, Freitas ADS, Silva TA, Santos CERS (2013). Phenotypic and molecular characteristics of rhizobia isolated from nodules of peanut (Arachis hypogaea L.) grown in Brazilian Spodosols. Afr. J. Biotechnol. 12: 2147-2156.
43]  Maâtallah J, Berraho E, Sanjuan J, Lluch C (2002). Phenotypic characterization of rhizobia isolated from chickpea (Cicer arietinum) growing in Moroccoan soils. Agronomie, 22: 321-329.
44]  Mbenoun LE (1992). Characterization of Bradyrhizobium sp of cowpea and bambara groundnut isolated from diverse agro-ecologic zones of Cameroon. MSc. dissertation, University of Yaounde, 65 p.
45]  Mbenoun LE (1992). Caractérisation de Bradyrhizobium sp. du niébé et du poids bambara isolés de diverses zones agroécologiques du Cameroun. Mémoire de maîtrise, Université de Yaoundé. 65 p.
46]  Missbah El Idrissi M, Abdelmoumen H (2008). Carbohydrates as carbon sources in rhizobia under salt stress. Symbiosis 46: 33-44.
47]  Mohale KC, Belane AK, Dakora FD (2014). Symbiotic N nutrition, C assimilation, and plant water use efficiency in Bambara groundnut (Vigna subterranea L. Verdc) grown in farmers fields in South Africa, measured using 15N and 13C natural abundance. Biol. Fertil. Soils 50: 307-319.
48]  Mpepereki S, Makonese F, Wollum AG (1997). Physiological characterization of indigenous rhizobia nodulating Vigna unguiculata in Zimbabwean soils. Symbiosis 22: 275-292.
49]  Muthini M, Maingi JM, Muoma JO, Amoding A, Mukaminega D, Osoro N, Mgutu A, Ombori O (2014). Morphological assessment and effectiveness of indigenous rhizobia isolates that nodulate P. vulgaris in water hyacinth compost testing field in Lake Victoria Basin. Br. J. Appl. Sci. Tech. 4 (5): 718-738.
50]  Ndiang Z, Bell JM, Missoup AD, Fokam PE, AmougouAkoa (2012). Etude de la variabilité morphologique de quelques variétés de voandzou (Vigna subterranea (L.) Verdc) au Cameroun. Journal of Applied Biosciences 60: 4410-4420.
51]  Ngakou A, Megueni C, Ousseni H, Massai A (2009). Study on the isolation and characterization of rhizobia strains as biofertilizer tools for growth improvement of four grain legumes in Ngaoundéré-Cameroon. Int. J. Biol. Sci. 3 (5): 1078-1089.
52]  Ngakou A, Ngo Nkot L, Doloum G, Adamou S (2012). Mycorrhiza-Rhizobium-Vigna subterranea dual symbiosis: impact of microbial symbionts for growth and sustainable yield improvement. Int. J. Agric. & biol. 14 (6): 915-921.
53]  Ngo Nkot L, Nwaga D, Ngakou A, Fankem H, Etoa FX (2011). Variation in nodulation and growth of groundnut (Arachis hypogaea L.) on oxisols from land use systems of the humid forest zone in southern Cameroon. African Journal of Biotechnology 10 (20): 3996-4004.
54]  Nyemba RC, Dakora FD (2010). Evaluating N2 fixation by food grain legumes in farmers’ fields in the three agro-ecological zones of Zambia, using 15N natural abundance. Biol. Fertil. Soils 46:461-470.
55]  Padulosi S, Hodgkin T, Williams JT, Haq N (2002). Underutilized crops: trends, challenges and opportunities in the 21st Century. In: JMM Engels, VR Rao, AHD Brown, MT Jackson (eds) Managing plant genetic diversity. Wallingford, UK: CAB International Publishing; Rome: International Plant Genetic Resources Institute (IPGRI), pp 323-338.
56]  Pule-Meulenberg F, Dakora FD (2009) Assessing the symbiotic dependency of grain and tree legumes on N2 fixation for their N nutrition in five agro-ecological zones of Botswana. Symbiosis 48: 68-77.
57]  Rai R, , , (2012). Phenotypic and molecular characterization of indigenous rhizobia nodulating chickpea in India. Indian J. Exp. Biol. 50: 340-350.
58]  Rodrigues CS, Laranjo M, Oliveira S (2006). Effect of heat and pH stress in the growth of chickpea mesorhizobia. Curr. Microbiol. 53 (1): 1-7.
59]  Shetta ND, Al-Shaharani TS, Abdel-Aal M (2011). Identification and characterization of Rhizobium associated with woody legume trees grown under Saudi Arabia condition. Am. Eurasian J. Agric. Environ. Sci. 10 (3): 410-418.
60]  Singh SK, Jaiswal, SK, Akhouri Vaishampayan, Dhar B (2013). Physiological behavior and antibiotic response of soybean (Glycine max L.) nodulating rhizobia isolated from Indian soils. Afr. J. Microbiol. Res. 7 (19): 2093-2102.
61]  Somasegaran P, Hoben HJ (1994) Handbook for Rhizobia. Methods in Legume-Rhizobium Technology. New York: Springer-Verlag, pp 240-58.
62]  Swift MJ, Bignell DE, Huang SP, Cares JE, Moreira F, Pereira EG, Nwaga D. Holt JA, Hauser S (2001). Standard methods for assessment of soil biodiversity and land use practice. In The ASA Review Meeting 1999, ASB Project, Bogor, Indonesia, ICRAF, Vol 1, 40 p.
63]  The C (2000). Identification of heterotic groups for acids soil on some maize varieties in Cameroon. INCO 1 and 2 Meeting, June 2000. Yaoundé, Cameroon.
64]  Torres-Júnior CV, Leite J, Santos CERS, Fernandes-Júnior PI, Zilli JE, Rumjanek NG, Xavier GR (2014). Diversity and symbiotic performance of peanut rhizobia from Southeast region of Brazil. Afr. J. Microbiol. Res. 8 (6): 566-577.
65]  van Rossum D, Schuurmans FP, Gillis M, Muyotcha A, van Verseveld HW, Stotthamer AH, Boogerd FC (1995). Genetic and phenotypic analysis of Bradyrhizobium strains nodulating Peanut (Arachis hypogae L.) roots. Appl. Environ. Microbiol. 61: 1599-1609.
66]  Vincent, JM (1970). A manual for practical study of root nodule bacteria. IBP Handbook No. 15, Blackwell Scientific Publishers, Oxford, 164p.
67]  Vishal KD, Abhishek C (2014). Isolation and characterization of Rhizobium leguminosarum from root nodule of Pisum sativum L. J. Acad. Indus. Res. 2: 464-467.
68]  Vriezen JAC, de Bruijn JF, Nusslein K (2007). Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl. Environ. Microbiol. 73: 3451-3459.
69]  Wolde-Meskel, E., Berg T., Peters N.K. and Frostegard, A. 2004. Nodulation status of native woody legumes and phenotypic characteristics of associated Rhizobia in soils of southern Ethiopia. Biol. Fert. Soils. 40: 55-66.
70]  Yakubu H, Kwari JD, Ngala AL (2010). N2 fixation by grain legume varieties as affected by rhizobia inoculation in the sandy loam soil of sudano-sahelian zone of North Eastern Nigeria. Nig. J. Basic Appl. Sci. 18 (2): 229-236. Yang JK, Xie FI, Zhou Q, Zhou JC (2005). Polyphasic characteristics of bradyrhizobia isolated from nodules of peanut (Arachis hypogaea) in China. Soil Biol. Biochem. 37: 141-153.
71]  Zabaloy MC, Gómez MA (2005). Diversity of rhizobia isolated from an agricultural soil in Argentina based on carbon utilization and effects of herbicides on growth. Biol. Fert Soils 42: 83-88.
72]  Zahran HH (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63 (4): 968-989.
73]  Zahran HH, Abdel-Fattah M, Yasser MM, Mahmoud AM, Bedmar EJ (2012). Diversity and environmental stress responses of rhizobial bacteria from Egyptian grain legumes. Aust. J. Bas. Appl. Sci. 6 (10): 571-583.
Show Less References


Isolation and Molecular Identification of New Emergent Candida Lusitaniae Isolated from Sudanese Immunocompromised Patients Infected with Oropharyngeal Candidiasis

1Department of Clinical Laboratory, College of Applied medical sciences, Al Jouf University, Sakaka, Saudi Arabia

2Department of Microbiology, College of Medical laboratory, Sudan University of science and technology, Khartoum, Sudan

American Journal of Microbiological Research. 2015, 3(2), 62-64
DOI: 10.12691/ajmr-3-2-4
Copyright © 2015 Science and Education Publishing

Cite this paper:
Mutaz F. Saad, Amr M. Albasha. Isolation and Molecular Identification of New Emergent Candida Lusitaniae Isolated from Sudanese Immunocompromised Patients Infected with Oropharyngeal Candidiasis. American Journal of Microbiological Research. 2015; 3(2):62-64. doi: 10.12691/ajmr-3-2-4.

Correspondence to: Mutaz  F. Saad, Department of Clinical Laboratory, College of Applied medical sciences, Al Jouf University, Sakaka, Saudi Arabia. Email:


Seventy seven oral swab samples (n=77) were collected in period between august 2007 to may 2008 from hospitalized immunocompromised and HIV patients suspected for Oropharyngeal Candidiasis and admitted in different hospitals in Ed-wiuem state and Khartoum state, Sudan. All samples were inoculated on Sabouraud dextrose agar and identified by colonial morphology, Germ tube test and Vitek2 compact system for biochemical identification and antifungal susceptibility test. Out of 77 oral swab samples collected from immunocompromised and HIV patients, 41 (53.3%) samples showed positive growth of Candida, and 36 (46.7%) samples showed negative growth. The identification showed that out of forty one positive cultures, 32 isolates found as Candida albicans (78%), while nine samples (n=9) appeared as non-Candida albicans (22%) and found as Candida lusitaniae according to GTT and Vitek2 Compact identification. Then DNA was extracted from all non-Candida albicans isolates and DNA sequencing was carried and D1/D2 region were determined using NL1 primer. DNA based identification showed that all nine (n=9) GTT negative isolates were Candida lusitaniae (Anamorh Clavispora lusitaniae). This study documented that there are new emergent species of Candida should be considered when dealing with specimen collected from patients suspected for yeast infections. Our results provide useful information that C. lusitaniae can be isolated as well as other Candida species from immunocompromised patients in Sudan.



[1]  Blinkhorn, R. J., D. Adelstein, and P. J. Spagnuolo. 1989. Emergence of a new opportunistic pathogen, Candida lusitaniae. J. Clin. Microbiol. 27: 236-240.
[2]  Christenson, J. C., A. Guruswamy, G. Mukwaya, and P. Rettig. 1987. Candida lusitaniae: an emerging human pathogen. Pediatr. Infect. Dis. J. 6: 755-757.
[3]  Guinet, R., J. Chanas, A. Goullier, G. Bonnefoy, and P. Ambroise-Thomas. 1983. Fetal septicemia due to amphotericin B-resistant Candida lusitaniae. J. Clin. Microbiol. 18: 443-444.
[4]  Hadfield, T. L., M. B. Smith, R. E. Winn, M. G. Rinaldi, and C. Guerra. 1987. Mycosis caused by Candida lusitaniae. Rev. Infect. Dis. 9: 1006-1012.
[5]  Hazen, K. C. 1995. New and emerging yeast pathogens. Clin. Microbiol. Rev. 8: 462-478.
Show More References
6]  Sanchez, V., J. A. Vazquez, D. Barth-Jones, L. Dembry, J. D. Sobel, and M. J.Zervos. 1992. Epidemiology of nosocomial acquisition of Candida lusitaniae. J. Clin. Microbiol. 30: 3005-3008.
7]  Favel, A., Michel-Nguyen, A., Peyron, F. et al. (2003). Colony morphology switching of Candida lusitaniae and acquisition of multidrug resistance during treatment of a renal infection in a newborn: case-report and review of the literature. Diagnostic Microbiology and Infectious Disease 47, 331-9.
8]  Pfaller, M. A., and D. J. Diekema. 2002. Role of sentinel surveillance of candidemia: trends in species distribution and antifungal susceptibility. J. Clin. Microbiol. 40: 3551-3557
9]  Guinet, R., J. Chanas, A. Goullier, G. Bonnefoy, and P. Am-broise-Thomas (1983). Fatal septicemia due to amphotericin B-resistant Candida lusitaniae. J. Clin. Microbiol. 18: 443-444.
10]  Merz, W. G., and G. R. Sandford (1979). Isolation and charac-terization of a polyene-resistant variant of Candida tropicalis. J. Clin. Microbiol. 9: 677-680.
11]  Pappagianis, D., M. S. Collins, R. Hector, and J. Remington. (1979). Development of resistance to amphotericin B in Candida lusitaniae infecting a human. Antimicrob. Agents Chemother. 16: 123-126.
12]  Holzschu, D. L., H. L. Presley, M. Miranda, and H. J. Phaff. (1979). Identification of Candida lusitaniae as an opportunistic yeast in humans. J. Clin. Microbiol. 10:202-205.
13]  Van Uden, N., and H. Buckley. 1970. Candida Berkhout, p. 893-1087. In J. Lodder (ed.), The yeasts-a taxonomic study. North-Holland Publishing Co., Amsterdam.
14]  Yoon, S. A., J. A. Vazquez, P. E. Steffan, J. D. Sobel, and R. A. Akins. 1999. High-frequency, in vitro reversible switching of Candida lusitaniae clinical isolates from amphotericin B susceptibility to resistance. Antimicrob. Agents Chemother. 43:836-845.
15]  Nancy B. M., Haihua F., Ellen J. B.,1Ana C. G., Allison H., Richard J. H., and Michael A. Pfaller. (2002). Change in Colony Morphology of Candida lusitaniae in Association with Development of Amphotericin B Resistance. Antimicrob. Agents Chemother. 46: 1325-1328.
Show Less References


Detection of Extended Spectrum Beta Lactamase (ESBL) Producing Klebsiella pneumoniae Associated with Tuberculosis Suspected Patients in Basra Governorate, South of Iraq

1College of Nursing / University of Basra

American Journal of Microbiological Research. 2015, 3(2), 59-61
DOI: 10.12691/ajmr-3-2-3
Copyright © 2015 Science and Education Publishing

Cite this paper:
Abdulameer Abdullah Al-Mussawi. Detection of Extended Spectrum Beta Lactamase (ESBL) Producing Klebsiella pneumoniae Associated with Tuberculosis Suspected Patients in Basra Governorate, South of Iraq. American Journal of Microbiological Research. 2015; 3(2):59-61. doi: 10.12691/ajmr-3-2-3.

Correspondence to: Abdulameer  Abdullah Al-Mussawi, College of Nursing / University of Basra. Email:


Objective: To investigate extended spectrum β- lactamase (ESBL) producing Klebsiella pneumoniae isolated from sputum of tuberculosis suspected patients in Basra governorate. Methods: A total of 28 (30.4 %) isolates of K. pneumoniae were recovered from 92 sputum clinical specimens at Pulmonary and Respiratory Diseases Center (PRDC) in Basra Governorate, Iraq. All these isolates were tested for ESBL production by using chromogenic media. Results: Of 28 isolates of K. pneumoniae, 6 (21.4%) were positive for ESBL production. Conclusion: This finding demonstrates a high percentage of ESBL producers among clinical isolates of K. pneumoniae. Presence of ESBL producing K. pneumoniae associated with TB patient gives a high risk factor to patients.



[1]  Sarathbabu R, Ramani TV, Bhaskara rao K, Panda S. Antibiotic susceptibility pattern of Klebsiella pneumoniae isolated from sputum, urine and pus samples. J Pharm and Biolo Sci. 2012; 1( 2): 4-9.
[2]  Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009; 9: 228-236.
[3]  Walsh C. Antibiotics: actions, origins, resistance. Washington DC.2003; ASM Press.
[4]  Ghuysen J M. Serine beta-lactamases and penicillin-binding proteins. Ann Rev Microbiol. 1991; 45:37-67.
[5]  Paterson D L, Bonomo R A. Extended-spectrum beta-lactamases: a clinical update. Clinical Microbiology Reviews. 2005; 18: 657-686. [PubMed: 16223952].
Show More References
6]  Morosini M I, Canton R, Martinez-Beltran J, Negri M C, Perez- Dia J C, Baquero F, Blazquez J. New extended-spectrum TEM-type b-lactamase from Salmonella enterica subsp enterica isolated in a nosocomial outbreak. Antimicrob. Agents Chemother. 1995; 39: 458-461.
7]  Philippon A, Ben-Redjeb S, Fournier G, Ben-Hassen A. Epidemiology of extended spectrum b-lactamases. Infec.1989; 17: 347-354.
8]  Cormican M G, Marshall S A, Jones R N. Detection of Extended-Spectrum b-Lactamase (ESBL)- Producing Strains by the Etest ESBL Screen. J Clin Microbiol. 1996; 34(8): 1880-1884.
9]  Tavakoli H, Bayat M, Kousha A, Panahi P. The Application of Chromogenic Culture Media for Rapid Detection of Food and Water Borne Pathogen. Am-Euras. J. Agric. & Environ. Sci. 2008; 4 (6): 693-698.
10]  Kumar MS, Lakshmi V, Rajagopalan R. Occurrence of extended spectrum b−lactamases among enterobacteriaceae spp. isolated at a tertiary care institute. Indian J Med Microbiol. 2006; 24:208-211.
11]  Ndugulile F, Jureen R, Harthug S, Urassa W, Langeland N. Extended spectrum b-lactamases among gram negative bacteria of nosocomial origin from an intensive care unit of a tertiary health facility in Tanzania. BMC Infect Dis. 2005; 5:86.
12]  Ahmed A, Zafar A, Mirza S. Antimicrobial activity of tigecycline against nosocomial pathogens in Pakistan: a multicenter study. J Pak Med Assoc. 2009; 59:240-2.
13]  James AL, Perry JD, Rigby A. Stanforth SP. Synthesis and evaluation of novel chromogenic aminopeptidase substrates for microorganism detection and identification. Bioorganic and Medicinal Chemistry Letters. 2007; 17(5): 1418-1421.
14]  Manafi M, Restaino P, Schubert L. Isolation and detection of L. monocytogenes using protect media. J Appl Bacteriol. 2005; 62: 244-51.
15]  Pfaller M A, Segreti J. Overview of the epidemiological profile and laboratory detection of extended-spectrum b-lactamases. Clin Infect Dis. 2006; 42:153-S163.
16]  Roshan M, Ikram A, Mirza I A, Malik N, Abbasi A, Alizai S A. Susceptibility Pattern of Extended Spectrum ß- actamase Producing Isolates in Various Clinical Specimens. J of the Coll of Physici and Surge Pak. 2011; 21 (6): 342-346.
Show Less References


Isolation and Molecular Characterization of Cellulolytic Bacillus Isolates from Soil and Compost

1Department of Botany and Agric. Biotechnology, Faculty of Agriculture, University of Khartoum, 13314 Shambat, Sudan

2Department of Botany, Faculty of Science, University of Khartoum, Sudan

American Journal of Microbiological Research. 2015, 3(2), 55-58
DOI: 10.12691/ajmr-3-2-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Elhadi A. I. Elkhalil, Fatima Y. Gaffar, Marmar A. El Siddig, Huda A. H. Osman. Isolation and Molecular Characterization of Cellulolytic Bacillus Isolates from Soil and Compost. American Journal of Microbiological Research. 2015; 3(2):55-58. doi: 10.12691/ajmr-3-2-2.

Correspondence to: Elhadi  A. I. Elkhalil, Department of Botany and Agric. Biotechnology, Faculty of Agriculture, University of Khartoum, 13314 Shambat, Sudan. Email:


Fifty five Bacillus isolates were isolated from compost, and alkaline silty clay soil (rhizosphere of potato plant) in Shambat, Khartoum North, Sudan, and screened using morphological tests, biochemical and molecular characterization using 16s rDNA analysis., Screening of cellulase producing isolates was done using carboxyl methyl cellulose (CMC) as a substrate at 25°C. Twenty six isolates were found to be cellulase producers. Among the isolates, four isolates, 9+, 23, 20 and 13 showed high potential in producing extracellular cellulase and had an average cellulase activity of 2.89, 3.12, 3.48 and 3.53 Unit/ml, respectively. Genetic distance between the four isolates with high cellulase activity was determined with RAPD analysis based on OPC-3 primer.



[1]  Dio R.H. (2008). Cellulases of mesophilic microorganisms: Cellulosome and no cellulosome producers. Ann NY A cad Sci. (1125): 167-279.
[2]  Rastogi G.; MappidiG.l.; Gurram R.N.; Adhikari A. Bischoff K. M.; Hughes S.R.; Apel W.A.; Bangss Dixon D.J. and Sani, R.K. (2009). Isolation and characterization of cellulose degrading bacteria from the deep subsurface of the Homestako gold mine, lead, southe Dakota, VSA. J Ind Microbiol Biotechol 36 (4): 585-598.
[3]  Meddeb-Mouelhi, F.; Moisan, J.K. and Beauregard, M. (2014). A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity. Enzyme and Microbial Technology, 66: 16-19.
[4]  Percival Zhang, Y. H.; Himmel, M. E. and Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 24: 452-481.
[5]  Kasana R.C.; DharH.; Dutt S. andGulati A. (2008) Arapid and easy method for the detection of microbial cellulases on agar plates using grams iodine. CurrMicrobiol 57 (5): 503-507.
Show More References
6]  Kim; Woon T.; Kim Y.; Kim S.; Lee J.; Dark C. and Kim H. (2010) Identification and Distribution of Bacillus species in Doenjang by Whole-cell Protein Patterns and 16s r RNA Gene sequence Analysis. J. Microbiol. Biotechnol, 20 (8): 1210-1214.
7]  Qingming Y.; Zongping X. and Tiansheng T. (1997). Rapid Classification of Bacillus Isolate Using RAPD Technique. Wuhan University. Journal of Natural Sciences 2: 1, 105-109.
8]  Woese C.R.; E. Stackebbrandt; T. J. Macke and G. E. fox (1985) Aphylogenetic definition of the major eubacterial taxa syst. Appl. Microbiol. 6: 143-151.
9]  Barney M.; Volgyi A.; Novarro A. and Ruder D. (2001) Riboprinting and 16s r RNA Gene sequencing for Identification of Brewery Pediococcus Isolate. Appl Environ Microbiol 67 (2): 553-560.
10]  Lindquist J. (2006) Bacillus isolation. Bact. 102 Website-Fall.
11]  Harrigan W.F. and McCance M.E (1976) Laboratory Methods in Microbiology, Academic press, London and New York.
12]  Kasing A. (1995). Cellulase production, Practical biotechnology, Practical Biotechnology, Sarawak, Malaysia.
13]  Kotchoni S.O. and Shonukan O.O. (2002) Regulatory mutations affecting the synthesis of cellulase in Bacillus pumilus. World journal of Microbiology and Biotechnology 18: 487-491.
14]  Miller G.L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31 (3): 426-428.
15]  Soumet C.; Ermel, G.; Fach, P. and Colin, P. (1994).Evaluation of different DNA extraction procedures for the detection of Salmonella from chicken products by polymerase chain reaction. Lett. Appl. Microbiol., 19, 294-298.
16]  Saitou, N. and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing polyogenetic trees. Molecular Biology Evolution. 4 (4): 406-425.
17]  SneathP.H. and Mair N.S. (1986). Bergy’s Manual of systemic bacteriology, ninth edition. Vol. 2, Wiliams and Wilkins Baltimore, U.S.A.
18]  Drancourt M.; Bollet C.; Calioz A.; Martelin R.; Gayral J. and Raoutt D. (2000). 16s Ribosomal DNA sequence Analysis of a large collection of Environmental and clinical Un identifiable Bacterial isolates. J clin Microbiol 38 (10): 3623-3630.
Show Less References


Molecular Identification 0f 16s Ribosomal RNA Gene of Helicobacter pylori Isolated from Gastric Biopsies in Sudan

1Department of Microbiology, Kassala University, Sudan

2Department of Microbiology, Khartoum University, Sudan

3Virology Department Central lab, Sudan

4Consultant Physician and Gastroenterology, Sudan

5Department of Bioinformatics, Africa City of Technology, Sudan

6Division of Molecular Genetics, Institute of Human Genetics, University of Tübingen, Germany

American Journal of Microbiological Research. 2015, 3(2), 50-54
DOI: 10.12691/ajmr-3-2-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Mona Mamoun, Elsanousi S. M., Khalid A. Enan, Abdelmounem E. Abdo, Mohamed A. Hassan. Molecular Identification 0f 16s Ribosomal RNA Gene of Helicobacter pylori Isolated from Gastric Biopsies in Sudan. American Journal of Microbiological Research. 2015; 3(2):50-54. doi: 10.12691/ajmr-3-2-1.

Correspondence to: Mona  Mamoun, Department of Microbiology, Kassala University, Sudan. Email:


H. pylori are a ubiquitous microorganism infecting up to half of the world’s population. A total of 81 gastric biopsies taken from patients complaining of gastric disorders in Khartoum state, Sudan screened for H.pylori. Eighteen samples (22.2%) yielded positive culture results. The majority of them were males. Also results indicated higher prevalence of H. pylori in patients with gastritis. Further identification performed using PCR targeted a region of 16S ribosomal RNA gene of H. pylori and gene amplified on 12 samples. Six of isolated sequences subjected to BLAST analysis that showed high similarity to GenBank strains of H. pylori.Multiple sequence alignments were performed between isolated 16S rRNA gene sequences and most related H.pylori strains deposited on GenBank. One isolate differed on one base-pair substitution (G-A) from other isolates and selected reference H.pylori strains. Phylogenetic analysis based on 16S rRNA gene sequences reflects that H.pylori could be originated from Africa.



[1]  Warren JR, Marshall BJ. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet; 1:1273-1275. 1983.
[2]  Brown L. M. Helicobacter pylori: epidemiology and routes of transmission. Epidemiol. Rev.22:283-97. 2000.
[3]  Lacy BE, Rosemore J. Helicobacter pylori: ulcers and more: the beginning of an era. J Nutr.131:2789S-93S. 2001.
[4]  Everhart J. E. Recent developments in the epidemiology of Helicobacter pylori. Gastroenterol Clin North Am.29: 559-579. 2000.
[5]  Woodward M, Morrison C, McColl K. An investigation into factors associated with Helicobacter pylori infection. J Clin Epidemiol.53:175-181. 2000.
Show More References
6]  Makola D, Peura D, Crowe S. Helicobacter pylori infection and related gastrointestinal diseases. J Clin Gastroenterol.41:548–-8. 2007.
7]  Dunn BE, Cohen H, Blaser MJ. Helicobacter pylori. Clinical Microbiology Reviews; 10: 720-741. 1997.
8]  Midolo P, Marshall BJ. Accurate diagnosis of Helicobacter pylori: Urease tests. Gastroenterol Clin North Am; 29:871-878. 2000.
9]  Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, et al. Traces of human migrations in Helicobacter pylori populations. Science; 299:1582-1585. 2003.
10]  Garner JA, TL C: Analysis of genetic diversity in cytotoxin-producing and non-cytotoxin-producing Helicobacter pylori strains. J Infect Dis. 172:290-293. 1995.
11]  Achtman M, Azuma T, Berg DE, Ito Y, Morelli G, et al. Recombination and clonal groupings within Helicobacter pylori from different geographical regions. Mol Microbiol. 32: 459-470. 1999.
12]  Covacci A, Telford JL, Del Giudice G, Parsonnet J, Rappuoli R. Helicobacter pylori virulence and genetic geography. Science; 284: 1328-1333. 1999.
13]  Suerbaum S, Maynard Smith J, Bapumia K, Morelli G, Smith NH, et al. Free recombination within Helicobacter pylori. Proc Natl Acad Sci U S A. 95:12619-12624. 1998.
14]  Taylor JM, Ziman ME, Huff JL, Moroski NM, Vajdy M, Solnick JV. Helicobacter pylori lipopolysaccharide promotes a Th1 type immune response in immunized mice. Vaccine; 24(23):4987-94. 2006.
15]  Hoshina S, Kahn SM, Jiang W, Green PH, Neu HC, Chin N. Direct detection and amplification of Helicobacter pylori ribosomal 16S gene segments from gastric endoscopic biopsies. Diagn Microbial Infect Dis.13:473-9. 1990.
16]  Yoshida H, Hirota K, Shiratori Y, Nihei T, Amano S, Yoshida A. Use of a gastric juice-based PCR assay to detect Helicobacterpylori infection in culture-negative patients. J Clin Microbiol; 36:317-20. 1998.
17]  Chong SK, Lou Q, Fitzgerald JF, Lee CH. Evaluation of 16SR RNA gene PCR with primers Hp1 and Hp2 for detection of Helicobacter pylori J Clin Microbiol; 34:2728-30. 1996.
18]  Smith SI, Oyedeji KS, Arigbabu AO, Cantet F, Megraud F, et al. (2004).Comparison of three PCR methods for detection of Helicobacter pylori DNA and detection of cagA gene in gastric biopsy specimens. World J Gastroenterol. 10:1958-1960.
19]  Gorkiewicz G, Feierl G, Schober C, Dieber F, Kofer J, et al. Species- specific identification of Campylobacters by partial 16S rRNA gene sequencing. J Clin Microbiol. 41: 2537-2546. 2003.
20]  Khan MM, Stoker NG, Drasar BS. Sequence diversity of a fragment of the 16S RNAgene from Helicobacter pylori. Microbios 103, 2000.
21]  Atschul SF, Madden TL, Schaffer AA et al. Gapped BLAST and PSI-BLAST. A new generation of protein database search programmes”. NucleicAcid Res. 25: 3389-3402. 1997.
22]  Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT”. Nucl. Acids. Symp. Ser. 41: 95-98. 1999.
23]  McWilliam H, Li W, Uludag M. Analysis Tool Web Services from the EMBL-EBI” Nucleic acids research: 2013.
24]  Chevenet F., Brun C., Banuls AL., Jacq B., Chisten R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics; 10; 7:439. Oct, 2006.
25]  Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.F., Guindon S., Lefort V., Lescot M., Claverie J.M., Gascuel O. robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008
26]  Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5):1792-7. Mar, 2004.
27]  Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 17(4):540-52. Apr, 2000.
28]  Guindon S., Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 52(5):696-704. Oct, 2003.
29]  Anisimova M., Gascuel O. Approximate likelihood ratio test for branchs: A fast, accurate and powerful alternative. Syst Biol. 55(4):539-52. Aug, 2006.
30]  Woodward M, Morrison C, McColl K: An investigation into factors associated with Helicobacter pylori infection.
31]  Zhiyu Zhang, Qing Zheng, Xiaoyu Chen, Shudong Xiao, Wenzhong Liu and Hong Lu, The Helicobacter pylori duodenal ulcer promoting gene, dupA in China, BMC Gastroenterology, 8:49.2008.
32]  Stella I. Smith, Muinah A. Fowora, Jesse A. Otegbayo, Fatimah B. Abdulkareem, Emmanuel A.Omonigbehin, Akere Adegboyega, Monica Contreras, Rainer HaasComparison of PCR with other diagnostic techniques for the detection of H. pylori infection in patients presenting with gastroduodenal symptons in Nigeria. Int J Mol Epidemiol Genet. 2(2):178-184. 2011.
33]  Marais A, Monteiro L, Occhialini M, Pina M,Lamoliatte H and Megraud F. Direct detectionof Helicobacter pylori resistance to macrolides by a polymerase chain reaction/DNA enzyme immunoassay in gastric biopsy specimens. Gut. 44: 463-467. 1999.
34]  Peek RM, Miller GG, Tham KT, Perez-Perez GI, Cover TL, Atherton JC, et al. Detection of Helicobacter pylori gene expression in human gastric mucosa. J Clin Microbiol. 33(1):28-32.1995.
35]  A. A. Vanzwet, J. C. Thijs, A. M. D. Kooistra-Smid, J. Schirm AND J. A. M. Snijder. Sensitivity of Culture Compared with That of Polymerase Chain Reaction for Detection of Helicobacterpylori from Antral Biopsy Samples. American Society for Microbiology, 1993.
36]  Ousman Secka, Martin Antonio, Mary Tapgun, Douglas E Berg, Christian Bottomley, Vivat Thomas,Robert Walton, Tumani Corrah, Richard A Adegbola and Julian E Thomas. PCR-based genotyping of Helicobacter pylori ofGambian children and adults directly from biopsy specimens and bacterial cultures. Gut Pathogens, 3:5.2011.
37]  Mohamed Siddig Abdalaziz, Munsoor Mohammed Munsoor, Wifaq Al fatih Siyam. Association between Helicobacter pylori Infection and Stomach Tumors in Sudan Using Polymerase Chain Reaction. Australian Journal of Basic and Applied Sciences, 7(4): 769-773, 2013.
38]  Xu GM, Ji XH, Li ZS, Man XH, Zhang HF. Clinical significance of PCR in Helicobacter pylori DNA detection in human gastric disorders. China Nati J New Gastroenterol. 3(2):98-100. 1997.
39]  Bruce, W., Eckloff, Podzorski, P., Kline, C., and Cockerill, R., Int. J. Sys. Bacteriol.44 (2) 320. 1994.
40]  Vandamme P, Harrington CS, Jalava K, On SL. Misidentifying helicobacters: the Helicobacter cinaedi example. J Clin Microbiol.38: 2261-2266. 2000.
41]  Stackebrandt, E. & Liesack, W. The potential of rDNA in identification autodiagnostics, in “Nonradioactive labelling and detection of biomolecules”(C. Kessler). Springer-Verlag, Berlin. 232-239 1992.
42]  Dauga, C., Gillis, M., Vandamme, P., Ageron, E., Grimont, F., Kersters, K., de Mahenge, C., Peloux, Y. & Grimont, P.A.D. Balneatrix alpica gen. nov., sp. nov., a bacterium associated with pneumonia and meningitidis in a spa therapy center. Rex Microbial.144, 35-46. 1993.
43]  Guo-Chao Wei, Jing Chen, Ai-Yun Liu, Miao Zhang, Xiao-Jun Liu, Dan Liu, Jun Xu, Bing-Rong Liu, Hong Ling, Hua-Xing Wu, Ya-Ju Du. Prevalence of Helicobacter pylori vacA, cagA and iceA genotypes and correlation with clinical outcome, 2012.
44]  Y Yamaokaa, M Kitab, T Kodamaa, N Sawaia, K Kashimaa, J Imanishib. Induction of various cytokines and development of severe mucosal inflammation by cagA gene positive Helicobacter pylori strains, Kyoto Prefectural University of Medicine, Kyoto, Japan 1997.
45]  Taylor DE, Eaton M, Chang N and Salama SM. Construction of a Helicobacter pylori genome map and demonstration of diversity at the genome level. J. Bacteriol. 174, 6800-6806. 1992.
46]  Yoshan Moodley, Bodo Linz, Robert P. Bond, Martin Nieuwoudt,Himla Soodyall, Carina M. Schlebusch,5Steffi Bernhöft, James Hale, Sebastian Suerbaum, Lawrence Mugisha, Schalk W. van der Merwe, and Mark Achtman. Age of the Association between Helicobacter pylori and Man PLoS Pathog. 8 (5): e1002693. May 2012.
Show Less References