You are here:

American Journal of Medical and Biological Research

ISSN (Print): 2328-4080

ISSN (Online): 2328-4099


Current Issue» Volume 3, Number 1 (2015)


Effect of Adipose-derived Mesenchymal Stem Cells in Photoaging Balb/C Mouse Model

1Department of Dermatology, PelitaHarapan University, Tanggerang, Indonesia

2Department of Pathology Anatomy, Faculty of Medicine, Hasanuddin UniversitySouth of Sulawesi, Makasar, Indonesia

3Primate Center, Bogor Agricultural Institute, Bogor, Indonesia

4Department of Physiology, Faculty of Medicine, Hasanuddin UniversitySouth of Sulawesi, Makasar, Indonesia

American Journal of Medical and Biological Research. 2015, 3(1), 48-52
DOI: 10.12691/ajmbr-3-1-4
Copyright © 2015 Science and Education Publishing

Cite this paper:
Muljani Enggalhardjo, Syarifuddin Wahid, Dondin Sajuthi, Irawan Yusuf. Effect of Adipose-derived Mesenchymal Stem Cells in Photoaging Balb/C Mouse Model. American Journal of Medical and Biological Research. 2015; 3(1):48-52. doi: 10.12691/ajmbr-3-1-4.

Correspondence to: Muljani  Enggalhardjo, Department of Dermatology, PelitaHarapan University, Tanggerang, Indonesia. Email:


Cell therapy using stem cells restores organs or tissue damaged by trauma, include of photoaging. Adiposed-derived stem cell (ADSC) have relative advantages in accessibility (less invasif), abundance stem cell compared to other kinds of stem cell and easier to get adipose in large quantities than bone marrow. In this Study, we investigated whether subcutaneous injection of ADSC significantly increase collagen synthesis, epidermis and dermis thickness, colagen density, and microvascular density in Photoaging Balb/C mice. We use 27 mice, divided by 3 group. The first group (A) were given UVB light irradiation and stem cell. The B group were given UVB light irradiation and placebo (NaCl 0.9%). The C group as the control group was untreated (no UVB light irradiation and no stem cells).The results showed that 1x104 ADSC subcutaneuous injection significantly increase collagen synthesis in Balb/C mice and collagen density in photoaging. In conclusions revealed that Adiposed-derived Mesenchymal stem cells stimulate colagen density, and improved photoaging.



[1]  Bernerd Fand Asselieau D. 1997. Successive alteration and recovery of epidermal differentiation and morphogenesis after specific UV-B damage in skin reconstructed in vitro. Dev. Biol. 183: 123-138.
[2]  Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, Voorhees JJ. 2002. Mechanisms of photoaging and chronological skin aging. Arch Dermatol 138: 1462-1470.
[3]  Fisher, G.J., Kang, S., Varani, J et al. 2002. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol 138: 1462-1470.
[4]  Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T. 2003. UV-induced skin damage. Toxicology 189: 21-39
[5]  Ichihashi M, Ando H, Yoshida M, Niki Y, Matsui M. 2009. review artikle photoaging of the skin. Antiaging Medicine 6 (6). 46-59.
Show More References
6]  Kern S,Eichler H, Stoevej, Kluter H, Bieback K. 2006. Comparative Analysis of Mesenchymal Stem Cell from bone marrow, umbilical cord or adipose tissue. Stem cell. 1294-1303.
7]  Kim WS, Park BS, Park SH, Kim HK, Sung JH. Antiwrinkle effect of adipose derived stem cell: activation of dermal fribroblast by secretory factors. Journal of dermatological science 53: 96-102.
8]  Kim J, Jung Minyoung, Kim H, et all. 2009. Adiposed-derived stem cells as a new therapeutic modality for ageing skin. Experimental dermatology 20: 383-387.
9]  Kligman AM, Grove GL, Hirose R, Leyden JJ. 1986. Topical tretinoin for photoaged skin. J Am Acad Dermatol 15: 836-859
10]  Konno M, Hamabe A, Hasegawa S, et all. 2013. Adiposed-derived mesenchymal stem cells and regenerative medicine. Development, Growth, & Differentiation vol 55: 309-318.
11]  Lee SH, Lee JH, Cho KH. 2011. Effects of human adipose-derived stem cell on cutaneus wound healing in nude mice. Ann Dermatol vol 23 no 2:150-155.
12]  Pierard GE, Paguet P, Xhauflair-Uhada E, Quatresooz P. 2010. Physiological Variations during Aging. Textbook of Aging Skin. 45-54.
13]  Rabe J, Mamelak J Adam, J.Patrick, McElgunn, et all. 2006. Photoaging: Mechanisms and repair. Journal American Academy Dermatology. 1-19.
14]  Scharffetter-Kochanek K, Wlaschek M, Brenneisen P, Schauen M,Blaudschun R and Wenk J: UV-induced reactive oxygen speciesin photocarcinogenesis and photoaging. Biol Chem 378: 1247-1257, 1997.
15]  Rijken F, dkk. 2011. Photoaged skin: the role of Neutrophils, Prevention Measure and potential pharmacological targets. Clinical pharmacology and therapeutics. vol 89 number 1. 120-124.
Show Less References


Comparative Study of Some Potential Paracrine Factors Produced by Normal and Androgenetic Alopecia Hair Follicles

1Biology Department, Faculty of Science, Taif University (TU), Taif, Saudi Arabia

American Journal of Medical and Biological Research. 2015, 3(1), 38-47
DOI: 10.12691/ajmbr-3-1-3
Copyright © 2015 Science and Education Publishing

Cite this paper:
Saeed A. Alwaleedi. Comparative Study of Some Potential Paracrine Factors Produced by Normal and Androgenetic Alopecia Hair Follicles. American Journal of Medical and Biological Research. 2015; 3(1):38-47. doi: 10.12691/ajmbr-3-1-3.

Correspondence to: Saeed  A. Alwaleedi, Biology Department, Faculty of Science, Taif University (TU), Taif, Saudi Arabia. Email:


Androgens are the main regulators of human hair growth. Paradoxically, androgens can convert small vellus hair follicles to long terminal ones as seen during growth of beard and in hirsutism, however they also can stimulate the gradual transformation of large terminal scalp follicles to tiny vellus ones causing androgenetic alopecia in individuals with a genetic predisposition. Hair disorders are poorly controlled and may cause psychological distress and reduction in the quality of life. The molecular mechanisms of androgen action in human hair follicles are not fully understood. However it is believed that androgens exert their effects on hair follicles via the dermal papilla cells by altering the regulatory paracrine factors produced by the dermal papilla itself and affect the other follicular components. The study aimed to identify key paracrine factors which involved in androgen-regulated alopecia. Balding and non-balding scalp hair follicles isolated and analyzed by molecular biological methods, DNA microarray and quantitative real-time PCR. Comparing balding and non-balding follicles from the same individuals revealed the expected reduction in several keratin and keratin-related protein genes supporting this approach’s validity. There were also significant differences in paracrine factors previously implicated in androgen action by in vitro studies. Several factors believed to increase during androgen stimulation of larger, darker follicles, e.g. IGF-I and SCF, and VEGV were lowered in balding follicles, while putative inhibitory factors, e.g. TGFß-1, IL-1β, IL-1α, and IL-6 were increased. These findings increase our understanding of androgen action in human hair follicles; this could lead to better treatments for hair disorders.



[1]  Thomas, J. (2005). Androgenetic alopecia-Current status. Indian J Dermatol 50, 179-90.
[2]  Messenger, A. G., and Sinclair, R. (2006). Follicular miniaturization in female pattern hair loss: clinicopathological correlations. Br J Dermatol 155, 926-930.
[3]  Randall, V. A. (2005). Physiology and pathophysiology of androgenetic alopecia, In Endocrinology, L. J. Degroot, and Jameson, J.L., ed. (Philadelphia: W B Saunders Co.), pp. 3295-3309.
[4]  Randall, V. A. (2007). Hormonal regulation of hair follicles exhibits a biological paradox. Semin Cell Dev Biol 18, 274-85.
[5]  Courtois, M., Loussouarn, G., Hourseau, C., Grollier J. F. (1994). Hair cycle and alopecia. Skin Pharmacol 7, 84-9.
Show More References
6]  Hamilton, J. B. (1960). Effect of castration in adolescent and young adult males upon further changes in the proportions of bare and hairy scalp. J Clin Endocrinol Metab 20, 1309-1318.
7]  Hamilton, J. B. (1942). Male hormone stimulation is a prerequisite and an incitant in common baldness. Am J Anat 71, 451-481.
8]  McPhaul, M. J. (2004). Androgen receptors and androgen insensitivity syndromes, In Endocrinology, L. J. Degroot, and Jameson, J.L., ed. (Philadelphia: W B Saunders Co).
9]  Phillipou, G., and Kirk, J. (1981). Significance of steroid measurements in male pattern alopecia. Clin Exp Dermatol 6, 53-56.
10]  Pitts, R. L. (1987). Serum elevation of dehydroepiandrosterone sulfate associated with male pattern baldness in young men. J Am Acad Dermatol 16, 571-573.
11]  Birch, M. P., and Messenger, A. G. (2001). Genetic factors predispose to balding and non-balding in men. Eur J Dermatol 11, 309-314.
12]  Nyholt, D. R., Gillespie, N. A., Heath, A. C., and Martin, N. G. (2003). Genetic Basis of Male Pattern Baldness. J Invest Dermatol 121, 1561-1564.
13]  Bergfeld, W. F. (1955). Androgenetic alopecia: An autosomal dominant disorder. Am J Med 98, 955-985.
14]  Ellis, J. A., and Harrap, S. B. (2001). The genetics of androgenetic alopecia. Clin Dermatol 19, 149-154.
15]  Prodi, D. A., Pirastu, N., Maninchedda, G., Sassu, A., Picciau, A., Palmas, M. A., Mossa, A., Persico, I., Adamo, M., Angius, A., and Pirastu, M. (2008). EDA2R is associated with androgenetic alopecia. J Invest Dermatol 128, 2268-2270.
16]  Hillmer, A. M., Brockschmidt, F. F., Hanneken, S., Eigelshoven, S., Steffens, M., Flaquer, A., Herms, S., Becker, T., Kortum, A. K., and Nyholt, D. R. (2008). Susceptibility variants for male-pattern baldness on chromosome 20p11. Nat Genet 40, 1279-1281.
17]  Richards, J. B., Yuan, X., Geller, F., Waterworth, D., Bataille, V., Glass, D., Song, K., Waeber, G., Vollenweider, P., Aben, K. K., et al. (2008). Male-pattern baldness susceptibility locus at 20p11. Nat Genet 40, 1282-1284.
18]  Randall, V. A. (1994). Androgens and human hair growth. Clin Endocrinol (Oxf) 40, 439-457.
19]  Randall, V. A. (2008). Androgens and hair growth. Dermatol Ther 21, 314-328.
20]  Blume-Peytavi, U., and Mandt, N. (2000). Signalling molecules in human hair follicle cell populations, In Hair and its disorders: biology, pathology and management, F. M. Camacho, Randall, V.A., and Price, V.H., ed. (Martin Dunitz, London), pp. 103-113.
21]  Paus, R. (2000). Control of the hair follicle growth cycle, In Hair and its disorders: biology, pathology and management, F. M. Camacho, Randall, V.A., and Price, V.H., ed. (Martin Dunitz, London), pp. 83-94.
22]  Philpott, M. (2000). The roles of growth factors in hair follicles: investigations using cultured hair follicles, In Hair and its disorders: biology, pathology and management, F. M. Camacho, Randall, V.A., and Price, V.H., ed. (Martin Dunitz, London), pp. 103-113.
23]  Hamilton, J. B. (1951). Patterned loss of hair in man; types and incidence. Ann N Y Acad Sci 53, 708-728.
24]  Irizarry, R., Hobbs, B., Collin, F., Beazer-Barclay, Y., Antonellis, J., Scherf, U., SPEED, T. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249-264.
25]  Komura, D., Nakamura, H., Tsutsumi, S., Aburatani, H., and Ihara, S. (2005). Multidimensional support vector machines for visualizing of gene expression data. Bioinformatics 21, 439-444.
26]  Shlens, J. (2009). A tutorial on principal component analysis. Centre for Neural Science, Salk Institute for Biological Studies. New York University, version 3, pp 1-12.
27]  Livak, K. J., Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and ∆∆Ct method. Methods 25, 402-408.
28]  Skrypina, N. A., Timofeeva, A. V., Khaspekov, G. L., Savochkina, L. P., and Beabealashvilli, R. S. (2003). Total RNA suitable for molecular biology analysis. J Biotech 105, 1-9.
29]  Smyth, G. K., and Speed, T. P. (2003). Normalization of cDNA microarray data. Methods 31, 265-273.
30]  Quackenbush, J. (2002). Microarray data normalization and transformation. Nature Genetics Supplement 32, 496-501.
31]  Lee, E., and Park, T. (2007). Exploratory methods for checking qualityof microarray data. Bioinformation, Biomed informatics publishing group, 1, 423-428.
32]  Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95, 14863-14868.
33]  Cui, X., and Churchill, G. A. (2003). Statistical tests for differential expression in cDNA microarray experiments. Genome Biology 4, 210.
34]  Jahoda, C. A., Oliver, R. F., Reynolds, A. J., Forrester, J. C., Gillespie, J. W., Cserhalmi-Friedman, P. B., Christiano, A. M., and Horne, K. A. (2001). Trans-species hair growth induction by human hair follicle dermal papillae. Exp Dermatol 110, 229-237.
35]  Randall, V. A., Jenner, T. J., Hibberts, N. A., De Oliveira, I. O., and Vafaee, T. (2008). Stem cell factor/c-Kit signalling in normal and androgenetic alopecia hair follicles. J Endocrinol 197, 11-23.
36]  Powell, B. C., and Rogers, G. E. (1997). In: formation and structure of human hair, P. Jolles, H. Zahn and H. Hocker, eds. PP. 59-148, Birkhauser Verlag, Basel, Switzerland.
37]  Jave-Suarez, L., Langbein, L., Winter, H., Praetzel, S., Rogers, M., Schweizer, J. (2004). Androgen regulation of the human hair follicle: the type I hair keratin hHa7 is a direct target gene in trichocytes. J Invest Dermatol 122, 555-564.
38]  Philpott, M. P., Green, M. R., and Kealey, T. (1990). Human hair growth in vitro. J Cell Sci 97, 463-471.
39]  Inui, S., Fukuzato, Y., Nakajima, T., Yoshikawa, K., and Itami, S. (2002). Androgen-inducible TGF-beta1 from balding dermal papilla cells inhibits epithelial cell growth: a clue to understand paradoxical effects of androgen on human hair growth. Faseb J 16, 1967-1969.
40]  Inui, S., Fukuzato, Y., Nakajima, T., Yoshikawa, K., and Itami, S. (2003). Identification of androgen-inducible TGF-beta1 derived from dermal papilla cells as a key mediator in androgenetic alopecia. J Investig Dermatol Symp Proc 8, 69-71.
41]  Foitzik, K., Lindner, G. M., Mueller-Roever, S., Maurer, M., Botchkareva, N., Botchkareva, V., Metz, M., Hibino, T., Soma, T., Paolo dotto, G., Paus, A. (2000). Control of murine hair follicle regression (catagen) by TGF-b1 in vivo. Faseb J 14, 752-760.
42]  Tsuji, Y., Denda, S., Soma, T., Raftery, L., Momoi, T., and Hibino, T. (2003). A potential suppressor of TGF-beta delays catagen progression in hair follicles. J Investig Dermatol Symp Proc 8, 65-68.
43]  Hibino, T., and Nishiyama T. (2004). Role of TGF-ß2 in the human hair cycle. J Dermatol Sci 35, 9-18.
44]  Soma, T., Tsuji, Y., and Hibino, T. (2002). Involvement of transforming growth factor-beta2 in catagen induction during the human hair cycle. J Invest Dermatol l118, 993-7.
45]  Hamada, K., and Randall, V. A. (2006). Inhibitory autocrine factors produced by the mesenchyme-derived hair follicle dermal papilla may be a key to male pattern baldness. Br J Dermatol 154, 609-618.
46]  Williams, D. E., de Vries, P., Namen, A. E., Widmer, M. B., and Lyman, S. D. (1992). The Steel factor. Dev Biol 151, 368-376.
47]  Grichnik, J. M., Burch, J. A., Burchette, J., and Shea, C. R. (1998). The SCF/KIT pathway plays a critical role in the control of normal human melanocyte homeostasis. J Invest Dermatol 111, 233-238.
48]  Geissler, E. N., Ryan, M. A., and Housman, D. E. (1988). The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell 55, 185-192.
49]  Fleischman, R. A., Saltman, D. L., Stastny, V., and Zneimer, S. (1991). Deletion of the c-kit protooncogene in the human developmental defect piebald trait. Proc Natl Acad Sci U S A 88, 10885-10889.
50]  Hibberts, N. A., Messenger, A. G., and Randall, V. A. (1996). Dermal papilla cells derived from beard hair follicles secrete more stem cell factor (SCF) in culture than scalp cells or dermal fibroblasts. Biochem Biophys Res Commun 222, 401-405.
51]  Randall, V. A., Jenner, T.J., and De Oliveira, I. (2001). The human hair follicle contains several populations of melanocyte-lineage cells with differential expression of three melanocyte-lineage markers c-kit and Bc1-2. J Invest Dermatol.
52]  Philpott, M. P., Sanders, D. A., and Kealey, T. (1994). Effects of insulin and insulin-like growth factors on cultured human hair follicles: IGF-I at physiologic concentrations is an important regulator of hair follicle growth in vitro. J Invest Dermatol 102, 857-861.
53]  Barreca, A., De Luca, M., Del Monte, P., Bondanza, S., Damonte, Cariola, G., Di Marco, E., Giordano, G., Cancedda, R., and Minuto, F. (1992). In vitro paracrine regulation of human keratinocyte growth by fibroblast-derived insulin-like growth factor. J Cell Patho 151, 262-268.
54]  Tavakkol, A., Elder, J.T., Griffiths, C.E.M., Cooper, K.D., Talwar, H., Fisher, G.J., Keane, K.M., Foltin, S.K., and Voorhees, J.J (1992). Expression of growth hormone receptor, insulin-like growth factor 1 (IGF-1) and IGF-1 receptor mRNA and proteins in human skin. J Invest Dermatol 99, 343-349.
55]  Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J., and Efstratiadis, A. (1993). Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59-72.
56]  Itami, S., Kurata, S., and Takayasu, S. (1995). Androgen induction of follicular epithelial cell growth is mediated via insulin-like growth factor-I from dermal papilla cells. Biochem Biophys Res Commun 212, 988-994.
57]  Conover, C.A., and Powell, D.R. (1991). Insulin-like growth factor (IGF)-binding protein-3 blocks IGF-I induced receptor down-regulation and cell desensitisation in culture bovin fibrobalsts. Endocrinol 129, 710-716.
58]  Tesch, G.H., Cornell, H.J., Herington, A.C. and Oakes, S. (1993). Effects of insulin-like growth factor binding protein complexes on human fibroblast growth. Growth Reg. 3, 151-159.
59]  Xiong, Y., and Harmon, C.S. (1997). Interleukin-1beta is differentially expressed by human dermal papilla cells in response to PC activation and is a potent inhibitor of human hair follicle growth in organ culture. j interferon Cytokine Res 17, 151-7.
60]  Ruckert, R., Lindner, G., Bulfone-Paus, S., and Pause, R. (2000). High-dose proinflammatory cytokines induce apoptosis of hair bulb keratinocytes in vivo. Br J Dermatol 143, 1036-1069.
61]  Hoffmann, R., Eicheler, W., Wenzel, E., and Happle R. (1997). Interleukin-1beta-induced inhibition of hair growth in vitro is mediated by cyclic AMP. J Inves Dermatol 108, 40-42.
62]  Harmon, C.S., and Nevins, T.D. (1993). IL-1 alpha inhibits human hair follicle growth and hair fiber production in whole-organ cultures. Lymphoine Cytokine Res 12, 197-203.
63]  Kwack, M. H., Kim, M. K., Kim, J. C., Sung, Y. K. (2010). Interleukin-6 secreted from balding dermal papilla cells causes apoptosis in follicular keratinocytes and regulates hair cycling in mice. Exper Dermatol (19), 569.
64]  Montagna, W., and Van Scott, E. J. (1958). The anatomy of the hair follicle, In The biology of hair growth, W. Montagna, and Ellis, R.A., ed. (Academic Press, New York), pp. 39-64.
65]  Lachgar, S., Moukadiri, H., Jonca, F., Charveron, M., Bouhaddioui, N., Gall, Y., Bonafe, J. L., and Plouet, J. (1996). Vascular endothelial growth factor is an autocrine growth factor for hair dermal papilla cells. J Invest Dermatol 106, 17-23.
66]  Hibberts, N. A., Kato, S., Messenger, A.G., and Randall, V.A. (1996). Dermal papilla cells from human hair follicles secrete factors (e.g. VEGF) mitogenic for endothelial cells. J Invest Dermatol 106, 862.
67]  Merrick, A. E., Hibberts, N.A., Kato, S., Messenger, A.G., Thornton, M.J., and Randall, V.A. (1999). Both beard and scalp cultured dermal papilla cells express mRNA for, and secrete, VEGF but the levels are unaltered by testosterone in vitro. J Invest Dermatol Sym Proc 4, 352.
68]  Lachgar, S., Charveron, M., Ceruti, I., Lagarde, J.M., Gall, Y., and Bonafe, J. L. (1996). VEGF mRNA expression in different stages of the human hair cycle: analysis by confocal laser microscopy. In: Hair research for the next Millenium, D. Van Neste, and V. A. Randall, edc. (Amsterdam: Elsevier) pp. 407-411.
69]  Montagna, W., and Ellis, R. A. (1958). The vascularity and innervation of human hair follicles. In: The biology of hair growth. W.Montagna, and R. A. Ellis, eds. (London: Academic press Inc.) pp. 219-227.
70]  Joseph, I.B., Nelson, J.B., Denmeade, S.R., and Isaacs, J.T. (1997). Androgens regulate vascular endothelial growth factor content in normal and malignant prostatic tissue. Clin Cancer Res 3, 2507-2511.
71]  Aslan, G., Cimen, S., Yorukoglu, K., Tuna, B., Sonmez, D., Mungan, U., and Celebi, I. (2005). Vascular endothelial growth factor expression in untreated and androgen-deprived patients with prostate cancer. Pathol Res Pract 201, 593-598.
72]  Khidhir, K. G., , D. F., , N. P., Farjo, B. K.,, E. S., , J. W., , S. M., , V. A. (2013). The prostamide-related glaucoma therapy, bimatoprost, offers a novel approach for treating scalp alopecias. FASEB J 27, 557-567.
Show Less References


The Changes of the Cellular Indicators of Leucopoiesis in Irradiated Animals under Hypomotile Conditions

1Department of Microvawe Radiophysics and Telecommunication, Yerevan State University, Alex Manoogian str.1, Yerevan 0025, Armenia

2Department of Human and Animals Phisiology, Yerevan State University, Alex Manoogian str.1, Yerevan 0025, Armenia

American Journal of Medical and Biological Research. 2015, 3(1), 33-37
DOI: 10.12691/ajmbr-3-1-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Vitali Kalantaryan, Tsovinar Adamyan, Emma Gevorkyan, Nona Adamyan, Tigran Hayrapetyan. The Changes of the Cellular Indicators of Leucopoiesis in Irradiated Animals under Hypomotile Conditions. American Journal of Medical and Biological Research. 2015; 3(1):33-37. doi: 10.12691/ajmbr-3-1-2.

Correspondence to: Vitali  Kalantaryan, Department of Microvawe Radiophysics and Telecommunication, Yerevan State University, Alex Manoogian str.1, Yerevan 0025, Armenia. Email:,


It is studied the nature of the changes of the morpho-functional indicators of leukopoiesis in hypokinesia dynamics on the background of multiple impact of the millimeter range electromagnetic waves. It is shown that the preliminary radiation increases the potential capacity of the regulatory systems of leukopoiesis, activates the proliferative and maturation processes of the stem cells, and boosts the adaptive compensatory mechanisms thus resulting in preventing of the negative impact of hypokinesis.The obtained data allow us to assume that the low-power microwaves with the frequency of 42.2 GHz are means of non-medicational treatment under stress rectifying the changes of the morpho-functional indicators.The changes in the sympathoadrenal system, the increase of the immunoreactivity and non-specific resistance, the activization of endogenetic immunomodulators have important role in the mechanism of the physiological impact of non-ionizing millimeter electromagnetic waves.



[1]  Molokanova V, Shigabutdinova E and Makarova L 2004 Correction immunobiochemical status of animals under lengthy period of adaptation to hypokinesia Modern science technologies 4 13-16 Troitsk.
[2]  Latyushin Ya 2010 Regularities of molecular and cellular adaptation processes in the blood system in acute and chronic hypokinetic stress Abstract of dissertation Dr.Sci.Biol Chelyabinsk 33pp.
[3]  Grigoryan A 1993 Effect of hypokinesia on some aspects of the metabolism and the natural resistance of animals Abstract of Ph.D. thesis of veterinary sciences 27 pp.
[4]  Chanieva M 2012 Erythrocyte and thrombocytic indicators of peripheral blood in conditions simulating microgravity and hyperkinesias Abstract of dissertation MD Moscow 23p.
[5]  Devyatkov N and Betskiy O 1985 Features of low -intensity millimeter radiation interaction with biological objects Report digests. Low-intensity millimeter radiation application in biology and medicine IRE AN USSR Moscow.
Show More References
6]  Presman A 1998 Electromagnetic fields and wildlife Nauka 228pp Moscow.
7]  Devyatkov N, Betsky O and Golant M 1991 Millimeter waves and their role in the processes of life Radio and Svyaz, Moscow.
8]  Chuyan E and Makhonina M 2005 Synthetic activity of lymphocytes: the effect of radiation of millimeter range Millimeter waves in biology and medicine 1 32-6.
9]  Rojavin M and Ziskin M 1998 Medical application of millimeter waves QJ Med 91 57-6.
10]  Minasyan S, Grigoryan G, Saakyan S, Akhumyan A and Kalantaryan V 2007 Effects of the Action of Microwave-Frequency Electromagnetic Radiation on the Spike Activity of Neurons in the Supraoptic Nucleus of the Hypothalamus in Rats.Neuroscience and Behavioral Physiology (USA) 37 N 2 175-80.
11]  Tadevosyan H, Kalantaryan V and Trchounian A 2008 Extremely High Frequency Electromagnetic Radiation Enforces Bacterial Effects of Inhibitors and Antiobiotics. Cell Biochemestry & Biophysics 51(2-3) 97-103 July.
12]  Kalantaryan V, Vardevanyan P, Babayan Y, Gevorkyan E, Hakobyan S and Antonyan A 2010 Influence of low intensity coherent electromagnetic millimeter radiation (EMR) on aqua solution of DNA. Progress In Electromagnetics Research Letters 13 1-9.
13]  Torgomyan H, Kalantaryan V and Trchounian A 2011 Low Intensity Electromagnetic Irradiation with 70.6 and 73 GHz Frequencies Affects Escherichia coli Growth and Changes Water Properties. Cell Biochemestry & Biophysics 60(3) 275-81.
14]  Kalantaryan V, Martirosyan R, Nersesyan L, Aharonyan A, Danielyan I, Stepanyan H, Gharibyan J and Khudaverdyan N 2011 Effect on tumoral cells of low intensity electromagnetic waves Progress In Electromagnetics Research Letters 20 98-105.
15]  Torgomyan H, Ohanyan V, Blbulyan S, Kalantaryan V and Trchounian A 2012 Electromagnetic irradiation of Enterococcus hirae at low-intensity 51.8- and 53.0-GHz frequencies: changes in bacterial cell membrane properties and enhanced antibiotics effects. FEMS Microbiology Letters Apr., 329(2), 131-37.
16]  Kalantaryan V, Martirosyan R, Babayan Y, Nersesyan L and Stepanyan H 2014 Preliminary Results of Influence of Nonionizing Electromagnetic Radiation on Tumor and Healthy DNA and Role of Water American Journal of Medical and Biological Research 2(1) 18-25.
17]  Temuryants N and Chuyan E 1992 Effect of microwaves of nonthermal intensity on the development of hypokinetic stress in rats with different individual characteristics Millimeter waves in biology and medicine 1 22-32.
18]  Temuryants N, Chuyan E and Tumanyants E 1993 Dependence of the anti-stress action of electromagnetic radiation of millimeter range from impact localization in rats with different typological features Millimeter waves in biology and medicine 2 51-8.
19]  Kirichuk V, Antipova O, Andronov E, IvanovA, Krenitski A and Mayborodin A 2009 Efficiency of the different modes THz-radiation waves on restoration of rheology properties of the blood under stress-reaction with white rats Biomedical Radioelectronics 6 55-62.
20]  Chuyan E 2008 Physiological mechanisms of biological action of low-intensity electromagnetic radiation of extremely high frequency Millimeter waves in biology and medicine 2(50) 10-44.
21]  Pshennikova M 2001 Stress phenomenon. Emotional stress and its role in pathology Patologicheskaia fiziologiia 2 26-30.
22]  Galeeva A and Zhukov D 1996 Behavioural and endocrine responses to the emotional stress in rats strains selected for divergent acquisition of active avoidance Zhurnal visshei nervnoi deyatelnosti imeni I.P. Pavlova 46(5) 929-36.
23]  Venglinskaya E, Rukavtsov B, et al. 1978 A comparative study of functional activity and cytochemical characteristics of human and rabbit microphages”, Journal of hygiene, epidemiology, microbiology, and immunology 22(1) 83-9.
24]  Lushnikov K, Gapeyev A and Chemeris N 2002 Effects of extremely high-frequency electromagnetic radiation on the immune system and systemic regulation of homeostasis Radiatsionnaia biologiia, radioecologiia /Rossiiskaia akademiia nauk/ 42(5) 533-45.
25]  Goldberg E, Dygai A and Zhdanov V 2006 Role of stem cells in restoring hematopoiesis with cytostatic and radiation myelosuppressions Bulletin of the Siberian medicine 2 35-42.
26]  Chrousos, G.P. and P.W.Gold, “The concepts of stress system disorders: overview of beheuvioral and physical homeostasis”, J. A.M.A. Vol.267, 1244-1252, 1992.
27]  Panin, L. E. “Biochemical mechanisms of stress.” Nauka, Novosibirsk, 232pp, 1983.
28]  Chuyan, E.N. and N.A.Temuryants, “Neuro-immune-endocrine mechanisms of adaptation to low-intensity electromagnetic radiation of extremely high frequency”, Millimeter waves in biology and medicine, Vol.3(39), 17-31, 2005.
29]  Zhukova, G.V., L.H.Garkavi, O.F.Eustratova, E.U.Zlatnik, T.A.Barteneva, E.A.Kipelova et al. “State of some immune structures under antitumoral effects of combined action of Skenar-therapy and modulated EHF EMR in experiments”. Biomedical technology and radioelectronics 8 10-17 2005.
30]  Malnsky A and Malnsky D 1983 Essays on neutrophils and macrophages Novosibirsk. Science, 256 pp.
Show Less References


The Immunomodulatory, Antimicrobial and Bactericidal Efficacy of Commonly Used Commercial Household Disinfectants, Sterilizers and Antiseptics in Vitro: Laboratory Assessment of Anti-Inflammatory Infection Control Mechanisms and Comparative Biochemical Analysis of the Microbial Growth of Gram-Negative Bacteria

1Cellular and Molecular Physiology and Immunology Signaling Research Group, Biomedical Laboratory and Clinical Sciences Division, Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon

American Journal of Medical and Biological Research. 2015, 3(1), 1-32
DOI: 10.12691/ajmbr-3-1-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Niveen M. Masri, Lama B. Hanbali, John J. Haddad. The Immunomodulatory, Antimicrobial and Bactericidal Efficacy of Commonly Used Commercial Household Disinfectants, Sterilizers and Antiseptics in Vitro: Laboratory Assessment of Anti-Inflammatory Infection Control Mechanisms and Comparative Biochemical Analysis of the Microbial Growth of Gram-Negative Bacteria. American Journal of Medical and Biological Research. 2015; 3(1):1-32. doi: 10.12691/ajmbr-3-1-1.

Correspondence to: John  J. Haddad, Cellular and Molecular Physiology and Immunology Signaling Research Group, Biomedical Laboratory and Clinical Sciences Division, Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon. Email:


Background: Immunomodulatory/anti-inflammatory and microbial infection control strategies characterize the spiral evolution of public awareness of health safety issues. This is substantiated with burgeoning number of cases of microbial contamination and/or infection in myriad healthcare settings, at the hospital, and even at home. Previously, we have investigated and identified laboratory parameters in the assessment of the antimicrobial effects of a myriad of commercial disinfectants on the growth of pathogenic and saprophytic gram-positive bacteria. The present sequel study investigates the antimicrobial/bactericidal effects of commercially available disinfectants, sterilizers, antiseptics, and chlorhexidine-containing detergents on the growth of saprophytic and pathogenic gram-negative bacteria in vitro. It is an unprecedented wide canopy enveloping standardized comparative assessments of the antimicrobial efficiency of consumer-targeted household detergents, curbing and containing microbial infection, inflammation and contamination propensity. Methods: Given the medical significance and impact of public infection control, we have meticulously examined at least 22 different detergents categorized into four classes (each category comprises a variety of commercially available products commonly used by the public): i) Class A – Daily Mouthwash; ii) Class B – Toilet Bowl Cleaners/Bleaches/Sanitizers; iii) Class C – Surface and Floor Mopping Cleaners/Detergents; and iv) Class D – Hand and Body Wash Gels. Whilst the canonical menu of active ingredients varies among those aforementioned classes, antimicrobial components are well established. Results: Regarding Class A, the most effective against Citrobacter koseri is ‘Colgate Plax Mouthwash’; Enterobacter cloacae is ‘Colgate Plax Mouthwash’; Escherichia coli is ‘Colgate Plax Mouthwash’; Escherichia coli ESBL is ‘Colgate Plax Mouthwash’; Klebsiella pneumoniae is ‘Colgate Plax Mouthwash’; Proteus vulgaris is ‘Colgate Plax Mouthwash’; Pseudomonas aeruginosa is ‘Perio.Kin Chlorhexidina 0.20 %’; Salmonella typhimurium is ‘Colgate Plax Mouthwash’; and Shigella sonnei is ‘Colgate Plax Mouthwash’. Regarding Class B, the most effective against C. koseri is ‘Harpic Power Plus Disinfectant’; E. cloacae is ‘WC Net Bleach Gel’; E. coli is ‘WC Net Bleach Gel’; E. coli ESBL is ‘WC Net Bleach Gel’; K. pneumoniae are ‘WC Net Bleach Gel’ and ‘Harpic Power Plus Disinfectant’; P. vulgaris is ‘Spartan Max WC Lavender’; P. aeruginosa is ‘WC Net Bleach Gel’; S. typhimurium is ‘Clorox Bleach Rain Clean’; and S. sonnei is ‘Harpic Power Plus Disinfectant’. Regarding Class C, the most effective against C. koseri is ‘Dettol Antiseptic/Disinfectant’; E. cloacae is ‘Dettol Antiseptic/Disinfectant’; E. coli is ‘Vim Cream Multipurpose Fast Rinsing’; E. coli ESBL is ‘Dettol Antiseptic/Disinfectant’; K. pneumoniae is ‘Dettol Antiseptic/Disinfectant’; P. vulgaris is ‘Dettol Antiseptic/Disinfectant’; P. aeruginosa is ‘Dettol Antiseptic/Disinfectant’; S. typhimurium is ‘Dettol Antiseptic/Disinfectant’; and S. sonnei is ‘Dettol Antiseptic/Disinfectant’. Regarding Class D, the most effective against C. koseri, E. cloacae, E. coli, E. coli ESBL, K. pneumoniae, P. vulgaris, P. aeruginosa, S. typhimurium, and S. sonnei is unprecedentedly the ‘HiGeen Hand and Body Wash Gel’.



[1]  Masri, M.N.; Hanbali, L.B.; Kamar, A.H.; Kanafani, L.M.S.; Hanbali, M.B.; Haddad, J.J. The immunomodulatory, antimicrobial and bactericidal efficacy of commonly used commercial household disinfectants, sterilizers and antiseptics in vitro: Putative anti-inflammatory infection control mechanisms and comparative biochemical analysis of the microbial growth of gram-positive bacteria. Am. J. Med. Biol. Res., 2013, 1, 103-133.
[2]  Bloomfield, S.F. The use of disinfectants in the home. J. Appl. Bacteriol., 1978, 45, 1-38.
[3]  Tirali, R.E.; Bodur, H.; Sipahi, B.; Sungurtekin, E. Evaluation of the antimicrobial activities of chlorhexidine gluconate, sodium hypochlorite and octenidine hydrochloride in vitro. Aust. Endod. J., 2013, 39, 15-18.
[4]  Gomes, B.P.; Ferraz, C.C.; Vianna, M.E.; Berber, V.B.; Teixeira, F.B.; Souza-Filho, F.J. In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus faecalis. Int. Endod. J., 2001, 34, 424-428.
[5]  Lankford, M.G.; Collins, S.; Youngberg, L.; Rooney, D.M.; Warren, J.R.; Noskin, G.A. Assessment of materials commonly utilized in health care: Implications for bacterial survival and transmission. Am. J. Infect. Control, 2006, 34, 258-263.
Show More References
6]  Burke, J.P. Infection control a problem for patient safety. N. Engl. J. Med., 2003, 348, 651-656.
7]  Noskin, G.A.; Stosor, V.; Cooper, I.; Peterson, L.R. Recovery of vancomycin-resistant Enterococci on fingertips and environmental surfaces. Infect. Control Hosp. Epidemiol., 1995, 16, 577-581.
8]  Sehulster, L.; Chinn, R.Y.W. Guidelines for environmental infection control in health-care facilities. Recommendations of CDC and the healthcare infection control practices advisory committee (HICPAC). MMWR Morb. Mortal. Wkly. Rep., 2003, 52, 1-42.
9]  Scott, E.; Bloomfield, S.F. The survival and transfer of microbial contamination via cloths, hands, and utensils. J. Appl. Bacteriol., 1990, 68, 271-278.
10]  Neely, A.N.; Maley, M.P. Survival of Enterococci and Staphylococci on hospital fabrics and plastics. J. Clin. Microbiol., 2000, 38, 724-726.
11]  Widmer, A.F.; Wenzel, R.P.; Trilla, A.; Bale, M.J.; Jones, R.N.; Doebbling, B.N. Outbreak of Pseudomonas aeruginosa infections in a surgical intensive care unit: Probable transmission via hands of healthcare worker. Clin. Infect. Dis., 1993, 16, 372-376.
12]  Saurina, G.; Landman, D.; Quale, J.M. Activity of disinfectants against vancomycin-resistant Enterococcus faecium. Infect. Control Hosp. Epidemiol., 1997, 18, 345-347.
13]  Rutala,W.A.; Barbee, S.L.; Aguiar, N.C.; Sobsey, M.D.; Weber, D.J. Antimicrobial activity of home disinfectants and natural products against potential human pathogens. Infect. Control Hosp. Epidemiol., 2000, 21, 33-38.
14]  Dharan, S.; Mourouga, P.; Copin, P.; Bessmer, G.; Tschanz, B.; Pittet, D. Routine disinfection of patients’ environmental surfaces. Myth or reality? J. Hosp. Infect., 1999, 42, 113-117.
15]  Exner, M.; Vacata, V.; Hornei, B.; Dietlein, E.; Gebel, J. Household cleaning and surface disinfection: New insights and strategies. J. Hosp. Infect., 2004, 56, S70-S75.
16]  Rutala, W.A. APIC guideline for selection and use of disinfectants. Am. J. Infect. Control, 1996, 24, 313-342.
17]  Lim, W.M.; Ting, D.H. Healthcare marketing: Contemporary salient issues and future research directions. Int. J. Healthcare Manag., 2012, 5, 3-11.
18]  Entoyen, A.; Tollen, L. Competition in healthcare: It takes systems to pursue quality and efficiency. Health Aff., 2005, 24, 420-433.
19]  Patters, M.R.; Nalbandian, J.; Nichols, F.C. Effects of octenidine mouthrinse on plaque formation and gingivitis in humans. J. Periodontal. Res., 1986, 21, 154-162.
20]  Mir, J.; Morato, J.; Ribas, F. Resistance to chlorine of freshwater bacterial strains. J. Appl. Microbiol., 1997, 82, 7-18.
21]  Earnshaw, A.M.; Lawrence, L.M. Sensitivity to commercial disinfectants, and the occurrence of plasmids within various Listeria monocytogenes genotypes isolated from poultry products and the poultry processing environment. J. Appl. Microbiol., 1998, 84, 642-648.
22]  Taylor, J.H.; Rogers, S.J.; Holah, J.T. A comparison of the bactericidal efficacy of 18 disinfectants used in the food industry against Escherichia coli O157:H7 and Pseudomonas aeruginosa at 10 and 20°C. J. Appl. Microbiol., 1999, 87, 718-725.
23]  Langsrud, S.; Møretrø, T.; Sundheim, G. Characterization of Serratia marcescens surviving in disinfecting footbaths. J. Appl. Microbiol., 2003, 95, 186-195.
24]  Halfhide, D.E.; Gannon, B.W.; Hayes, C.M.; Roe, J.M. Wide variation in effectiveness of laboratory disinfectants against bacteriophages. Lett. Appl. Microbiol., 2008, 47, 608-612.
25]  Møretrø1, T.; Vestby, L.K.; Nesse, L.L.; Storheim, S.E.; Kotlarz, K.; Langsrud, S. Evaluation of efficacy of disinfectants against Salmonella from the feed industry. J. Appl. Microbiol., 2009, 106, 1005-1012.
26]  Pereira, R.P.; Lucas, M.G.; Spolidorio, D.M.P.; Filho, J.N.A. Antimicrobial activity of disinfectant agents incorporated into type IV dental stone. Gerodontol., 2012, 29, e267-e274.
27]  Banwo1, K.; Sanni, A.; Tan, H. Technological properties and probiotic potential of Enterococcus faecium strains isolated from cow milk. J. Appl. Microbiol., 1997, 114, 229-241.
28]  Langsrud, S.; Sundheim, G. Factors influencing a suspension test method for antimicrobial activity of disinfectants. J. Appl. Microbiol., 1998, 85, 1006-1012.
29]  Walton, J.T.; Hill, D.J.; Protheroe, R.G.; Nevill, A.; Gibson, H. Investigation into the effect of detergents on disinfectant susceptibility of attached Escherichia coli and Listeria monocytogenes. J. Appl. Microbiol., 2008, 105, 309-315.
30]  Kastbjerg, V.G.; Gram, L. Model systems allowing quantification of sensitivity to disinfectants and comparison of disinfectant susceptibility of persistent and presumed non-persistent Listeria monocytogenes. J. Appl. Microbiol., 2009, 106, 1667-1681.
31]  Eick, S.; Goltz, S.; Nietzsche, S.; Jentsch, H.; Pfister, W. Efficacy of chlorhexidine digluconate-containing formulations and other mouthrinses against periodontopathogenic microorganisms. Quintessence Int., 2011, 42, 687-700.
32]  Lin, S.; Levin, L.; Weiss, E.I.; Peled, M.; Fuss, Z. In vitro antibacterial efficacy of a new chlorhexidine slow-release device. Quintessence Int., 2006, 37, 391-394.
33]  Sampath, L.A.; Tambe, S.M.; Modak, S.M. In vitro and in vivo efficacy of catheters impregnated with antiseptics or antibiotics: Evaluation of the risk of bacterial resistance to the antimicrobials in the catheters. Infect. Control Hosp. Epidemiol., 2001, 22, 640-646.
34]  McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev., 1999, 12, 147-179.
35]  Nicoletti, G.; Boghossianm V.; Gurevitchm F.; Borlandm R.; Morgenrothm P. The antimicrobial activity in vitro of chlorhexidine, a mixture of isothiazolinones (‘Kathon’ CG) and cetyl trimethyl ammonium bromide (CTAB). J. Hosp. Infect., 1993, 23, 87-111.
36]  Russell, A.D. Chlorhexidine: Antibacterial action and bacterial resistance. Infection, 1986, 14, 212-215.
37]  Rugpolmuang, L.; Thanabodeethada, R.; Riansuwan, K. Comparison of the effectiveness in bacterial decontamination between chlorhexidine gluconate and povidone-iodine solution in foot and ankle: A pilot study. J. Med. Assoc. Thai., 2012, 95, S95-S98.
38]  Mohammadi, Z.; Shalavi, S.; Giardino, L.; Palazzi, F.; Mashouf, R.Y.; Soltanian, A. Antimicrobial effect of three new and two established root canal irrigation solutions. Gen. Dent., 2012, 60, 534-537.
39]  Pradeep, A.R.; Kumari, M.; Priyanka, N.; Naik, S.B. Efficacy of chlorhexidine, metronidazole and combination gel in the treatment of gingivitis – A randomized clinical trial. J. Int. Acad. Periodontol., 2012, 14, 91-96.
40]  Abuzaid, A.; Hamouda, A.; Amyes, S.G. Bactericidal activity of five antiseptics on Klebsiella pneumoniae and its relationship to the presence of efflux pump genes and influence of organic matter. J. Chemother., 2012, 24, 297-299.
41]  Bidar, M.; Hooshiar, S.; Naderinasab, M.; Moazzami, M.; Orafaee, H.; Naghavi, N.; Jafarzadeh, H. Comparative study of the antimicrobial effect of three irrigant solutions (chlorhexidine, sodium hypochlorite and chlorhexidinated MUMS). J. Contemp. Dent. Pract., 2012, 13, 436-439.
42]  Da Silva, N.B.; Alexandria, A.K.; De Lima, A.L.; Claudino, L.V.; De Oliveira Carneiro, T.F.; Da Costa, A.C.; Valença, A.M.; Cavalcanti, A.L. In vitro antimicrobial activity of mouth washes and herbal products against dental biofilm-forming bacteria. Contemp. Clin. Dent., 2012, 3, 302-305.
43]  Neely, A.L. Essential oil mouthwash (EOMW) may be equivalent to chlorhexidine (CHX) for long-term control of gingival inflammation but CHX appears to perform better than EOMW in plaque control. J. Evid. Based Dent. Pract., 2012, 12, S69-S72.
44]  Wikén Albertsson, K.; Persson, A.; van Dijken, J.W. Effect of essential oils containing and alcohol-free chlorhexidine mouthrinses on cariogenic micro-organisms in human saliva. Acta Odontol. Scand., 2013, 71, 883-891.
45]  Konidala, U.; Nuvvula, S.; Mohapatra, A.; Nirmala, S.V. Efficacy of various disinfectants on microbially contaminated toothbrushes due to brushing. Contemp. Clin. Dent., 2011, 2, 302-307.
46]  Zheng, C.Y.; Wang, Z.H. Effects of chlorhexidine, listerine and fluoride listerine mouthrinses on four putative root-caries pathogens in the biofilm. Chin. J. Dent. Res., 2011, 14, 135-140.
47]  Charles, C.A.; McGuire, J.A.; Sharma, N.C.; Qaqish, J. Comparative efficacy of two daily use mouthrinses: Randomized clinical trial using an experimental gingivitis model. Braz. Oral Res., 2011, 25, 338-344.
48]  Agarwal, P.; Nagesh, L. Comparative evaluation of efficacy of 0.2% Chlorhexidine, Listerine and Tulsi extract mouth rinses on salivary Streptococcus mutans count of high school children – RCT. Contemp. Clin. Trials, 2011, 32, 802-808.
49]  Ramage, G.; Jose, A.; Coco, B.; Rajendran, R.; Rautemaa, R.; Murray, C.; Lappin, D.F.; Bagg, J. Commercial mouthwashes are more effective than azole antifungals against Candida albicans biofilms in vitro. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2011, 111, 456-460.
50]  Saad, S.; Greenman, J.; Shaw, H. Comparative effects of various commercially available mouthrinse formulations on oral malodor. Oral Dis., 2011, 17, 180-186.
51]  Fine, D.H. Listerine: Past, present and future – A test of thyme. J. Dent., 2010, 38, S2-S5.
52]  Fine, D.H.; Furgang, D.; McKiernan, M.; Tereski-Bischio, D.; Ricci-Nittel, D.; Zhang, P.; Araujo, M.W. An investigation of the effect of an essential oil mouthrinse on induced bacteraemia: A pilot study. J. Clin. Periodontol., 2010, 37, 840-847.
53]  Beneduce, C.; Baxter, K.A.; Bowman, J.; Haines, M.; Andreana, S. Germicidal activity of antimicrobials and VIOlight personal travel toothbrush sanitizer: An in vitro study. J. Dent., 2010, 38, 621-625.
54]  Haffajee, A.D.; Yaskell, T.; Socransky, S.S. Antimicrobial effectiveness of an herbal mouthrinse compared with an essential oil and a chlorhexidine mouthrinse. J. Am. Dent. Assoc., 2008, 139, 606-611.
55]  Edmonds, S.L.; McCormack, R.R.; Zhou, S.S.; Macinga, D.R.; Fricker, C.M. Hand hygiene regimens for the reduction of risk in food service environments. J. Food Prot., 2012, 75, 1303-1309.
56]  Wang, Z.; Shen, Y.; Ma, J.; Haapasalo, M. The effect of detergents on the antibacterial activity of disinfecting solutions in dentin. J. Endod., 2012, 38, 948-953.
57]  Almas, K.; Skaug, N.; Ahmad, I. An in vitro antimicrobial comparison of miswak extract with commercially available non-alcohol mouthrinses. Int. J. Dent. Hyg., 2005, 3, 18-24.
58]  Otten, M.P.; Busscher, H.J.; van der Mei, H.C.; van Hoogmoed, C.G.; Abbas, F. Acute and substantive action of antimicrobial toothpastes and mouthrinses on oral biofilm in vitro. Eur. J. Oral Sci., 2011, 119, 151-155.
59]  Lucas, V.S.; Gafan, G.; Dewhurst, S.; Roberts, G.J. Prevalence, intensity and nature of bacteraemia after toothbrushing. J. Dent., 2008, 36, 481-487.
60]  Sreenivasan, P.K.; Haraszthy, V.I.; Zambon, J.J. Antimicrobial efficacy of 0.05% cetylpyridinium chloride mouthrinses. Lett. Appl. Microbiol., 2013, 56, 14-20.
61]  Thomas, E. Efficacy of two commonly available mouth rinses used as preprocedural rinses in children. J. Indian Soc. Pedod. Prev. Dent., 2011, 29, 113-116.
62]  Sullivan, R.; Santarpia, P.; Lavender, S.; Gittins, E.; Liu, Z.; Anderson, M.H.; He, J.; Shi, W.; Eckert, R. Clinical efficacy of a specifically targeted antimicrobial peptide mouth rinse: Targeted elimination of Streptococcus mutans and prevention of demineralization. Caries Res., 2011, 45, 415-428.
63]  Haraszthy, V.I.; Zambon, J.J.; Sreenivasan P.K. Evaluation of the antimicrobial activity of dentifrices on human oral bacteria. J. Clin. Dent., 2010, 21, 96-100.
64]  Schaeffer, L.M.; Szewczyk, G.; Nesta, J.; Vandeven, M.; Du-Thumm, L.; Williams, M.I.; Arvanitidou, E. In vitro antibacterial efficacy of cetylpyridinium chloride-containing mouthwashes. J. Clin. Dent., 2011, 22, 183-186.
65]  Samuels, N.; Grbic, J.T.; Saffer, A.J.; Wexler, I.D.; Williams, R.C. Effect of an herbal mouth rinse in preventing periodontal inflammation in an experimental gingivitis model: A pilot study. Compend. Contin. Educ. Dent., 2012, 33, 204-206, 208-211.
66]  Zheng, C.Y.; Wang, Z.H. Effects of chlorhexidine, listerine and fluoride listerine mouthrinses on four putative root-caries pathogens in the biofilm. Chin. J. Dent. Res., 2011, 14, 135-140.
67]  Oyanagi, T.; Tagami, J.; Matin, K. Potentials of mouthwashes in disinfecting cariogenic bacteria and biofilms leading to inhibition of caries. Open Dent. J., 2012, 6, 23-30.
68]  Chen, Y.; Wong, R.W.; Seneviratne, C.J.; Hägg, U.; McGrath, C.; Samaranayake, L.P. Comparison of the antimicrobial activity of Listerine and Corsodyl on orthodontic brackets in vitro. Am. J. Orthod. Dentofacial Orthop., 2011, 140, 537-542.
69]  Thaweboon, S.; Thaweboon, B. Effect of an essential oil-containing mouth rinse on VSC-producing bacteria on the tongue. Southeast Asian J. Trop. Med. Public Health, 2011, 42, 456-462.
70]  Drake, D.; Villhauer, A.L. An in vitro comparative study determining bactericidal activity of stabilized chlorine dioxide and other oral rinses. J. Clin. Dent., 2011, 22, 1-5.
71]  Sliepen, I.; Van Essche, M.; Quirynen, M.; Teughels, W. Effect of mouthrinses on Aggregatibacter actinomycetemcomitans biofilms in a hydrodynamic model. Clin. Oral Investig., 2010, 14, 241-250.
72]  Abirami, C.P.; Venugopal, P.V. Antifungal activity of three mouth rinses – in vitro study. Indian J. Pathol. Microbiol., 2005, 48, 43-44.
73]  Jacups, S.P.; Ball, T.S.; Paton, C.J.; Johnson, P.H.; Ritchie, S.A. Operational use of household bleach to “crash and release” Aedes aegypti prior to Wolbachia-infected mosquito release. J. Med. Entomol., 2013, 50, 344-351.
74]  Goodyear, N. Effectiveness of five-day-old 10% bleach in a student microbiology laboratory setting. Clin. Lab. Sci., 2012, 25, 219-223.
75]  Grabsch, E.A.; Mahony, A.A.; Cameron, D.R.; Martin, R.D.; Heland, M.; Davey, P.; Petty, M.; Xie, S.; Grayson, M.L. Significant reduction in vancomycin-resistant Enterococcus colonization and bacteraemia after introduction of a bleach-based cleaning-disinfection programme. J. Hosp. Infect., 2012, 82, 234-242.
76]  Calfee, M.W.; Ryan, S.P.; Wood, J.P.; Mickelsen, L.; Kempter, C.; Miller, L.; Colby, M.; Touati, A.; Clayton, M.; Griffin-Gatchalian, N.; McDonald, S.; Delafield, R. Laboratory evaluation of large-scale decontamination approaches. J. Appl. Microbiol., 2012, 112, 874-882.
77]  Ballereau, F.; Merville, C.; Lafleuriel, M.T.; Schrive, I. Stability and antimicrobial effectiveness of Javel water in a tropical hospital environment. Bull. Soc. Pathol. Exot., 1997, 90, 192-195.
78]  Amoah, P.; Drechsel. P.; Abaidoo, R.C.; Klutse, A. Effectiveness of common and improved sanitary washing methods in selected cities of West Africa for the reduction of coliform bacteria and helminth eggs on vegetables. Trop. Med. Int. Health, 2007, 12, S40-S50.
79]  Valera, M.C.; Maekawa, L.E.; Oliveira, L.D.; Jorge, A.O.; Shygei, E.; Carvalho, C.A. In vitro antimicrobial activity of auxiliary chemical substances and natural extracts on Candida albicans and Enterococcus faecalis in root canals. J. Appl. Oral Sci., 2013, 21, 2.
80]  Vaziri, S.; Kangarlou, A.; Shahbazi, R.; Nazari Nasab, A.; Naseri, M. Comparison of the bactericidal efficacy of photodynamic therapy, 2.5% sodium hypochlorite, and 2% chlorhexidine against Enterococcous faecalis in root canals – An in vitro study. Dent. Res. J. (Isfahan), 2012, 9, 613-618.
81]  Mohammadi, Z.; Giardino, L.; Palazzi, F.; Shahriari, S. Effect of initial irrigation with sodium hypochlorite on residual antibacterial activity of tetraclean. N. Y. State Dent. J., 2013, 79, 32-36.
82]  Feliciano, L.; Li, J.; Lee, J.; Pascall, M.A. Efficacies of sodium hypochlorite and quaternary ammonium sanitizers for reduction of norovirus and selected bacteria during ware-washing operations. PLoS One, 2012, 7, e50273.
83]  Farhad, A.R.; Barekatain, B.; Allameh, M.; Narimani, T. Evaluation of the antibacterial effect of calcium hydroxide in combination with three different vehicles: An in vitro study. Dent. Res. J. (Isfahan), 2012, 9, 167-172.
84]  Altieri, K.T.; Sanitá, P.V.; Machado, A.L.; Giampaolo, E.T.; Pavarina, A.C.; Vergani, C.E. Effectiveness of two disinfectant solutions and microwave irradiation in disinfecting complete dentures contaminated with methicillin-resistant Staphylococcus aureus. J. Am. Dent. Assoc., 2012, 143, 270-277.
85]  Zand, V.; Salem-Milani, A.; Shahi, S.; Akhi, M.T.; Vazifekhah, S. Efficacy of different concentrations of sodium hypochlorite and chlorhexidine in disinfection of contaminated Resilon cones. Med. Oral Patol. Oral Cir. Bucal., 2012, 17, e352-e355.
86]  Madrid, I.M.; Mattei, A.S.; Santin, R.; dos Reis Gomes, A.; Cleff, M.B.; Meireles, M.C. Inhibitory effect of sodium hypochlorite and chlorhexidine digluconate in clinical isolates of Sporothrix schenckii. Mycoses, 2012, 55, 281-285.
87]  Ogunshe, A.A.; Omotoso, O.A.; Akindele, T.M. Soaps and germicides as adjunct topical antimycotic agents on Candida species implicated in vulvovaginal candidasis. East. Afr. J. Public Health, 2011, 8, 112-118.
88]  Young, R.; Buckley, L.; McEwan, N.; Nuttall, T. Comparative in vitro efficacy of antimicrobial shampoos: A pilot study. Vet. Dermatol., 2012, 23, 36-40, e8.
89]  Ogbulie, J.N.; Adieze, I.E.; Nwankwo, N.C. Susceptibility pattern of some clinical bacterial isolates to selected antibiotics and disinfectants. Pol. J. Microbiol., 2008, 57, 199-204.
90]  Messager, S.; Goddard, P.A.; Dettmar, P.W.; Maillard, J.Y. Comparison of two in vivo and two ex vivo tests to assess the antibacterial activity of several antiseptics. J. Hosp. Infect., 2004, 58, 115-121.
91]  Schäfer, E.; Bossmann, K. Antimicrobial efficacy of chloroxylenol and chlorhexidine in the treatment of infected root canals. Am. J. Dent., 2001, 14, 233-237.
92]  Wichelhaus, A.; Bader, F.; Sander, F.G.; Krieger, D.; Mertens, T. Effective disinfection of orthodontic pliers. J. Orofac. Orthop., 2006, 67, 316-336.
93]  Navarro-Escobar, E.; Baca, P.; González-Rodríguez, M.P.; Arias-Moliz, M.T.; Ruiz, M.; Ferrer-Luque, C.M. Ex vivo microbial leakage after using different final irrigation regimens with chlorhexidine. J. Appl. Oral Sci., 2013, 21, 74-79.
94]  Climo, M.W.; Yokoe, D.S.; Warren, D.K.; Perl, T.M.; Bolon, M.; Herwaldt, L.A.; Weinstein, R.A.; Sepkowitz, K.A.; Jernigan, J.A.; Sanogo, K.; Wong, E.S. Effect of daily chlorhexidine bathing on hospital-acquired infection. N. Engl. J. Med., 2013, 368, 533-542.
95]  Pradeep, A.R.; Kumari, M.; Priyanka, N.; Naik, S.B. Efficacy of chlorhexidine, metronidazole and combination gel in the treatment of gingivitis – A randomized clinical trial. J. Int. Acad. Periodontol., 2012, 14, 91-96.
96]  Salim, N.; Moore, C.; Silikas, N.; Satterthwaite, J.; Rautemaa, R. Chlorhexidine is a highly effective topical broad-spectrum agent against Candida spp. Int. J. Antimicrob. Agents, 2013, 41, 65-69.
97]  Rupp, M.E.; Cavalieri, R.J.; Lyden, E.; Kucera, J.; Martin, M.; Fitzgerald, T.; Tyner, K.; Anderson, J.R.; VanSchooneveld, T.C. Effect of hospital-wide chlorhexidine patient bathing on healthcare-associated infections. Infect. Control Hosp. Epidemiol., 2012, 33, 1094-1100.
98]  Baradari, A.G.; Khezri, H.D.; Arabi, S. Comparison of antibacterial effects of oral rinses chlorhexidine and herbal mouth wash in patients admitted to intensive care unit. Bratisl. Lek. Listy., 2012, 113, 556-560.
99]  Johnson, M.D.; Schlett, C.D.; Grandits, G.A.; Mende, K.; Whitman, T.J.; Tribble, D.R.; Hospenthal, D.R.; Murray, P.R. Chlorhexidine does not select for resistance in Staphylococcus aureus isolates in a community setting. Infect. Control Hosp. Epidemiol., 2012, 33, 1061-1063.
100]  Horner, C.; Mawer, D.; Wilcox, M. Reduced susceptibility to chlorhexidine in Staphylococci: Is it increasing and does it matter? J. Antimicrob. Chemother., 2012, 67, 2547-2559.
101]  Hannig, C.; Basche, S.; Burghardt, T.; Al-Ahmad, A.; Hannig, M. Influence of a mouthwash containing hydroxyapatite microclusters on bacterial adherence in situ. Clin. Oral Investig., 2013, 17, 805-814.
102]  Moeintaghavi, A.; Arab, H.; Khajekaramodini, M.; Hosseini, R.; Danesteh, H.; Niknami, H. In vitro antimicrobial comparison of chlorhexidine, persica mouthwash and miswak extract. J. Contemp. Dent. Pract., 2012, 13, 147-152.
103]  Baca, P.; Junco, P.; Arias-Moliz, M.T.; Castillo, F.; Rodríguez-Archilla, A.; Ferrer-Luque, C.M. Antimicrobial substantivity over time of chlorhexidine and cetrimide. J. Endod., 2012, 38, 927-930.
104]  Naparstek, L.; Carmeli, Y.; Chmelnitsky, I.; Banin, E.; Navon-Venezia, S. Reduced susceptibility to chlorhexidine among extremely-drug-resistant strains of Klebsiella pneumoniae. J. Hosp. Infect., 2012, 81, 15-19.
105]  Peros, K.; Mestrovic, S.; Anic-Milosevic, S.; Rosin-Grget, K.; Slaj, M. Antimicrobial effect of different brushing frequencies with fluoride toothpaste on Streptococcus mutans and Lactobacillus species in children with fixed orthodontic appliances. Korean J. Orthod., 2012, 42, 263-269.
106]  Malhotra, N.; Rao, S.P.; Acharya, S.; Vasudev, B. Comparative in vitro evaluation of efficacy of mouthrinses against Streptococcus mutans, Lactobacilli and Candida albicans. Oral Health Prev. Dent., 2011, 9, 261-268.
107]  Hitz Lindenmüller, I.; Lambrecht, J.T. Oral care. Curr. Probl. Dermatol., 2011, 40, 107-115.
108]  Lobo, P.L.; de Carvalho, C.B.; Fonseca, S.G.; de Castro, R.S.; Monteiro, A.J.; Fonteles, M.C.; Fonteles, C.S. Sodium fluoride and chlorhexidine effect in the inhibition of Streptococci mutans in children with dental caries: A randomized, double-blind clinical trial. Oral Microbiol. Immunol., 2008, 23, 486-491.
109]  Flisfisch, S.; Meyer, J.; Meurman, J.H.; Waltimo, T. Effects of fluorides on Candida albicans. Oral Dis., 2008, 14, 296-301.
110]  Rioboo, M.; García, V.; Serrano, J.; O’Connor, A.; Herrera, D.; Sanz, M. Clinical and microbiological efficacy of an antimicrobial mouth rinse containing 0.05% cetylpyridinium chloride in patients with gingivitis. Int. J. Dent. Hyg., 2012, 10, 98-106.
111]  Herrera, D.; Roldán, S.; Santacruz, I.; Santos, S.; Masdevall, M.; Sanz, M. Differences in antimicrobial activity of four commercial 0.12% chlorhexidine mouthrinse formulations: An in vitro contact test and salivary bacterial counts study. J. Clin. Periodontol., 2003, 30, 307-314.
112]  Bélanger-Giguère, K.; Giguère, S.; Bélanger, M. Disinfection of toothbrushes contaminated with Streptococcus mutans. Am. J. Dent., 2011, 24, 155-158.
113]  Otten, M.P.; Busscher, H.J.; van der Mei, H.C.; Abbas, F.; van Hoogmoed, C.G. Retention of antimicrobial activity in plaque and saliva following mouthrinse use in vivo. Caries Res., 2010, 44, 459-464.
114]  Pan, P.C.; Harper, S.; Ricci-Nittel, D.; Lux, R.; Shi, W. In-vitro evidence for efficacy of antimicrobial mouthrinses. J. Dent., 2010, 38, S16-S20.
115]  Feres, M.; Figueiredo, L.C.; Faveri, M.; Stewart, B.; de Vizio, W. The effectiveness of a preprocedural mouthrinse containing cetylpyridinium chloride in reducing bacteria in the dental office. J. Am. Dent. Assoc., 2010, 141, 415-422.
116]  Witt, J.; Ramji, N.; Gibb, R.; Dunavent, J.; Flood, J.; Barnes, J. Antibacterial and antiplaque effects of a novel, alcohol-free oral rinse with cetylpyridinium chloride. J. Contemp. Dent. Pract., 2005, 6, 1-9.
117]  Arias-Moliz, M.T.; Ferrer-Luque, C.M.; González-Rodríguez, M.P.; Navarro-Escobar, E.; de Freitas, M.F.; Baca, P. Antimicrobial activity and Enterococcus faecalis biofilm formation on chlorhexidine varnishes. Med. Oral Patol. Oral Cir. Bucal., 2012, 17, e705-e709.
118]  Karpanen, T.J.; Worthington, T.; Hendry, E.R.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis. J. Antimicrob. Chemother., 2008, 62, 1031-1036.
119]  Sykes, G. The sporicidal properties of chemical disinfectants. J. Appl. Bacteriol., 1970, 33, 147-156.
120]  Watanabe, E.; Tanomaru, J.M.; Nascimento, A.P.; Matoba-Júnior, F.; Tanomaru-Filho, M.; Yoko Ito, I. Determination of the maximum inhibitory dilution of cetylpyridinium chloride-based mouthwashes against Staphylococcus aureus: An in vitro study. J. Appl. Oral Sci., 2008, 16, 275-279.
121]  Hendry, E.R.; Worthington, T.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J. Antimicrob. Chemother., 2009, 64, 1219-1225.
122]  Kato, T.; Iijima, H.; Ishihara, K.; Kaneko, T.; Hirai, K.; Naito, Y.; Okuda, K. Antibacterial effects of Listerine on oral bacteria. Bull. Tokyo Dent. Coll., 1990, 31, 301-307.
123]  Battino, M.; Ferreiro, M.S.; Fattorini, D.; Bullon, P. In vitro antioxidant activities of mouthrinses and their components. J. Clin. Periodontol., 2002, 29, 462-467.
124]  Zimmermann, M.; Preac-Mursic, V. In vitro activity of taurolidine, chlorophenol-camphor-menthol and chlorhexidine against oral pathogenic microorganisms. Arzneimittelforschung, 1992, 42, 1157-1159.
125]  Seet, A.N.; Zilm, P.S.; Gully, N.J.; Cathro, P.R. Qualitative comparison of sonic or laser energisation of 4% sodium hypochlorite on an Enterococcus faecalis biofilm grown in vitro. Aust. Endod. J., 2012, 38, 100-106.
126]  Miranda, R.G.; Santos, E.B.; Souto, R.M.; Gusman, H.; Colombo, A.P. Ex vivo antimicrobial efficacy of the EndoVac® system plus photodynamic therapy associated with calcium hydroxide against intracanal Enterococcus faecalis. Int. Endod. J., 2013, 46, 499-505.
127]  Collao, B.; Morales, E.H.; Gil, F.; Polanco, R.; Calderón, I.L.; Saavedra, C.P. Differential expression of the transcription factors MarA, Rob, and SoxS of Salmonella Typhimurium in response to sodium hypochlorite: Down-regulation of rob by MarA and SoxS. Arch. Microbiol., 2012, 194, 933-942.
128]  Ordinola-Zapata, R.; Bramante, C.M.; Brandão Garcia, R.; Bombarda de Andrade, F.; Bernardineli, N.; Gomes de Moraes, I.; Duarte, M.A. The antimicrobial effect of new and conventional endodontic irrigants on intra-orally infected dentin. Acta Odontol. Scand., 2013, 71, 424-431.
129]  Suwa, M.; Oie, S.; Furukawa, H. Efficacy of disinfectants against naturally occurring and artificially cultivated bacteria. Biol. Pharm. Bull., 2013, 36, 360-363.
130]  Xu, Y.; He, Y.; Li, X.; Gao, C.; Zhou, L.; Sun, S.; Pang, G. Antifungal effect of ophthalmic preservatives phenylmercuric nitrate and benzalkonium chloride on ocular pathogenic filamentous fungi. Diagn. Microbiol. Infect. Dis., 2013, 75, 64-67.
131]  Jaramillo, D.E.; Arriola, A.; Safavi, K.; Chávez de Paz, L.E. Decreased bacterial adherence and biofilm growth on surfaces coated with a solution of benzalkonium chloride. J. Endod., 2012, 38, 821-825.
132]  Suzuki, T.; Kataoka, H.; Ida, T.; Kamachi, K.; Mikuniya, T. Bactericidal activity of topical antiseptics and their gargles against Bordetella pertussis. J. Infect. Chemother., 2012, 18, 272-275.
133]  Machado, I.; Lopes, S.P.; Sousa, A.M.; Pereira, M.O. Adaptive response of single and binary Pseudomonas aeruginosa and Escherichia coli biofilms to benzalkonium chloride. J. Basic Microbiol., 2012, 52, 43-52.
134]  Machado, I.; Graça, J.; Sousa, A.M.; Lopes, S.P.; Pereira, M.O. Effect of antimicrobial residues on early adhesion and biofilm formation by wild-type and benzalkonium chloride-adapted Pseudomonas aeruginosa. Biofouling, 2011, 27, 1151-1159.
135]  Hirayama, M. The antimicrobial activity, hydrophobicity and toxicity of sulfonium compounds, and their relationship. Biocontrol Sci., 2011, 16, 23-31.
136]  McCay, P.H.; Ocampo-Sosa, A.A.; Fleming, G.T. Effect of subinhibitory concentrations of benzalkonium chloride on the competitiveness of Pseudomonas aeruginosa grown in continuous culture. Microbiology, 2010, 156, 30-38.
137]  Torkelson, A.A.; da Silva, A.K.; Love, D.C.; Kim, J.Y.; Alper, J.P.; Coox, B.; Dahm, J.; Kozodoy, P.; Maboudian, R.; Nelson, K.L. Investigation of quaternary ammonium silane-coated sand filter for the removal of bacteria and viruses from drinking water. J. Appl. Microbiol., 2012, 113, 1196-1207.
138]  Mei, L.; Ren, Y.; Loontjens, T.J.; van der Mei, H.C.; Busscher, H.J. Contact-killing of adhering streptococci by a quaternary ammonium compound incorporated in an acrylic resin. Int. J. Artif. Organs, 2012, 35, 854-863.
139]  Soumet, C.; Fourreau, E.; Legrandois, P.; Maris, P. Resistance to phenicol compounds following adaptation to quaternary ammonium compounds in Escherichia coli. Vet. Microbiol., 2012, 158, 147-152.
140]  Ma, S.; Izutani, N.; Imazato, S.; Chen, J.H.; Kiba, W.; Yoshikawa, R.; Takeda, K.; Kitagawa, H.; Ebisu, S. Assessment of bactericidal effects of quaternary ammonium-based antibacterial monomers in combination with colloidal platinum nanoparticles. Dent. Mater. J., 2012, 31, 150-156.
141]  Tischer, M.; Pradel, G.; Ohlsen, K.; Holzgrabe, U. Quaternary ammonium salts and their antimicrobial potential: Targets or nonspecific interactions? ChemMedChem, 2012, 7, 22-31.
142]  Buffet-Bataillon, S.; Branger, B.; Cormier, M.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Effect of higher minimum inhibitory concentrations of quaternary ammonium compounds in clinical E. coli isolates on antibiotic susceptibilities and clinical outcomes. J. Hosp. Infect., 2011, 79, 141-146.
143]  Shahid, M.A.; Abubakar, M.; Hameed, S.; Hassan, S. Avian influenza virus (H5N1): Effects of physico-chemical factors on its survival. Virol. J., 2009, 6, 38.
144]  Chanawanno, K.; Chantrapromma, S.; Anantapong, T.; Kanjana-Opas, A.; Fun, H.K. Synthesis, structure and in vitro antibacterial activities of new hybrid disinfectants quaternary ammonium compounds: Pyridinium and quinolinium stilbene benzenesulfonates. Eur. J. Med. Chem., 2010, 45, 4199-4208.
145]  Gottardi, W.; Debabov, D.; Nagl, M. N-Chloramines, a promising class of well-tolerated topical anti-infectives. Antimicrob. Agents Chemother., 2013, 57, 1107-1114.
146]  Herczegh, A.; Ghidan, A.; Friedreich, D.; Gyurkovics, M.; Bendő, Z.; Lohinai, Z. Effectiveness of a high purity chlorine dioxide solution in eliminating intracanal Enterococcus faecalis biofilm. Acta Microbiol. Immunol. Hung., 2013, 60, 63-75.
147]  Li, X.Z.; Wei, X.; Zhang, C.J.; Jin, X.L.; Tang, J.J.; Fan, G.J.; Zhou, B. Hypohalous acid-mediated halogenation of resveratrol and its role in antioxidant and antimicrobial activities. Food Chem., 2012, 135, 1239-1244.
148]  Lakshmi, C.; Srinivas, C.R.; Anand, C.V.; Mathew, A.C. Irritancy ranking of 31 cleansers in the Indian market in a 24-h patch test. Int. J. Cosmet. Sci., 2008, 30, 277-283.
149]  Birnie, C.R.; Malamud, D.; Schnaare, R.L. Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N, N-dimethylamine oxides with variations in chain length. Antimicrob. Agents Chemother., 2000, 44, 2514-2517.
150]  Birnie, C.R.; Malamud, D.; Thomulka, K.W.; Schwartz, J.B.; Schnaare, R.L. Antimicrobial and diffusional correlation of N-alkyl betaines and N-alkyl-N,N-dimethylamine oxides from semisolids. J. Pharm. Sci., 2001, 90, 1386-1394.
151]  Salem-Milani, A.; Balaei-Gajan, E.; Rahimi, S.; Moosavi, Z.; Abdollahi, A.; Zakeri-Milani, P.; Bolourian, M. Antibacterial effect of Diclofenac sodium on Enterococcus faecalis. J. Dent. (Tehran), 2013, 10, 16-22.
152]  Wada, A.; Kono, M.; Kawauchi, S.; Takagi, Y.; Morikawa, T.; Funakoshi, K. Rapid discrimination of Gram-positive and Gram-negative bacteria in liquid samples by using NaOH-sodium dodecyl sulfate solution and flow cytometry. PLoS One, 2012, 7, e47093.
153]  Pagani, G.; Borgna, P.; Piersimoni, C.; Nista, D.; Terreni, M.; Pregnolato, M. In vitro anti-Mycobacterium avium activity of N-(2-hydroxyethyl)-1,2-benzisothiazol-3(2H)-one and -thione carbamic esters. Arch. Pharm. (Weinheim), 1996, 329, 421-425.
154]  Arseculeratne, S.N.; Atapattu, D.N.; Balasooriya, P.; Fernando, R. The effects of biocides (antiseptics and disinfectants) on the endospores of Rhinosporidium seeberi. Indian J. Med. Microbiol., 2006, 24, 85-91.
155]  Dellanno, C.; Vega, Q.; Boesenberg, D. The antiviral action of common household disinfectants and antiseptics against murine hepatitis virus, a potential surrogate for SARS coronavirus. Am. J. Infect. Control, 2009, 37, 649-652.
156]  Mansouri, M.D.; Darouiche, R.O. In-vitro activity and in-vivo efficacy of catheters impregnated with chloroxylenol and thymol against uropathogens. Clin. Microbiol. Infect., 2008, 14, 190-192.
157]  Atiş, M.; Karipcin, F.; Sarıboğa, B.; Taş, M.; Çelik, H. Structural, antimicrobial and computational characterization of 1-benzoyl-3-(5-chloro-2-hydroxyphenyl)thiourea. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 98, 290-301.
158]  Cui, Y.; Kang, M.S.; Woo, S.G.; Jin, L.; Kim, K.K.; Park, J.; Lee, M.; Lee, S.T. Brevibacterium daeguense sp. nov., a nitrate-reducing bacterium isolated from a 4-chlorophenolenrichment culture. Int. J. Syst. Evol. Microbiol., 2013, 63, 152-157.
159]  Pacios, M.G.; Silva, C.; López, M.E.; Cecilia, M. Antibacterial action of calcium hydroxide vehicles and calcium hydroxide pastes. J. Investig. Clin. Dent., 2012, 3, 264-270.
160]  Zore, G.B.; Thakre, A.D.; Rathod, V.; Karuppayil, S.M. Evaluation of anti-Candida potential of geranium oil constituents against clinical isolates of Candida albicans differentially sensitive to fluconazole: Inhibition of growth, dimorphism and sensitization. Mycoses, 2011, 54, e99-e109.
161]  Kotan, R.; Kordali, S.; Cakir, A. Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Z. Naturforsch. C, 2007, 62, 507-513.
162]  Bester, K.; Banzhaf, S.; Burkhardt, M.; Janzen, N.; Niederstrasser, B.; Scheytt, T. Activated soil filters for removal of biocides from contaminated run-off and waste-waters. Chemosphere, 2011, 85, 1233-1240.
163]  Shenoy, V.P.; Ballal, M.; Shivananda, P.; Bairy, I. Honey as an antimicrobial agent against Pseudomonas aeruginosa isolated from infected wounds. J. Glob. Infect. Dis., 2012, 4, 102-105.
164]  Konidala, U.; Nuvvula, S.; Mohapatra, A.; Nirmala, S.V. Efficacy of various disinfectants on microbially contaminated toothbrushes due to brushing. Contemp. Clin. Dent., 2011, 2, 302-307.
165]  Verma, G.K.; Mahajan, V.K.; Shanker, V.; Tegta, G.R.; Jindal, N.; Minhas, S. Contact depigmentation following irritant contact dermatitis to chloroxylenol (Dettol). Indian J. Dermatol. Venereol. Leprol., 2011, 77, 612-614.
166]  Ogunshe, A.A.; Omotoso, O.A.; Akindele, T.M. Soaps and germicides as adjunct topical antimycotic agents on candida species implicated in vulvovaginal candidasis. East Afr. J. Public Health, 2011, 8, 112-118.
167]  Ogbulie, J.N.; Adieze, I.E.; Nwankwo, N.C. Susceptibility pattern of some clinical bacterial isolates to selected antibiotics and disinfectants. Pol. J. Microbiol., 2008, 57, 199-204.
168]  Digison, M.B. A review of anti-septic agents for pre-operative skin preparation. Plast. Surg. Nurs., 2007, 27, 185-189.
169]  Wilson, M.; Mowad, C. Chloroxylenol. Dermatitis, 2007, 18, 120-121.
170]  Boutli, F.; Zioga, M.; Koussidou, T.; Ioannides, D.; Mourellou, O. Comparison of chloroxylenol 0.5% plus salicylic acid 2% cream and benzoyl peroxide 5% gel in the treatment of Acne vulgaris: A randomized double-blind study. Drugs Exp. Clin. Res., 2003, 29, 101-105.
171]  Lear, J.C.; Maillard, J.Y.; Dettmar, P.W.; Goddard, P.A.; Russell, A.D. Chloroxylenol- and triclosan-tolerant bacteria from industrial sources. J. Ind. Microbiol. Biotechnol., 2002, 29, 238-242.
172]  Haddad, J.J. On the cellular and molecular regulatory transcriptional mechanisms and responsive putative pathways to inflammatory oxidative stress revisited: Current immunological breakthroughs and views at a glance. Antiinflamm. Antiallergy Agents Med. Chem., 2013, 12, 141-157.
173]  Hanbali, L.B.; Ghadieh, R.M.; Hasan, H.A.; Nakhal, Y.K.; Haddad, J.J. Measurement of antioxidant activity and antioxidant compounds under versatile extractions conditions: I. The immuno-biochemical antioxidant properties of sweet cherry (Prunus avium) extracts. Antiinflamm. Antiallergy Agents Med. Chem., 2013, 12, 173-187.
174]  Haddad, J.J.; Ghadieh, R.M.; Hasan, H.A.; Nakhal, Y.K.; Hanbali, L.B. Measurement of antioxidant activity and antioxidant compounds under versatile extractions conditions: II. The immuno-biochemical antioxidant properties of black sour cherry (Prunus cerasus) extracts. Antiinflamm. Antiallergy Agents Med. Chem., 2013, 12, 229-245.
175]  Hanbali, L.B.; Amiry, J.G.; Ghadieh, R.M.; Hasan, H.A.; Koussan, S.S.; Nakhal, Y.K.; Tarraf, A.M.; Haddad, J.J. The antimicrobial activity of sweet cherry (Prunus avium) extracts: I. Measurement of sensitivity and attenuation of gram-positive and gram-negative bacteria and C. albicans in culture. Curr. Nutr. Food Sci., 2012, 8, 275-291.
176]  Hanbali, L.B.; Amiry, J.G.; Ghadieh, R.M.; Hasan, H.A.; Koussan, S.S.; Nakhal, Y.K.; Tarraf, A.M.; Haddad, J.J. The antimicrobial activity of sweet cherry (Prunus avium) extracts: II. Measurement of sensitivity and attenuation of gram-positive and gram-negative bacteria and C. albicans in culture. Curr. Nutr. Food Sci., 2012, 8, 292-303.
177]  Aranda-Garcia, A.R.; Guerreiro-Tanomaru, J.M.; Faria-Júnior, N.B.; Chavez-Andrade, G.M.; Leonardo, R.T.; Tanomaru-Filho, M.; Bonetti-Filho, I. Antibacterial effectiveness of several irrigating solutions and the Endox Plus system – An ex vivo study. Int. Endod. J., 2012, 45, 1091-1096.
178]  Barnett, M. Role of therapeutic antimicrobial mouthrinses in clinical practice. J. Am. Dental Assoc., 2003, 134, 699-702.
179]  Fine, D.H.; Furgang, D.; Barnett, M. Comparative antimicrobial activities of antiseptic mouthrinses against isogenic planktonic and biofilm forms of Actinobacillus actinomycetemcomitans. J. Clin. Periodontol., 2001, 28, 697-700.
180]  Mankodi, S.M.; Mostler, K.M.; Charles, C.H.; Bartels, L.L. Comparative antiplaque and antigingivitis effectiveness of a chlorhexidine and an essential oil mouthrinse: 6 month clinical trial. J. Clin. Periodontol., 2004, 31, 878-884.
181]  Aarnisalo, K.; Salo, S.; Miettinen, H.; Suihko, M.L.; Wirtanen, G.; Autio, T.; Lunden, J. Korkeala, H. Bactericidal efficiencies of commercial disinfectants against Listeria monocytogenes on surfaces. J. Food Saf., 2000, 20, 237-250.
182]  Arnold, J.W.; deLaubenfels, E.; Zambelli-Weiner, A. Quantitative assessment of hard surface disinfectant activity against the foodborne pathogen Listeria monocytogenes. J. AOAC Int., 2006, 89, 1617-1621.
183]  Chavant, P.; Gaillard-Martine, B.; Hebraud, M. Antimicrobial effects of sanitizers against planktonic and sessile Listeria monocytogenes cells according to the growth phase. FEMS Microbiol. Lett., 2004, 236, 241-248.
184]  Bonesvoll, P.; Gjermo, P. A comparison between chlorhexidine and some quaternary ammonium compounds with regard to retention, salivary concentration and plaque-inhibiting effect in the human mouth after mouth rinses. Arch. Oral Biol., 1978, 23, 289-294.
185]  Dilek, A.; Buzrul, M.; Alpas, H.; Akcelik, M. Hypochlorite inactivation kinetics of lactococcal bacteriophages. LWT Food Sci. Technol., 2007, 40, 1369-1375.
186]  Araj, G.F. Available laboratory tests to guide antimicrobial therapy. J. Med. Lib., 2000, 48, 199-202.
187]  Cole, E.C.; Addison, R.M.; Rubino, J. R.; Leese, K.E.; Dulaney, P.D.; Newell, M.S.; Wilkins, J.; Gaber, D.J.; Wineinger, T.; Criger, D.A. Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and nonusers. J. Appl. Microbiol., 2003, 95, 664-676.
188]  Sturenburg, E.; Mack, D. Extended spectrum β-lactamases: Implications for the clinical microbiology laboratory, therapy, and infection control. J. Infect., 2003, 47, 273-295.
189]  Webber, M.; Piddock, L.J.V. Quinolone resistance in Escherichia coli. Vet. Res., 2001, 32, 275-284.
190]  Best, M.; Kennedy, M.E.; Coates, F. Efficacy of a variety of disinfectants against Listeria spp. Appl. Env. Microbiol., 1990, 56, 377-380.
191]  Bloomfield, S.F.; Arthur, M.; Begun, K.; Patel, H. Comparative testing of disinfectants using proposed European surface test methods. Lett. Appl. Microbiol., 1993, 17, 119-125.
192]  Jacquet, C.; Reynaud, A. Differences in the sensitivity to eight disinfectants of Listeria monocytogenes strains as related to their origin. Int. J. Food Microbiol., 1994, 22, 79-83.
193]  Mosteller, T.M.; Bishop, J.R. Sanitizer efficacy against attached bacteria in a milk biofilm. J. Food Prot., 1993, 56, 34-41.
194]  Thorn, R.M.; Robinson, G.M.; Reynolds, D.M. Comparative antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solutions evaluated using a novel standardized assay. Antimicrob. Agents Chemother., 2013, 57, 2216-2225.
195]  Lucas, L.; Cicerale, S.; Keast, R. The anti-inflammatory and pharmacological actions of oleocanthal, a phenolic contained in extra virgin olive oil. Antiinflamm. Antiallergy Agents Med. Chem., 2011, 10, 399-406.
196]  Sultana, N.; Saify, Z.S. Naturally occurring and synthetic agents as potential anti-inflammatory and immunomodulants. Antiinflamm. Antiallergy Agents Med. Chem., 2012, 11, 3-19.
197]  Kontogiorgis, C.A.; Bompou, E.-M.; Ntella, M.; Vanden Berghe, W. Natural products from Mediterranean diet: From anti-inflammatory agents to dietary epigenetic modulators. Antiinflamm. Antiallergy Agents Med. Chem., 2010, 9, 101-124.
198]  Patel, J.I.; Deshpande, S.S. Anti-allergic and antioxidant activity of 5-hydroxy-3,6,7,3,4’-pentamethoxy flavone isolated from leaves of vitex negundo. Antiinflamm. Antiallergy Agents Med. Chem., 2011, 10, 442-451.
199]  Stojicic, S.; Shen, Y.; Haapasalo, M. Effect of the source of biofilm bacteria, level of biofilm maturation, and type of disinfecting agent on the susceptibility of biofilm bacteria to antibacterial agents. J. Endod., 2013, 39, 473-477.
200]  Coulthard, C.E.; Skyes, G. Germicidal effect of alcohol. Pharm. J., 1936, 137, 79-81.
201]  Walters, T.H.; Furr, J.R.; Russell, A.D. Antifungal action of chlorhexidine. Microbios, 1983, 38, 195-204.
202]  Springthorpe, V.S.; Grenier, J.L.; Lloyd-Evans, N.; Sattar, S.A. Chemical disinfection of human rotaviruses: Efficacy of commercially-available products in suspension tests. J. Hyg., 1986, 97, 139-161.
203]  McKenna, S.M.; Davies, K.J.A. The inhibition of bacterial growth by hypochlorous acid. Biochem. J., 1988, 254, 685-692.
204]  Stickler, D.J.; Dolman, J.; Rolfe, S.; Chawla, J. Activity of some antiseptics against urinary Escherichia coli growing as biofilms on silicone surfaces. Eur. J. Clin. Microbiol. Infect. Dis., 1989, 8, 974-978.
205]  Reverdy, M.-E.; Bes, M.; Nervi, C.; Martra, A.; Fleurette J. Activity of four antiseptics (acriflavine, benzalkonium chloride, chlorhexidine digluconate and hexamidine di-isethionate) and of ethidium bromide on 392 strains representing 26 Staphylococcus species. Med. Microbiol. Lett., 1992, 1, 56-63.
206]  Baillie, L.W.J.; Wade, J.J.; Casewell, M.W. Chlorhexidine sensitivity of Enterococcus faecium resistant to vancomycin, high levels of gentamicin, or both. J. Hosp. Infect., 1992, 20, 127-128.
207]  Denyer, S.P. Mechanisms of action of antibacterial biocides. Int. Biodeterior. Biodegrad., 1995, 36, 227-245.
208]  Russell, A.D.; Furr, J.R.; Maillard, J.-Y. Microbial susceptibility and resistance to biocides. ASM News, 1997, 63, 481-487.
209]  Luddin, N.; Ahmed, H.M. The antibacterial activity of sodium hypochlorite and chlorhexidine against Enterococcus faecalis: A review on agar diffusion and direct contact methods. J. Conserv. Dent., 2013, 16, 9-16.
210]  McDanel, J.S.; Murphy, C.R.; Diekema, D.J.; Quan, V.; Kim, D.S.; Peterson, E.M.; Evans, K.D.; Tan, G.L.; Hayden, M.K.; Huang, S.S. Chlorhexidine and mupirocin susceptibilities of methicillin-resistant Staphylococcus aureus from colonized nursing home residents. Antimicrob. Agents Chemother., 2013, 57, 552-558.
211]  Zubko, E.I.; Zubko, M.K. Co-operative inhibitory effects of hydrogen peroxide and iodine against bacterial and yeast species. BMC Res. Notes, 2013, 6, 272.
212]  Krause, R.; Ribitsch, W.; Schilcher, G. Daily chlorhexidine bathing and hospital-acquired infection. N. Engl. J. Med., 2013, 368, 2331-2332.
213]  Thrall, T.H. Complete cleaning: Improved cleaners, disinfectants, monitoring systems and training help close the loop on infection prevention. Health Facil. Manage., 2013, 26, 43-46.
214]  Bradford, B.D.; Seiberling, K.A.; Park, F.E.; Hiebert, J.C.; Chang, D.F. Disinfection of rigid nasal endoscopes following in vitro contamination with Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Haemophilus influenzae. JAMA Otolaryngol. Head Neck Surg., 2013, 139, 574-578.
215]  Alonso-Hernando, A.; Guevara-Franco, J.A.; Alonso-Calleja, C.; Capita, R. Effect of the temperature of the dipping solution on the antimicrobial effectiveness of various chemical decontaminants against pathogenic and spoilage bacteria on poultry. J. Food Prot., 2013, 76, 833-842.
216]  Seenama, C.; Tachasirinugune, P.; Jintanothaitavorn, D.; Kachintorn, K.; Thamlikitkul, V. Effectiveness of disinfectant wipes for decontamination of bacteria on patients’ environmental and medical equipment surfaces at Siriraj Hospital. J. Med. Assoc. Thai., 2013, 96, S111-S116.
217]  Godoy, P.; Castilla, J.; Delgado-Rodríguez, M.; Martín, V.; Soldevila, N.; Alonso, J.; Astray, J.; Baricot, M.; Cantón, R.; Castro, A.; González-Candelas, F.; Mayoral, J.M.; Quintana, J.M.; Pumarola, T.; Tamames, S.; Domínguez, A.; CIBERESP Cases and Controls in Pandemic Influenza Working Group, Spain. Effectiveness of hand hygiene and provision of information in preventing influenza cases requiring hospitalization. Prev. Med., 2012, 54, 434-439.
218]  Larson, E.L.; Cohen, B.; Baxter, K.A. Analysis of alcohol-based hand sanitizer delivery systems: Efficacy of foam, gel, and wipes against influenza A (H1N1) virus on hands. Am. J. Infect. Control, 2012, 40, 806-809.
219]  Evans, V.A.; Orris, P. The use of alcohol-based hand sanitizers by pregnant health care workers. J. Occup. Environ. Med., 2012, 54, 3.
220]  Jacups, S.P.; Ball, T.S.; Paton, C.J.; Johnson, P.H.; Ritchie, S.A. Operational use of household bleach to “crash and release” Aedes aegypti prior to Wolbachia-infected mosquito release. J. Med. Entomol., 2013, 50, 344-351.
221]  Weitz, N.A.; Lauren, C.T.; Weiser, J.A.; LeBoeuf, N.R.; Grossman, M.E.; Biagas, K.; Garzon, M.C.; Morel, K.D. Chlorhexidine gluconate-impregnated central access catheter dressings as a cause of erosive contact dermatitis: A report of 7 cases. JAMA Dermatol., 2013, 149, 195-199.
Show Less References