Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2019, 7(8), 605-612
DOI: 10.12691/jfnr-7-8-8
Open AccessArticle

Nutrition Content, Protein Quality, and Antioxidant Activity of Various Tempeh Gembus Preparations

Diana Nur Afifah1, 2, , Atika Rahma1, Shinta Sarining Nuryandari1, Lola Alviche1, Pipih Indriyamti Hartono1, Dewi Marfuah Kurniawati1, 2, Hartanti Sandi Wijayanti1, 2, Deny Yudi Fitranti1, 2 and Rachma Purwanti1, 2

1Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia

2CENURE, Centre of Nutrition, Universitas Diponegoro, Semarang, Indonesia

Pub. Date: August 23, 2019

Cite this paper:
Diana Nur Afifah, Atika Rahma, Shinta Sarining Nuryandari, Lola Alviche, Pipih Indriyamti Hartono, Dewi Marfuah Kurniawati, Hartanti Sandi Wijayanti, Deny Yudi Fitranti and Rachma Purwanti. Nutrition Content, Protein Quality, and Antioxidant Activity of Various Tempeh Gembus Preparations. Journal of Food and Nutrition Research. 2019; 7(8):605-612. doi: 10.12691/jfnr-7-8-8


Tempeh gembus is a fermented product of tofu processing that offers fairly good nutritional content at an affordable price. However, different food preparation techniques can change the nutrient content of this food product. This study aimed to determine a tempeh gembus preparation method that produces optimal nutrient content, protein quality, and antioxidant activity. Fresh, fried, steamed, and bromelain-added tempeh gembus samples were analyzed for moisture, ash, fat, protein and amino acids, protein digestibility, dietary fiber, isoflavone content, and antioxidant activity and then compared. Fresh tempeh gembus contained 1.87% fat, 11.09% dietary fiber, 4.90% protein, 89.67% protein digestibility, 14.03% amino acids, 48.07% antioxidant activity, 0.05% genistein, and 0.07% daidzein. Steamed samples contained less total fat (1.22%), dietary fiber (8.95%), protein (3.90%), protein digestibility (48.68%), amino acids (13.52%), and antioxidant activity (39.72%) but greater genistein (0.07%) and daidzein (0.09%) content versus fresh. Fried samples contained more total fat (18.23%), dietary fiber (22.24%), antioxidant activity (61.00%), and genistein (0.08%) versus fresh but lower total protein (3.92%), protein digestibility (47.68%), amino acids (4.10%), and daidzein (0.10%). Tempeh gembus with added bromelain contained 1.66% fat, 9.80% dietary fiber, 5.12% protein, 67.16% protein digestibility, 13.99% amino acids, 62.04% antioxidant activity, 0.06% genistein, and 0.07% daidzein. Addition of bromelain to tempeh gembus produced optimal nutrient content, protein quality, and antioxidant activity profiles relative to fresh samples, steaming, and frying.

nutrition content protein quality antioxidant activity tempeh gembus bromelain

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  P. K. Dewi, D. N. Afifah, N. Rustanti, M. Sulchan, and Gemala Anjani, “The Effect of Tempeh Gembus Variations to Serum Levels of High Sensitivity C-Reactive Protein (hsCRP) and Serum Levels of Fibrinogen of Sprague Dawley Rats with Aterogenic Diet,” Rom J Diabetes Nutr Metab Dis, vol. 25, no. 1, pp. 091-097, 2018.
[2]  D. N. Afifah, N. Nabilah, G. T. Supraba, S. N. Pratiwi, Nuryanto, and M. Sulchan, “The Effects of Tempeh Gembus, an Indonesian Fermented Food, on Lipid Profiles in Women with Hyperlipidemia,” Curr. Nutr. Food Sci., vol. 14, pp. 1-9, 2018.
[3]  D. Wang et al., “An Efficient Method for the Preparative Isolation and Purification of Flavonoid Glycosides and Prep-HPLC Guided by DPPH-HPLC Experiments,” Molecules, vol. 22, p. 229, 2017.
[4]  D. N. Afifah, M. Sulchan, D. Syah, Yanti, M. T. Suhartono, and J. H. Kim, “Purification and characterization of a fibrinolytic enzyme from Bacillus pumilus 2.g isolated from gembus an Indonesian fermented food,” Korean Soc. Food Sci. Nutr., vol. 19, no. 3, pp. 213-219, 2014.
[5]  D. N. Afifahh, N. R. Anjani, D. Syah, Yanti, and M. T. Suhartono, “Proteomics study of extracellular fibrinolytic proteases from Bacil-lus licheniformis RO3 and Bacillus pumilus 2.g isolated from In-donesian fermented food.,” IOP Conf Ser. Earth Environ. Sci., vol. 55, pp. 1-10, 2017.
[6]  J. C. Wijaya and Y. Yunianta, “The Effect of Different Bromelain Enzyme Concentration and Incubation Period toward Tempeh Gembus’s Chemical and Organoleptical Characteristics,” J. Pangan dan Agroindustri, vol. 3, no. 1, pp. 96-106, 2015.
[7]  R. K. Agustina, F. F. Dieny, N. Rustanti, G. Anjani, and D. N. Afifah, “Antioxidant activity and soluble protein content of tempeh gembus hydrolysate,” Hiroshima J. Med. Sci., vol. 67, pp. 1-7, 2018.
[8]  W. C. Vong and S.-Q. Liu, “Biovalorisation of okara (soybean residue) for food and nutrition,” Trends Food Sci. Technol., vol. 52, pp. 139-147, Apr. 2016.
[9]  T. Purwoko, “Kandungan Isoflavon Aglikon pada Tempe Hasil Fermentasi Rhizopus microsporus var. oligosporus: Pengaruh Perendaman,” BioSMART, vol. 6, no. 2, pp. 85-87, 2004.
[10]  R. N. S. Damanik, D. Pratiwi, N. Widyastuti, N. Rustanti, G. Anjani, and D. Afifah, “Nutritional Composition Changes During Tempeh Gembus Processing,” IOP Conf. Ser. Earth Environ. Sci., vol. 116, 2018.
[11]  M. Sulchan and M. I. Rukmi, “Effect of tempe gembus on cholesterol profile in hyperlipidemic rats,” Med. J. Indones., vol. 16, no. 4, pp. 205-211, 2013.
[12]  M. Sulchan and N. Endang, “Nilai Gizi dan Komposisi Asam Amino Tempe Gembus serta Pengaruhnya terhadap Pertumbuhan Tikus,” Maj. Kedokt. Indones., vol. 57, no. 3, pp. 80-85, 2007.
[13]  B. P. Singh, S. Vij, and S. Hati, “Functional Significance of Bioactive Peptides Derived from Soybean,” Peptides, vol. 54, pp. 171-179, Apr. 2014.
[14]  M. F. Sbroggio, M. S. Montilha, V. R. G. de Figueiredo, S. R. Georgetti, and L. E. Kurozawa, “Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates,” Food Sci. Technol., vol. 36, no. 2, pp. 375-381, 2016.
[15]  D. N. Afifah, G. Nugrahani, V. N. Hastuti, and F. Arifan, “The characteristics of Kerupuk Gembus,” IOP Conf. Ser. Earth Environ. Sci., vol. 292, no. 1, 2019.
[16]  Zakaria, A. Tamrin, Nursalim, and Irmayanti, “Pengaruh perlakuan blanching terhadap kadar β-Karoten pada pembuatan tepung daun kelor (Moringa oleifera),” Media Gizi Pangan, vol. 9, no. 1, pp. 23-28, 2015.
[17]  S. Sulthoniyah, T. Sulistiyati, and E. Suprayitno, “Pengaruh suhu pengukusan terhadap kandungan gizi dan organoleptik abon ikan gabus (Ophiocephalus striatus),” THPi Student J., vol. 1, no. 1, pp. 33-45, 2013.
[18]  M. Naseri, E. Abedi, B. Mohammadzadeh, and A. Afsharnaderi, “Effect of frying in different culinary fats on the fatty acid composition of silver carp,” Food Sci. Nutr., vol. 1, no. 4, pp. 292-297, 2013.
[19]  S. Purwaningsih, E. Salamah, and G. P. Apriyana, “Profil Protein dan Asam Amino Keong Ipong-Ipong (Fasciolaria Salmo) pada Pengolahan yang Berbeda,” J. Gizi dan Pangan, vol. 8, no. 1, pp. 77-82, Nov. 2013.
[20]  Subandiyono, S. Hastuti, and R. A. Nugroho, “Feed utilization efficiency and growth of Java barb ( Puntius javanicus ) fed on dietary pineapple extract,” AACL Bioflux, vol. 11, no. 2, pp. 309-318, 2018.
[21]  H. Kristinsson, “Aquatic Food Protein Hydrolysates,” in Maximising the Value of Marine By Product, F. Shahidi, Ed. Boca Raton: CRC Press, 2007.
[22]  V. Venugopal, Seafood Processing: Adding Value Trough Quick Freezing, Retortable Packaging, and Chilling. Boca Raton: CRC Press, 2006.
[23]  V. M. da Silva, L. A. S. e J. B. de Andrade, M. C. da C. Veloso, and G. V. Santos, “Determination of moisture content and water activity in algae and fish by thermoanalytical techniques,” Quim. Nov., vol. 31, no. 4, pp. 901-905, 2008.
[24]  M. Sonkamble and N. Pandhure, “Art20176072,” Int. J. Sci. Res., vol. 6, no. 8, pp. 936-938, 2015.
[25]  AOAC, Official Methods of Analysis of The Association of Official Analytical Chemists. Washington DC, USA, 1995.
[26]  A. M. Magomya, D. Kubmarawa, J. A. Ndahi, and G. G. Yebpella, “Determination Of Plant Proteins Via The Kjeldahl Method And Amino Acid Analysis: A Comparative Study,” Int. J. Sci. Technol. Res., vol. 3, no. 4, pp. 68-72, 2014.
[27]  A. V. F. Gimenez, A. C. Díaz, S. M. Velurtas, and J. L. Fenucci, “In vivo and In vitro protein digestibility of formulated feeds for Artemesia longinaris (Crustacea, Penaeidae),” Brazilian Arch. Biol. Technol., vol. 52, no. 6, pp. 1379–1386, 2009.
[28]  A. Miura, C. Sugiyama, H. Sakakibara, K. Simoi, and T. Goda, “Journal of Nutrition & Intermediary Metabolism Bioavailability of iso fl avones from soy products in equol producers and non-producers in Japanese women,” J. Nutr. Intermed. Metab., vol. 6, pp. 41-47, 2016.
[29]  Z. Xu, K. Harvey, and T. Pavlina, “An Improved Method for Determining Medium- and Long-Chain FAMEs Using Gas Chromatography An Improved Method for Determining Medium- and Long-Chain FAMEs Using Gas Chromatography,” Lipids, vol. 45, pp. 3382-7, 2010.
[30]  B. Hames, Gel Electrophoresis of Proteins, 3rd editio. New York: Oxford university press, 1998.
[31]  P. Bouchon, “Understanding oil absorption during deep-fat frying,” Adv. Food Nutr. Res., vol. 57, pp. 209-234, Feb. 2009.
[32]  D. Sundari, A. Almasyhuri, and A. Lamid, “Pengaruh Proses Pemasakan Terhadap Komposisi Zat Gizi Bahan Pangan Sumber Protein,” Media Penelit. dan Pengemb. Kesehat., vol. 25, no. 4, pp. 235-242, Dec. 2015.
[33]  Ratnaningsih, B. Rahardjo, and Suhargo, “Kajian penguapan air dan penyerapan minyak pada penggorengan ubi jalar (Ipomoea batatas L) dengan metode deep-fat frying,” Agritech, vol. 27, no. 1, pp. 27-32, 2007.
[34]  O. L. Tavano, “Journal of Molecular Catalysis B: Enzymatic Protein hydrolysis using proteases: An important tool for food biotechnology,” J. Mol. Catal. B. Enzym., vol. 90, pp. 1-11, 2013.
[35]  J. L. England and G. Haran, “Role of Solvation Effects in Protein Denaturation: From Thermodynamics to Single Molecules and Back,” Annu Rev Phys Chem, vol. 62, pp. 257-277, 2011.
[36]  Muthmainna, S. Mulyani, and Supriadi, “Pengaruh Waktu Fermentasi Terhadap Kadar Protein dari Tempe Biji Buah Lamtoro Gung (Leucaena leucocephala),” J. Akad. Kim., vol. 5, no. 1, pp. 50-54, 2016.
[37]  N. Palupi and E. Prangdimurti, “Pengaruh Pengolahan terhadap Nilai Gizi Pangan,” in Modul e-Learning ENBP, Bogor, 2007, pp. 1-14.
[38]  J. Ceirwyn, Analytical chemistry of foods. New York: Aspen Publishers Inc, 1999.
[39]  K. Bunko and J. F. Kennedy, “The Maillard Reaction: Chemistry, Biochemistry and Implications,” Int J Biol Macromol, vol. 41, no. 3, p. 358, Aug. 2007.
[40]  T. Yokotsuka, Soy Sauce Biochemistry, vol. 30. 1986.
[41]  Nurhidajah, M. Astuti, Sardjono, A. Murdiati, and Y. Marsono, “Kadar Serat Pangan dan Daya Cerna Pati Nasi Merah yang Diperkaya Kappa-Karagenan dan Ekstrak Antosianin dengan Variasi Metode Pengolahan,” Universitas Muhammadiyah Semarang, 2015.
[42]  A. Jacoeb, Nurjanah, and L. Lingga, “Karakteristik protein dan asam amino daging rajungan (Portunus pelagicus) akibat pengukusan,” JPHPI, vol. 15, no. 2, pp. 156-163, 2012.
[43]  Ö. Özden and N. Erkan, “A preliminary study of amino acid and mineral profiles of important and estimable 21 seafood species,” Br. Food J., vol. 113, no. 4, pp. 457-469, Apr. 2011.
[44]  S. Sitompul, “Analisis asam amino dalam tepung ikan dan bungkil kedelai,” Bul. Tek. Pertan., vol. 9, no. 1, pp. 33-37, 2004.
[45]  I. Purwaningsih, “Potensi Enzim Bromelin Sari Buah Nanas (ananas comosus l.) Dalam Meningkatkan Kadar Protein Pada Tahu,” J. Teknol. Lab., vol. 6, no. 1, p. 39, 2017.
[46]  A. M. Jacoeb, P. Suptijah, and W. A. Kristantina, “Komposisi Asam Lemak, Kolesterol, dan Deskripsi Jarinagn Fillet Ikan Kakap Segar dan Goreng,” J. Pengolah. Has. Perikan. Indones., vol. 18, no. 1, pp. 98-107, 2015.
[47]  F. Salahudin and N. Supriyatna, “Ekstraksi minyak kelapa secara fermentasi untuk mempertahankan mutu asam lemak rantai sedang,” Biopropal Ind., vol. 5, no. 1, pp. 23-28, 2014.
[48]  I. Astiana, Nurjanah, R. Suwandi, A. A. Suryani, and T. Hidayat, “Pengaruh penggorengan belut sawah (Monopterus albus) terhadap komposisi asam amino, asam lemak, kolesterol dan mineral,” Depik, vol. 4, no. 1, pp. 49-57, 2015.
[49]  N. B. Falistin, W. F. Ma’ruf, and E. N. Dewi, “Pengaruh tahapan pengolahan terhadap kualitas kandungan lemak bandeng (Chanos chanos Forks) presto goreng,” J. Pengolah. dan Bioteknol. Has. Perikan., vol. 4, no. 2, pp. 93-99, 2015.
[50]  E. Yusnawan, “The diversity of secondary metabolites in Indonesian soybean genotypes,” Biodiversitas, vol. 17, no. 2, pp. 704-710, 2016.
[51]  G. Szymczak, M. Wójciak-Kosior, I. Sowa, K. Zapała, M. Strzemski, and R. Kocjan, Evaluation of isoflavone content and antioxidant activity of selected soy taxa, vol. 57. 2017.
[52]  P. Rajendran et al., “Antioxidants and Human Diseases,” Clin. Chim. Acta, vol. 436, pp. 332-347, Jun. 2014.
[53]  J. Anderson, C. Hil, and N. Carolina, Phytoestrogens and Health. Toronto: AOCS Press, 2002.
[54]  J. H. Lee et al., “Changes in phenolic compounds (Isoflavones and Phenolic acids) and antioxidant properties in high-protein soybean (Glycine max L., cv. Saedanbaek) for different roasting conditions,” J. Korean Soc. Appl. Biol. Chem., vol. 56, no. 5, pp. 605-612, 2013.
[55]  A. Noviana, F. Dieny, N. Rustanti, G. Anjani, and D. N. Afifah, “Antimicrobial activity of tempeh gembus hydrolyzate,” in IOP Conference Series: Earth and Environmental Science, 2018, vol. 116, p. 12044.
[56]  R. Kurniasari, M. Sulchan, D. N. Afifah, G. Anjani, and N. Rustanti, “Influence variation of tempe gembus (an Indonesian fermented food) on homocysteine and malondialdehyde of rats fed an atherogenic diet,” Rom. J. Diabetes, Nutr. Metab. Dis., vol. 24, no. 3, pp. 203-211, 2017.
[57]  B. F. Gibbs, A. Zougman, R. Masse, and C. Mulligan, “Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food,” Food Res. Int., vol. 37, no. 2, pp. 123-131, Mar. 2004.
[58]  E. Mejia and B. de Lumen, “Soybean bioactive peptides: A new horizon in preventing chronic diseases,” Sex. Reprod. Menopause, vol. 4, no. 2, pp. 91-95, Oct. 2006.
[59]  K.-H. Wagner, D. S, H. M, S. W, and I. Elmadfa, “Antioxidative potential of melanoidins isolated from a roasted glucose-glycine model,” Food Chem., vol. 78, pp. 375-382, Aug. 2002.
[60]  K. Pelealu, J. Pontoh, and E. Suryanto, “Pengaruh Pemanasan Terhadap Aktivitas Antioksidan Dalam Pembuatan Gula Aren,” J. Kim., vol. 4, no. 2, pp. 60-65, 2011.
[61]  D. Pramita, S. Handajani, and D. Rachmawanti, “Pengaruh teknik pemanasan terhadap kadar asam fitat dan aktivitas antioksidan koro benguk (Mucuna pruriens), koro glinding (Phaseolus lunatus), dan koro pedang (Canavalia ensiformis),” Biofarmasi, vol. 6, no. 2, pp. 36-44, 2018.