Journal of Computer Sciences and Applications
ISSN (Print): 2328-7268 ISSN (Online): 2328-725X Website: Editor-in-chief: Minhua Ma, Patricia Goncalves
Open Access
Journal Browser
Journal of Computer Sciences and Applications. 2015, 3(3A), 40-45
DOI: 10.12691/jcsa-3-3A-5
Open AccessResearch Article

Fuzzy Inference Model for Type 2 Diabetes Management: a Tool for Regimen Alterations

Nonso Nnamoko1, , Farath Arshad1, David England1, Jiten Vora2 and James Norman3

1School of Computing and Mathematical Science, Liverpool John Moores University, Liverpool, United Kingdom

2Diabetes and Endocrinology department, Royal Liverpool and Broadgreen University Hospitals, Liverpool, United Kingdom

3Information Management and Technology department, Royal Liverpool and Broadgreen University Hospitals, Liverpool, United Kingdom

Pub. Date: July 16, 2015
(This article belongs to the Special Issue Big Data Analytics in Intelligent Systems)

Cite this paper:
Nonso Nnamoko, Farath Arshad, David England, Jiten Vora and James Norman. Fuzzy Inference Model for Type 2 Diabetes Management: a Tool for Regimen Alterations. Journal of Computer Sciences and Applications. 2015; 3(3A):40-45. doi: 10.12691/jcsa-3-3A-5


This paper aims to demonstrate the utility of fuzzy set theory in the design process of a diabetes management system that enables patients to make short term alterations (particularly lifestyle) to their overall regimen as required. The model is a Mamdani Fuzzy Inference System (FIS) configured through domain specific information from experts and recognised diabetes management algorithms. The FIS takes a multi-input multi-output (MIMO) design approach with seven inputs variables (age, gender, weight, height, blood glucose (BG), exercise and diet) and three outputs (glycatedhaemoglobin (A1c), exercise and diet level assessments). Goodness of fit test was conducted based on Mean Square Error (MSE), Normalised Mean Square Error (NMSE) and Normalised Root Mean Square Error (NRMSE) between observed/advised and predicted output values. Overall MSE of 0.0899 shows good fit. For each of the output pairs (A1c, exercise and diet), NRMSE (0.7387, 0.7881 and 0.3716) and NMSE (0.9317, 0.9551 and 0.6051) shows good fit for A1c and exercise, but poor fit for diet. Intelligent models of this sort can help simplify management information for diabetes patients, reduce routine workload for clinicians and allow them to focus more on critical issues. Fully developed, this system can be used to build a database of diabetes management cases that includes daily life event information, ultimately leading to automated care for patients through technology.

fuzzy logic diabetes management fuzzy inference system rule based reasoning case based reasoning

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  J. Brand-Miller, K. Foster-Powell, S. Colagiuri, and A. Barclay, The New Glucose Revolution for Diabetes: The Definitive Guide to Managing Diabetes and Prediabetes Using the Glycemic Index. Da Capo Press, 2007.
[2]  K. Zierler, “Whole body glucose metabolism,” Am. J. Physiol.-Endocrinol. Metab., vol. 276, no. 3 Pt 1, pp. E409-E426, 1999.
[3]  J. P. Singh, M. G. Larson, C. J. O’Donnell, P. F. Wilson, H. Tsuji, D. M. Lloyd-Jones, and D. Levy, “Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study).,” Am. J. Cardiol., vol. 86, no. 3, pp. 309-12, Aug. 2000.
[4]  R. J. Sigal, S. J. Fisher, J. B. Halter, M. Vranic, and E. B. Marliss, “Glucoregulation during and after Intense Exercise: Effects of β-Adrenergic Blockade in Subjects with Type 1 Diabetes Mellitus,” J. Clin. Endocrinol. Metab., vol. 84, no. 11, pp. 3961-3971, 1999.
[5]  E. D. Lehmann and T. Deutsch, “A Physiological Model Of Glucose-insulin Interaction,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991, 1991, vol. 13, no. 5, pp. 2274-2275.
[6]  G. Robertson, E. D. Lehmann, W. Sandham, and D. Hamilton, “Blood Glucose Prediction Using Artificial Neural Networks Trained with the AIDA Diabetes Simulator: A Proof-of-Concept Pilot Study,” J. Electr. Comput. Eng., vol. 2011, pp. 1-11, 2011.
[7]  R. C. Nordlie, J. D. Foster, and A. J. Lange, “Regulation of glucose production by the liver.,” Annu. Rev. Nutr., vol. 19, pp. 379-406, Jan. 1999.
[8]  E. B. Marliss, E. Simantirakis, P. D. Miles, C. Purdon, R. Gougeon, C. J. Field, J. B. Halter, and M. Vranic, “Glucoregulatory and hormonal responses to repeated bouts of intense exercise in normal male subjects.,” J. Appl. Physiol., vol. 71, no. 3, pp. 924-33, Sep. 1991.
[9]  D. M. Nathan, J. B. Buse, M. B. Davidson, E. Ferrannini, R. R. Holman, R. Sherwin, and B. Zinman, “Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes.,” Diabetes Care, vol. 32, no. 1, pp. 193-203, Jan. 2009.
[10]  C. Tidy, “Diabetes Education and Self-management Programmes,” 2010. [Online]. Available: [Accessed: 25-Sep-2013].
[11]  E. D. Lehmann and T. Deutsch, “AIDA: An Automated Insulin Dosage Advisor,” in Proc Annu Symp Comput Appl Med Care, 1992, pp. 818-819.
[12]  E. D. Lehmann, T. Deutsch, E. R. Carson, and P. H. Sönksen, “AIDA: an interactive diabetes advisor.,” Comput. Methods Programs Biomed., vol. 41, no. 3-4, pp. 183-203, Jan. 1994.
[13]  D. Dazzi, F. Taddei, a Gavarini, E. Uggeri, R. Negro, and a Pezzarossa, “The control of blood glucose in the critical diabetic patient: a neuro-fuzzy method.,” J. Diabetes Complications, vol. 15, no. 2, pp. 80-7, 2001.
[14]  J. Tuomilehto, J. Lindstrom, J. G. Eriksson, T. T. Valle, H. Hamalainen, P. Ilanne-Parikka, S. Keinanen-Kiukaanniemi, M. Laakso, A. Louheranta, M. Rastas, V. Salminen, and M. Uusitupa, “Prevention of type 2 Diabetes Mellitus by changes in lifestyle among subjects with impared glucose tolerance,” New English J. Med., vol. 344, no. 18, pp. 1343-1350, 2001.
[15]  J. Lindstrom and J. Tuomilehto, “The Diabetes Risk Score: A practical tool to predict type 2 diabetes risk,” Diabetes Care, vol. 26, no. 3, pp. 725-731, 2003.
[16]  D. M. Nathan, “Initial Management of Glycemia in Type 2 Diabetes Mellitus,” N. Engl. J. Med., vol. 347, no. 17, pp. 1342-1349, 2002.
[17]  E. Årsand, D. H. Frøisland, S. O. Skrøvseth, T. Chomutare, N. Tatara, G. Hartvigsen, and J. T. Tufano, “Mobile health applications to assist patients with diabetes: lessons learned and design implications.,” J. Diabetes Sci. Technol., vol. 6, no. 5, pp. 1197-206, Sep. 2012.
[18]  O. El-Gayar, P. Timsina, N. Nawar, and W. Eid, “Mobile Applications for Diabetes Self-Management: Status and Potential,” J. Diabetes Sci. Technol., vol. 7, no. 1, pp. 247-262, Jan. 2013.
[19]  A. M. Bell, S. J. Fonda, M. S. Walker, V. Schmidt, and R. a Vigersky, “Mobile phone-based video messages for diabetes self-care support.,” J. Diabetes Sci. Technol., vol. 6, no. 2, pp. 310-9, Mar. 2012.
[20]  M. Albisser, “A graphical user interface for diabetes management that integrates glucose prediction and decision support.,” Diabetes Technol. Ther., vol. 7, no. 2, pp. 264-73, Apr. 2005.
[21]  O. Ferrer-Roca, K. Franco Burbano, a Cárdenas, P. Pulido, and a Diaz-Cardama, “Web-based diabetes control.,” J. Telemed. Telecare, vol. 10, no. 5, pp. 277-81, Jan. 2004.
[22]  J. U. Poulsen, A. Avogaro, F. Chauchard, C. Cobelli, R. Johansson, L. Nita, M. Pogose, L. Del Re, E. Renard, S. Sampath, F. Saudek, M. Skillen, and J. Soendergaard, “A diabetes management system empowering patients to reach optimised glucose control: from monitor to advisor.,” in Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2010, vol. 2010, pp. 5270-1.
[23]  E. Otto, C. Semotok, J. Andrysek, and O. Basir, “An intelligent diabetes software prototype: predicting blood glucose levels and recommending regimen changes.,” Diabetes Technol. Ther., vol. 2, no. 4, pp. 569-76, Jan. 2000.
[24]  L. R. Keytel, J. H. Goedecke, T. D. Noakes, H. Hiiloskorpi, R. Laukkanen, L. van der Merwe, and E. V Lambert, “Prediction of energy expenditure from heart rate monitoring during submaximal exercise.,” J. Sports Sci., vol. 23, no. 3, pp. 289-97, Mar. 2005.
[25]  B. E. Ainsworth, W. L. Haskell, M. C. Whitt, M. L. Irwin, a M. Swartz, S. J. Strath, W. L. O’Brien, D. R. Bassett, K. H. Schmitz, P. O. Emplaincourt, D. R. Jacobs, and a S. Leon, “Compendium of physical activities: an update of activity codes and MET intensities.,” Med. Sci. Sports Exerc., vol. 32, no. 9 Suppl, pp. S498-504, Sep. 2000.
[26]  Food and Agriculture Organisation (FAO) of the United Nations, “Human energy requirements: Report of a Joint FAO/WHO/UNU Expert Consultation,” in Food and Nutrition Technical Report Series 1, vol. 0, 2001, p. 38.
[27]  D. M. Nathan, J. Kuenen, R. Borg, H. Zheng, D. Schoenfeld, and R. J. Heine, “Translating the A1C assay into estimated average glucose values.,” Diabetes Care, vol. 31, no. 8, pp. 1473-8, Aug. 2008.
[28]  D. Muffin, T. Jeor, A. Daugherty, A. Hill, and J. Scott, “A new predictive equation for resting energy expenditure in healthy individuals,” Am. J. Clin. Nutr., vol. 51, no. 2, pp. 241-247, 1990.
[29]  Mayo Clinic, “Exercise intensity: Why it matters, how it’s measured,” 2011. [Online]. Available: [Accessed: 13-Jan-2014].
[30]  L. O. Hall and A. Kandel, “The evolution from expert systems to fuzzy expert systems,” in Fuzzy Expert Systems, A. Kandel, Ed. CRC Press, 1991.
[31]  J.-S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans. Syst. Man. Cybern., vol. 23, no. 3, pp. 665-685, 1993.
[32]  S. R. Ghatage, T. D. Dongale, T. G. Kulkarni, and R. R. Mudholkar, “Development of Fuzzy Inference Scheme for LC Oscillator Design,” Int. J. Eng. Res. Dev., vol. 3, no. 12, pp. 91-98, 2012.
[33]  J. Jassbi, S. H. Alavi, P. J. a. Serra, and R. a. Ribeiro, “Transformation of a Mamdani FIS to First Order Sugeno FIS,” 2007 IEEE Int. Fuzzy Syst. Conf., pp. 1-6, Jun. 2007.
[34]  Scientific Advisory Committee on Nutrition (SACN), Dietary Reference Values for Energy. 2011.
[35]  NHS Information Centre for Health and Social Care, “Health Survey for England 2012,” 2012.
[36]  American Diabetes Association, “Nutrition Principles and Recommendations in Diabetes,” Diabetes Care, vol. 27, no. 1, 2004.
[37]  D. Frankenfield, L. Roth-Yousey, and C. Compher, “Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review.,” J. Am. Diet. Assoc., vol. 105, no. 5, pp. 775-89, May 2005.
[38]  N. Nnamoko, F. Arshad, D. England, and J. Vora, “Fuzzy Expert System for Type 2 Diabetes Mellitus (T2DM) Management using Dual Inference Mechanism,” in AAAI Spring Symposium Series 2013 on Data-driven wellness: From Self tracking to Behaviour modification, 2013.
[39]  Abbott UK, “Abbott Diabetes Care.” [Online]. Available: [Accessed: 13-Jun-2014].
[40]  P. R. Bevington and K. D. Robinson, Data Reduction and Error Analysis for Physical Sciences, 3rd ed. New York, New York, USA: McGraw-Hill Higher Education, 2003, pp. 98-163.
[41]  D. Kanter, “Becoming Databetic: Using data to improve my diabetes control,” 2013. [Online]. Available: [Accessed: 26-Feb-2013].