International Journal of Partial Differential Equations and Applications
ISSN (Print): 2376-9548 ISSN (Online): 2376-9556 Website: http://www.sciepub.com/journal/ijpdea Editor-in-chief: Mahammad Nurmammadov
Open Access
Journal Browser
Go
International Journal of Partial Differential Equations and Applications. 2014, 2(2), 27-31
DOI: 10.12691/ijpdea-2-2-2
Open AccessArticle

Existence Results for a Class of Quasilinear Elliptic Systems Different Weights

Tahar Bouali1, and Rafik Guefaifia1

1Department of Mathematics, University Tebessa, Tebessa, Algeria

Pub. Date: April 27, 2014

Cite this paper:
Tahar Bouali and Rafik Guefaifia. Existence Results for a Class of Quasilinear Elliptic Systems Different Weights. International Journal of Partial Differential Equations and Applications. 2014; 2(2):27-31. doi: 10.12691/ijpdea-2-2-2

Abstract

Using variational methods, we study the existence of weak solutions for the degenerate quasilinear elliptic system where is a smooth bounded domain, stands for the gradient of -function , the weights are allowed to vanish somewhere, the primitive is intimately related to the first eigenvalue of a corresponding quasilinear system.

Keywords:
quasilinear elliptic system palais-smale condition mountain pass theorem existence

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Afrouzi, G, A., Mahdavi, S. and Nikolaos, B. Zographopoulos, “Existence of solutions for non-uniformly nonlinear elliptic systems”, Electron. J. Diff. Equ., 167. 1-9. 2011.
 
[2]  Afrouzi, G, A., and Mahdavi, S, “Existence results for a class of degenerate quasilinear elliptic systems”, Lithuanian Math. J, 51. 451-460. 2011.
 
[3]  Ambrosetti, A. and Rabinowitz, P,H., “Dual variational methods in critical points theory and applications”, J. Funct. Anal., 4. 349-381. 1973.
 
[4]  Boccardo, L. and Figueiredo, D, G, De, “Some remarks on a system of quasilinear elliptic equations”, Nonlinear Diff. Equ. Appl. No DEA, 9. 309-323. 2002.
 
[5]  Caldiroli, P. and Musina, R., “On a variational degenerate elliptic problem”, Nonlinear Diff. Equ. Appl. No DEA, 7. 187-199. 2000.
 
[6]  Chung, N. T., “Existence of in nitely many solutions for degenerate and singular elliptic systems with indenite concave nonlinearities”, Electron. J. Diff. Equ., 30. 1-12. 2011.
 
[7]  Chung, N, T. and Toan, H, Q., “On a class of degenerate and singular elliptic systems in bounded domain”, J. Math. Anal. Appl. 360. 422-431. 2009.
 
[8]  Costa, D, G., “On a class of elliptic systems in RN”, Electron. J. Diff. Equ., 7.1-14. 1994
 
[9]  Djellit, A. and Tas, S., “Existence of solutions for a class of elliptic systems in RN involving the p-Laplacian”, Electron. J. Diff. Equ., 56. 1-8. 2003.
 
[10]  Drabek, P., Kufner, A. and Nicolosi, F., “Quasilinear elliptic equations with degeneration and singularities”, Walter de Gruyter and Co., Berlin. 1997.
 
[11]  Hai, D, D. and Shivaji, R., “An existence result on positive solutions of p -Laplacian systems”, Nonlinear Anal., 56. 1007-1010. 2004
 
[12]  Huang, D, W. and Li, Y, Q., “Multiplicity of solutions for a noncooperative p -Laplacian elliptic system in RN “, J. Differential Equations, 215. 206-223. 2005.
 
[13]  Ma, S., “Nontrivial solutions for resonant cooperative elliptic systems via computations of the critical groups”, Nonlinear Analysis, 73. 3856-3872. 2010.
 
[14]  J.M.B. do O, “Solutions to perturbed eigenvalue problems of the p -Laplacian in RN”, Electron. J. Diff. Equ., 11. 1-15. 1997.
 
[15]  Wu, T.F., “The Nehari manifold for a semilinear elliptic system involving sign changing weight functions”, Nonlinear Analysis, 68. 1733-1745. 2008.
 
[16]  Zhang, G. and Wang, Y., “Some existence results for a class of degenerate semilinear elliptic systems”, J. Math. Anal. Appl., 333. 904-918. 2007.
 
[17]  Zographopoulos, N.B., “On the principal eigenvalue of degenerate quasilinear elliptic systems”, Math. Nachr., 281. No. 9, 1351-1365. 2008.
 
[18]  Zographopoulos, N.B., “On a class of degenarate potential elliptic system”, Nonlinear Diff. Equ. Appl. No DEA, 11. 191-199. 2004.
 
[19]  Zographopoulos, N.B.,” p-Laplacian systems on resonance”, Appl. Anal., 83. 509-519. 2004.