American Journal of Environmental Protection
ISSN (Print): 2328-7241 ISSN (Online): 2328-7233 Website: http://www.sciepub.com/journal/env Editor-in-chief: Mohsen Saeedi, Hyo Choi
Open Access
Journal Browser
Go
American Journal of Environmental Protection. 2020, 8(1), 1-9
DOI: 10.12691/env-8-1-1
Open AccessCase Study

Synoptic Analysis of Extreme Rainfall Event in West Africa: the Case of Linguère

Mouhammed Fall1, , Abdou Lahat Dieng1, Saïdou Moustapha Sall1, Youssouph Sane2 and Moussa Diakhaté1

1Laboratoire de Physique de l’Atmosphère et de l’Océan-Siméon Fongang (LPAO-SF), École Supérieure Polytechnique, UniversitéCheikhAnta Diop,Dakar,Senegal

2Agence Nationale de l’Aviation Civile et de la Météorologie (ANACIM), Dakar,Senegal

Pub. Date: February 15, 2020

Cite this paper:
Mouhammed Fall, Abdou Lahat Dieng, Saïdou Moustapha Sall, Youssouph Sane and Moussa Diakhaté. Synoptic Analysis of Extreme Rainfall Event in West Africa: the Case of Linguère. American Journal of Environmental Protection. 2020; 8(1):1-9. doi: 10.12691/env-8-1-1

Abstract

After the drought period of the 70s and 80s, the Sahelian countries have experienced a resurgence of heavy rains phenomena and devastating floods causing a lot of socio-economic damages since the beginning of the 21st century. In this work, the environmental conditions associated with an extreme rainfall event that has led to high socio-economic impact in Senegal is studied by using the database of the extreme event from the DPC (Direction de la Protection Civil) of Senegal, Satellite products, ERA-Interim reanalysis and five Weather Model Prediction datasets. The rain event occurred on 26 August 2017 at Linguère (15.07°W and 15.23°N). This study aims to analyse the synoptic conditions associated to the event and also the ability of the numerical forecast models to predict it. The satellite dataset shows that the precipitating convective system was initiated at the level of a trough, on August 25 in the afternoon, and the extreme rain event took place on August 26 between 0600UTC and 1200UTC over Linguère. Various atmospheric parameters such as the configuration of the low-level moisture transport, precipitable water, relative humidity at 200 and 700-hPa as well as relative vorticity at 700-hPa appear as good indicators to characterize extreme rainfalls. The numerical forecast models used were able to predict short-term rainfall around Linguère. However, none of the models could predict the extreme aspect of precipitation because they tend to underestimate the intensity compared to rain gauge records.

Keywords:
extreme rainfall in the Sahel/Senegal Meso-scale convective systems moisture transport precipitable water relative humidity wind numerical forecast models

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Barbé, L. (2002). Rainfall variability in West Africa during the years 1950-90. J. Clim.15 16.
 
[2]  Bell, M. A. and Lamb, P. J. (2006). Integration of Weather System Variability to Multidecadal Regional Climate Change: The West African Sudan-Sahel Zone, 1951-98. J. Clim.19 5343-65.
 
[3]  Lebel, T. and Ali, A. (2009). Recent trends in the Central and Western Sahel rainfall regime (1990-2007). J. Hydrol.375 52-64.
 
[4]  Descroix, L., Diongue Niang, A., Panthou, G., Bodian, A., Sane, Y., Dacosta, H., Malam Abdou, M., Vandervaere, J.-P. and Quantin, G. (2016). Évolution récente de la pluviométrie en Afrique de l’ouest à travers deux régions : la Sénégambie et le Bassin du Niger Moyen. Climatologie.
 
[5]  Salack, S., Muller, B. and Gaye, A. T. (2011). Rain-based factors of high agricultural impacts over Senegal. Part I: integration of local to sub-regional trends and variability. Theor. Appl. Climatol.106 1-22.
 
[6]  Salack, S., Klein, C., Giannini, A., Sarr, B., Worou, O. N., Belko, N., Bliefernicht, J. and Kunstman, H. (2016). Global warming induced hybrid rainy seasons in the Sahel. Environ. Res. Lett.11 104008.
 
[7]  Ly, M., Traore, S. B., Alhassane, A. and Sarr, B. (2013). Evolution of some observed climate extremes in the West African Sahel. Weather Clim. Extrem.1 19-25.
 
[8]  Taylor, C. M., Belušić, D., Guichard, F., Parker, D. J., Vischel, T., Bock, O., Harris, P. P., Janicot, S., Klein, C. and Panthou, G. (2017). Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature544 475-8.
 
[9]  Sanogo, S., Fink, A. H., Omotosho, J. A., Ba, A., Redl, R. and Ermert, V. (2015). Spatio-temporal characteristics of the recent rainfall recovery in West Africa: RECENT RAINFALL RECOVERY IN WEST AFRICA. Int. J. Climatol.35 4589-605.
 
[10]  Douglas, I., Alam, K., Maghenda, M., Mcdonnell, Y., Mclean, L. and Campbell, J. (2008). Unjust waters: climate change, flooding and the urban poor in Africa. Environ. Urban.20 187-205.
 
[11]  Hartill, L. (2008). Understanding West Africa’s rising food prices - Burkina Faso.ReliefWeb. Available at https://reliefweb.int/report/burkina-faso/understanding-west-africas-rising-food-prices.
 
[12]  Cornforth, R., Mumba, Z., Parker, D. J., Berry, G., Chapelon, N., Diakaria, K., Diop-Kane, M., Ermert, V., Fink, A. H., Knippertz, P., Lafore, J. P., Laing, A., Lepape, S., Maidment, R., Methven, J., Orji, B., Osika, D., Poan, E., Roca, R., Rowell, S., Smith, R., Spengler, T., Taylor, C. M., Thorncroft, C., Vincendon, J.-C., Yorke, C. and Thorncroft, C. (2017). Synoptic Systems. In Meteorology of Tropical West Africa (D. J. Parker and M. Diop-Kane, ed) pp 40-89. John Wiley & Sons, Ltd, Chichester, UK.
 
[13]  Lafore, J.-P., Beucher, F., Peyrillé, P., Diongue‐Niang, A., Chapelon, N., Bouniol, D., Caniaux, G., Favot, F., Ferry, F., Guichard, F., Poan, E., Roehrig, R. and Vischel, T. (2017). A multi-scale analysis of the extreme rain event of Ouagadougou in 2009. Q. J. R. Meteorol. Soc.143 3094-109.
 
[14]  Engel, T., Fink, A., Knippertz, P., Pante (né Gläser), G. and Bliefernicht, J. (2017). Extreme Precipitation in the West African Cities of Dakar and Ouagadougou: Atmospheric Dynamics and Implications for Flood Risk Assessments. J. Hydrometeorol.18 2937-57.
 
[15]  Janicot, S., Caniaux, G., Chauvin, F., deCoëtlogon, G., Fontaine, B., Hall, N., Kiladis, G., Lafore, J. P., Lavaysse, C., Lavender, S. L., Leroux, S., Marteau, R., Mounier, F., Philippon, N., Roehrig, R., Sultan, B. and Taylor, C. M. (2011). Intraseasonal variability of the West African monsoon. Atmospheric Sci. Lett.12 58-66.
 
[16]  Lafore, J.-P., Flamant, C., Guichard, F., Parker, D. J., Bouniol, D., Fink, A. H., Giraud, V., Gosset, M., Hall, N., Höller, H., Jones, S. C., Protat, A., Roca, R., Roux, F., Saïd, F. and Thorncroft, C. (2011). Progress in understanding of weather systems in West Africa. Atmospheric Sci. Lett.12 7-12.
 
[17]  Nicholson, S. E. (2013). The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual Variability. ISRN Meteorol.2013 1-32.
 
[18]  Sane, Y., Panthou, G., Bodian, A., Vischel, T., Lebel, T., Dacosta, H., Quantin, G., Wilcox, C., Ndiaye, O., Diongue-Niang, A. and Diop Kane, M. (2018). Intensity-duration-frequency (IDF) rainfall curves in Senegal. Nat. Hazards Earth Syst. Sci.18 1849-66.
 
[19]  Diop, L., Bodian, A. and Diallo, D. (2016). Spatiotemporal Trend Analysis of the Mean Annual Rainfall in Senegal. Eur. Sci. J. ESJ 12 231.
 
[20]  Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P. and Stocker, E. F. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 8 38-55.
 
[21]  Nicholson, S. E., Some, B., Mccollum, J., Nelkin, E., Klotter, D., Berte, Y., Diallo, B. M., Gaye, I., Kpabeba, G., Ndiaye, O., Noukpozounkou, J. N., Tanu, M. M., Thiam, A., Toure, A. A. and Traore, A. K. (2003). Validation of TRMM and Other Rainfall Estimates with a High-Density Gauge Dataset for West Africa. Part I: Validation of GPCC Rainfall Product and Pre-TRMM Satellite and Blended Products. J. Appl. Meteorol. 42 18.
 
[22]  Maggioni, V., Meyers, P. C. and Robinson, M. D. (2016). A Review of Merged High-Resolution Satellite Precipitation Product Accuracy during the Tropical Rainfall Measuring Mission (TRMM) Era. J. Hydrometeorol.17 1101-17.
 
[23]  Zulkafli, Z., Buytaert, W., Onof, C., Manz, B., Tarnavsky, E., Lavado, W. and Guyot, J.-L. (2014). A Comparative Performance Analysis of TRMM 3B42 (TMPA) Versions 6 and 7 for Hydrological Applications over Andean-Amazon River Basins. J. Hydrometeorol.15 581-92.
 
[24]  Prakash, S., Mitra, A. K., Momin, I. M., Pai, D. S., Rajagopal, E. N. and Basu, S. (2015). Comparison of TMPA-3B42 Versions 6 and 7 Precipitation Products with Gauge-Based Data over India for the Southwest Monsoon Period. J. Hydrometeorol. 16 346-62.
 
[25]  Joyce, R., Janowiak, J. and Huffman, G. (2001). Latitudinally and Seasonally Dependent Zenith-Angle Corrections for Geostationary Satellite IR Brightness Temperatures. J. Appl. Meteorol.40 689-703.
 
[26]  Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A. and Michaelsen, J. (2015). The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. Sci. Data2 150066.
 
[27]  Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van deBerg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., deRosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc.137 553-97.
 
[28]  Roca, R., Chambon, P., Jobard, I., Kirstetter, P.-E., Gosset, M. and Bergès, J. C. (2010). Comparing Satellite and Surface Rainfall Products over West Africa at Meteorologically Relevant Scales during the AMMA Campaign Using Error Estimates. J. Appl. Meteorol. Climatol.49 715-31.
 
[29]  Mathon, V. and Laurent, H. (2001). Life cycle of Sahelian mesoscale convective cloud systems. Q. J. R. Meteorol. Soc.127 377-406.
 
[30]  Reed, R. J., Norquist, D. C. and Recker, E. E. (1977). The Structure and Properties of African Wave Disturbances as Observed During Phase III of GATE. Mon. Weather Rev.105 317-33.
 
[31]  Payne, S. W. and McGarry, M. M. (1977). The relationship of satellite inferred convective activity to easterly waves over west africa and the adjacent ocean during phase iii of gate. Mon Wea Rev 105: 413.
 
[32]  Diedhiou, A., Janicot, S., Viltard, A., deFelice, P. and Laurent, H. (1999). Easterly wave regimes and associated convection over West Africa and tropical Atlantic: results from the NCEP/NCAR and ECMWF reanalyses. Clim. Dyn.15 795-822.
 
[33]  Kiladis, G. N., Thorncroft, C. D. and Hall, N. M. J. (2006). Three-Dimensional Structure and Dynamics of African Easterly Waves. Part I: Observations. J. Atmospheric Sci.63 2212-30.
 
[34]  Bock, O., Bouin, M. N., Doerflinger, E., Collard, P., Masson, F., Meynadier, R., Nahmani, S., Koité, M., Gaptia Lawan Balawan, K., Didé, F., Ouedraogo, D., Pokperlaar, S., Ngamini, J.-B., Lafore, J. P., Janicot, S., Guichard, F. and Nuret, M. (2008). West African Monsoon observed with ground-based GPS receivers during African Monsoon Multidisciplinary Analysis (AMMA). J. Geophys. Res.113 D21105.
 
[35]  Poan, D. E. (2013). Documentation et interprétation physique de la variabilité intrasaisonnière de la mousson africaine; application à la prévision.Available at http://ethesis.inp-toulouse.fr/archive/00002653/.
 
[36]  Sylla, M. B., Elguindi, N., Giorgi, F. and Wisser, D. (2016). Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century. Clim. Change134 241-53.