[1] | S. Madhusoodhanan, S. Sandoval, Y. Zhao, M. Ware, and Z. Chen, “A Highly linear temperature sensor using GaN-on-SiC heterojunction diode for high power applications,” IEEE Electron Device Letters 38, 1105-1108 (2017). |
|
[2] | Y. Guan, Y. Wang, D. Xu, and W. Wang, “A 1MHz half-bridge resonant DC/DC converter based on GaN FETs and planar magnetics,” IEEE Transactions on Power Electronics 32, 2876-2891 (2017). |
|
[3] | J. Wu, W. Walukiewicz, K. Yu, W. Shan, and J. Ager, “Superior radiation resistance of In 1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” Journal of Applied Physics 94, 6477-6482 (2003). |
|
[4] | U. Mishra, L. Shen, T. Kazior, and Y. Wu, “GaN-based RF power devices and amplifiers,” Proceedings of IEEE 96, 287-305 (2008). |
|
[5] | R. Sun, G. Wang, and Z. Peng, “Fabrication and UV photoresponse of GaN nanowire-film hybrid films on sapphire substrates by chemical vapor deposition method,” Materials Letters 217, 288-291 (2018). |
|
[6] | V. Voronenkov, N. Bochkareva, R. Gorbunov, P. Latyshev, Y. Lelikov, Y. Rebane, A. Tsyuk, A. Zubrilov, and Y. Shreter, “Nature of V-shaped defects in GaN,” Japanese Journal of Applied Physics 52, 08JE14 (2013). |
|
[7] | C. Skierbiszewski, “Growth and characterization of AlInN/GaInN quantum wells for high-speed intersubband devices at telecommunication wavelengths,” Proceedings of SPIE 6121, 612109 (2006). |
|
[8] | B. Gao, H. Liu, Q. Kuang, W. Zhou, and L. Cao, “A novel model of photo-carrier screening effect on the GaN based p-i-n ultraviolet detector,” Science China Physics 53, 793-801 (2010). |
|
[9] | T. Zimmermann, M. Neuburger, P. Benkart, F. Hernandez-Guillen, C. Pietzka, M. Kunze, I. Daumiller, A. Dadgar, A. Krost, and E. Kohn, “Piezoelectric GaN sensor structures,” IEEE Electron Device Letters 27, 309-312 (2006). |
|
[10] | Y. Ikawa, K. Lee, J. Ao, and Y. Ohno, “Two-dimensional device simulation of AlGaN/GaN heterojunction FET side-gating effect,” Japanese Journal of Applied Physics 53, 114302 (2014). |
|
[11] | H. Song, S. Lee, “Red light emitting solid state hybrid quantum dot-near-UV GaN LED devices,” Nanotechnology 18, 255202 (2007). |
|
[12] | S. Nakamura, “Current status of GaN-based solid-state lighting, “Materials Research 34, 101-107 (2009). |
|
[13] | K. Song and H. Kim, “Optical properties of undoped a-plane GaN grown with different initial growth pressures,” Japanese Journal of Applied Physics 51, 092101 (2012). |
|
[14] | M. Reshchikov, H. Morkoc, “Luminescence properties of defects in GaN,” Journal of Applied Physics 97, 061301-061395 (2005). |
|
[15] | A. Slimane, A. Najar A, T. Ng, and B. Ooi, “Thermal annealing induced relaxation of compressive strain in porous GaN structures,” Proceedings of the 25th of IEEE Photonics Conference, 921-922 (2012). |
|
[16] | A. M. Nahhas, “Review of GaN Nanostructured Based Devices,” American Journal of Nanomaterials 6, 1-14 (2018). |
|
[17] | D. Li, X. Sun, and H. Song, “Realization of a high- performance GaN UV detector by nanoplasmonic enhancement,” Advanced Materials 24, 845-849 (2012). |
|
[18] | M. Hetzl, F. Schuster, A. Winner, S. Weiszer, and M. Stutzmann, “GaN nanowires on diamond,” Materials Science in Semiconductor Processing 48, 65-78 (2016). |
|
[19] | M. Qaeed, K. Ibrahim, K. Saron, M. Mukhlif, A. Ismail, N. Elfadill, K. Chahrour, Q. Abdullah, and K. Andiroba, “New issue of GaN nanoparticles solar cell,” Current Applied Physics 15, 499-503 (2015). |
|
[20] | R. Yu, L. Dong, C. Pan, S. Niu, H. Liu, W. Liu, S. Chua, D. Chi, and Z. Wang, “Piezotronic effect on the transport properties of GaN nanobelts for active flexible electronics,” Advanced Materials 24, 3532-3537 (2012). |
|
[21] | Z. Li, X. Chen, H. Li, Q. Tu, Z. Yang, Y. Xu, and B. Hu, “Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires,” Applied Physics A 72, 629-632 (2001). |
|
[22] | J. Sodre, E. Longo, C. Taft, J. Martins, and J. Santos, “Electronic structure of GaN nanotubes,” Comptes Rendus Chimie 20, 190-196 (2017). |
|
[23] | M. Lee, D. Mikulik, and S. Park, “Thick GaN growth via GaN nanodot formation by HVPE,” CrystEngComm 19, 930-935 (2017). |
|
[24] | M. Reddeppa, B. Park, S. Lee, N. Hai, M. Kim, and J. Oh, “Improved Schottky behavior of GaN nanorods using H2 plasma treatment,” Current Applied Physics 17, 192-196 (2017). |
|
[25] | S. Elashmawi, A. Abdelghany, and N. Hakeem, “Quantum confinement effect of CdS nanoparticles dispersed within PVP/PVA nanocomposites,” Journal of Materials Science 24, 2956-2961 (2013). |
|
[26] | T. Narita, K. Kataoka, M. Kanechika, T. Kachi, and T. Uesugi, “Ion implantation technique for conductivity control of GaN,” IEEE 17th International Workshop on Junction Technology (IWJT), 87-90 (2017). |
|
[27] | S. Matsunaga, S. Yoshida, T. Kawaji, and T. Inada, “Silicon implantation in epitaxial GaN layers: Encapsulant annealing and electrical properties,” Journal of Applied Physics 95, 2461 (2004). |
|
[28] | Y. Irokawa, O. Fujishima, T. Kachi, and Y. Nakano, “Electrical activation characteristics of silicon implanted GaN,” Journal of Applied Physics 97, 083505 (2005). |
|
[29] | C. Ostermaier, P. Lagger, M. Alomari, P. Herfurth, D. Maier, A. Alexewicz, M. Forte-Poisson, S. Delage, G. Strasser, D. Pogany, and E. Kohn, “Reliability investigation of the degradation of the surface passivation of InAlN/GaN HEMTs using a dual gate structure,” Microelectronics and Reliability 52, 1812-1815 (2012). |
|
[30] | Y. Kong, L. Liu, S. Xia, Y. Diao, H. Wang, and M. Wang, “Optoelectronic properties of Mg doping GaN nanowires,” Optical and Quantum Electronics 48, 1-12 (2016). |
|
[31] | C. Walle, J. Neugebauer, C. Stamp, M. Mccluskeyc, and N. Johnson, “Defects and defect reactions in semiconductor nitrides,” Acta Physica Polonica A 96, 613-627 (1999). |
|
[32] | F. Naranjo, E. Calleja, Z. Bougrioua, A. Trampert, X. Kong, and K. Ploog, “Efficiency optimization of p-type doping in GaN:Mg layers grown by molecular-beam epitaxy,” Journal of Crystal Growth 270, 542-546 (2004). |
|
[33] | T. Narita, T. Kachi1, K. Kataoka and T. Uesugi, “P-type doping of GaN(0001) by magnesium ion implantation,” Applied Physics Express 10, 16501 (2017). |
|
[34] | X. Cai, A. Djurisic, M. Xie, H. Liu, X. Zhang, J. Zhu, and H. Yang, “Ferromagnetism in Mn and Cr doped GaN by thermal diffusion,” Materials Science and Engineering B 117, 292-295 (2005). |
|
[35] | G. Aluri, M. Gowda, N. Mahadik, S. Sundaresan, M. Rao, J. Schreifels, J. Freitas, S. Qadri, and Y. Tian, “Microwave annealing of Mg-implanted and in situ Be-doped GaN,” Journal of Applied Physics 108, 083103 (2010). |
|
[36] | W. Khalfaoui. T. Oheix, G. El‐ Zammar, R. Benoit, F. Cayrel, E. Faulques, F. Massuyeau, A. Yvon, E. Collard, and D. Alquier,“Impact of rapid thermal annealing on Mg‐ implanted GaN with a SiOx/AlN cap‐layer,” Physica Status Solidi 214, 1-8 (2017). |
|
[37] | D. As, U. Kohler, M. Lubbers, J. Mimkes, and K. Lischka, “p- Type doping of cubic GaN by carbon,” Physica Status Solidi A 188, 699-703 (2001). |
|
[38] | H. Yacoub, C. Mauder, S. Leone, M. Eickelkamp, D. Fahle, M. Heuken, H. Kalisch, and A. Vescan, “Effect of different carbon doping techniques on the dynamic properties of GaN-on-Si buffers,” IEEE Transactions on Electron Devices 64, 991-997 (2017). |
|
[39] | A. M. Nahhas, H. Kim, and J. Blachere, “ Epitaxial growth of ZnO films on Si substrates using an epitaxial GaN buffer,” Applied Physics Letters 78, 1511-1513 (2001). |
|
[40] | E. Kim, B. Lee, A. M. Nahhas, and H. Kim, “ Thin-film-induced index change and channel waveguiding in epitaxial GaN films,” Applied Physics Letters 77, 1747-1749 (2000). |
|
[41] | D. Bisi, M. Meneghini, F. Marino, D. Marcon, S. Stoffels, M. Hove, S. Decoutere, G. Meneghesso, and E. Zanoni, “Kinetics of buffer-related RON-increase in GaN-on-Silicon MIS-HEMTs,” IEEE Electron Device Letters 35, 1004-1006 (2014). |
|
[42] | C. Seager, A. Wright, J. Yu, and W. Gotz, “Role of carbon in GaN,” Journal of Applied Physics 92, 6553- 6560 (2002). |
|
[43] | H. Tang, J. Webb, J. Bardwell, S. Raymond, J. Salzman, and C. Uzan-Saguy, “Properties of carbon-doped GaN,” Applied Physics Letters 78, 757-759 (2001). |
|
[44] | D. Koleske, A. Wickenden, R. Henry, and M. Twigg, “Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN,” Journal of Crystal Growth 242, 55-69 (2002). |
|
[45] | N. Weimann, L. Doppalapudi, H. Ng, and T. Moustakas, “Scattering of electrons at threading dislocations in GaN,” Journal of Applied Physics 83, 3656-3659 (1998). |
|
[46] | K. O’Donnell, P. Edwards, M. Kappers, K. Lorenz, E. Alves, and M. Bockowski, “Europium-doped GaN (Mg): beyond the limits of the light-emitting diode,” Physics Status Solidi C 11, 662-665 (2014). |
|
[47] | K. O'Donnell, B. Hourahine, “Rare earth doped III- nitrides for optoelectronics,” The European Physical Journal 36, 91-103 (2006). |
|
[48] | A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Room-temperature red emission from a p-type/Europium- doped/n-type Gallium Nitride light-emitting diode under current injection,” Applied Physics Express 2, 071004 (2009). |
|
[49] | I. Roqan, K. O'Donnell, R. Martin, P. Edwards, S. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Bockowski, “Identification of the prime optical center in GaN:Eu3+,” Physics Review B 81, 085209 (2010). |
|
[50] | K. Lorenz, E. Alves, I. Roqan, K. O'Donnell, A. Nishikawa, Y. Fujiwara, and M. Bockowski, “Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy,” Applied Physics Letters 97, 111911 (2010). |
|
[51] | V. Kachkanov, G. Laan, S. Dhesi, S. Cavill, M. Wallace, K. O’Donnell, and Y. Fujiwara, “Induced magnetic moment of Eu3+ ions in GaN,” Scientific Reports 2, 969 (2012). |
|
[52] | E. Litwin-Staszewska, T. Suski, R. Piotrzkowski, I. Grzegory, and M. Bockowski, “Temperature dependence of electrical properties of Gallium-Nitride single crystals doped with Mg and their evolution with annealing,” Journal of Applied Physics 89, 7960-7965 (2001). |
|
[53] | I. Rogozin, A. Georgobiani, and M. Kotlyarevsky, “VN-Mg defect complexes as compensating centers in GaN:Mg,” Inorganic Materials 44, 1342-1347 (2008). |
|
[54] | I. Rogozin, A. Georgobiani “Theoretical analysis of defect formation in GaN:Mg crystals,” Bulletin of the Lebedev Physics Institute 34, 3-13 (2007). |
|
[55] | I. Akasaki, H. Amano, M. Kito, and K. Hiramatsu, “Photoluminescence of Mg-doped p-Type GaN and electroluminescence of GaN pn Junction LED,” Journal of Luminescence 48-49, 666-670 (1991). |
|
[56] | S. Hashimoto, T. Nakamura, Y. Honda, and H. Amano, “Novel activation process for Mg-implanted GaN,” Journal of Crystal Growth 388, 112-115 (2014). |
|
[57] | L. Eckeya, U. Gfuga, J. Holsta, A. Hoffmanna, B. Schinellerb, K. Heimeb, M. Heukenc, O. Schonc, and R. Beccardc, “Compensation effects in Mg-doped GaN epilayers,” Journal of Crystal Growth 189-190, 523-527 (1998). |
|
[58] | M. Reshchikov, G. Yi, and B. Wesseles, “Behavior of 2.8- and 3.2-eV Photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities,” Physics Review B 59, 13176-13183 (1999). |
|
[59] | S. Kim, J. Lee, C. Huh, N. Park, H. Kim, I. Lee, and S. Park, “Reactivation of Mg acceptor in Mg-doped GaN by nitrogen plasma treatment,” Applied Physics Letters 76, 3079-308 (2000). |
|
[60] | J. Sheu, P. Chen, C. Shin, M. Lee, P. Liao, and W. Lai, “Manganese-doped AlGaN/GaN heterojunction solar cells with intermediate band absorption,” Solar Energy Materials and Solar Cells 157, 727-732 (2016). |
|
[61] | H. Ohno, “Making nonmagnetic semiconductors ferromagnetic,” Science 281, 951-956 (1998). |
|
[62] | D. Mahony, J. Lunney, G. Tobin, and E. McGlynn, “Pulsed laser deposition of manganese doped GaN thin films,” Solid State Electronics 47, 533-537 (2003). |
|
[63] | L. Geelhaar, C. Cheze, B. Jenichen, O. Brandt, C. Pfuller, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias,P. Komninou, G. Dimitrakopulos, T. Karakostas, L. Lari, P. Chalker, M. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” IEEE Journal of Selected Topics in Quantum Electronics 17, 878-888 (2011). |
|
[64] | C. Li, S. Liu, T. Luk, J. Figiel, I. Brener, S. Bruecka and G. Wang, “Intrinsic polarization control in rectangular GaN nanowire lasers,” Nanoscale 8, 5682-5687 (2016). |
|
[65] | H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Advanced Materials 157, 4641-4646 (2009). |
|
[66] | Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” Journal of Physics D: Applied Physics 43, 354002 (2009). |
|
[67] | H. Kim, S. Park, H. Hwang, and N. Park, “Lateral current transport path, a model for GaN-based light-emitting diodes: applications to practical device designs,” Applied Physics Letters 81, 1326-1328 (2002). |
|
[68] | Q. Wu, Z. Yang, Z. Zhao, M. Que, X. Wang, and Y. Wang, “Synthesis, crystal structure and luminescence properties of a Y4Si2O7N2:Ce3+ phosphor for near-UV white LEDs,” Journal of Materials Chemistry C 2, 4967-4973 (2014). |
|
[69] | E. Repo, S. Rengaraj, S. Pulkka, E. Castangnoli, S. Suihkonen,M. Sopanen, and M. Sillanp, “Photocatalytic degradation of dyes by CdS microspheres under near UV and blue LED radiation,” Separation and Purification Technology 120, 206-214 (2013). |
|
[70] | S. Hong, C. Cho, S. Lee, S. Yim, W. Lim, S. Kim, and S. Park, “Localized surface plasmon-enhanced near-ultraviolet emission from InGaN/GaN light-emitting diodes using silver and platinum nanoparticles,” Optics Express 21, 3138-3144 (2013). |
|
[71] | T. Okimoto, M. Tsukihara, K. Kataoka, A. Kato, K. Nishino, Y. Naoi, and S. Sakai, “GaN- and AlGaN-based UV-LEDs on sapphire by metal-organic chemical vapor deposition,” Physica Status Solidi C 5, 3066-3068 (2008). |
|
[72] | W. Phillips, E. Thrush, Y. Zhang, and C. Humphreys, “Studies of efficiency droop in GaN based LEDs,” Physica Status Solidi C 9, 765-769 (2012). |
|
[73] | T. Kuykendall, A. Schwartzberg, and S. Aloni, “Gallium nitride nanowires and heterostructures: Toward Color-Tunable and White Light Sources,” Advanced Materials 27, 5805-5812 (2015). |
|
[74] | Y. Song, R. Zhu, and Y. Wang, “Active noise filtering for X-band GaN transmitters with bitstream Modulations,” IEEE Transactions on Microwave Theory and Techniques 65, 1-9 (2017). |
|
[75] | C. Wang, L. Wang, L. Zhang, R. Xi, H. Huang, S. Zhang, and G. Pan, “Electrodeposition of ZnO nanorods onto GaN towards enhanced H2S sensing,” Journal of Alloys and Compounds 790, 363-369 (2019). |
|
[76] | X. Tan, Y. Lv, X. Zhou, X. Song, Y. Wang, G. Gu, H. Guo, S. Liang, Z. Feng, and S. Cai, “High performance AlGaN/GaN pressure sensor with a Wheatstone bridge Circuit,” Microelectronic Engineering 219, 111143 (2020). |
|
[77] | A. M. Nahhas, “Review of AlGaN/GaN HEMTs Based Devices,” American Journal of Nanomaterials 7, 10-21 (2019). |
|
[78] | M. Reddeppa, T. Nguyen, B. Park, S. Kim, and M. Kim, “Low operating temperature NO gas sensors based H2 peroxide treated GaN nanorods,” Physica E 116, 113725 (2020). |
|
[79] | M. Mishraa, N. Bhallac, A. Dashd, and G. Gupta, “Nanostructured GaN and AlGaN/GaN heterostructure for catalyst-free low temperature CO sensing,” Applied Surface Science 481, 379-384 (2019). |
|
[80] | N. Chaturvedi, K. Singh, P. Kachhawa, , R. Lossy, S. Mishra, A. Chauhan, , D. Kharbanda, , A. Jain, , R. Thakur, D. Saxena, P. Khanna, and J. Wuerfl, “AlGaN/GaN HEMT based sensor and system for polar liquid detection,” Sensors and Actuators A 302, 111799 (2020). |
|
[81] | I. Liu, C. Chang, H. Lu, and K. Lin, “H2 sensing performance of a GaN-based Schottky diode with an H2O2 treatment and electroless plating approach,” Sensors & Actuators: B. Chemical 296, 126599 (2019). |
|
[82] | M. Khan, , B. Thomson, , J. Yu, , R. Debnath, , A. Motayed, and M. Rao, “Scalable metal oxide functionalized GaN nanowire for precise SO2 detection,” Sensors & Actuators: B. Chemical 318, 128223 (2020). |
|
[83] | L. Li, X. Li, T. Pu, L. Yang, and J. Ao, “Normally off AlGaN/GaN ion-sensitive field effect transistors realized by photoelectrochemical method for pH sensor application,” Superlattices and Microstructures 128, 99-104 (2019). |
|
[84] | D. Xue, H. Zhang, A. Ahmad, H. Liang, J. Liu, X. Xia, W. Guo, H. Huang, and N. Xu, “Enhancing the sensitivity of the reference electrode free AlGaN/GaN HEMT based pH sensors by controlling the threshold voltage,” Sensors & Actuators: B. Chemical 306, 127609 (2020). |
|
[85] | I. Liu, C. Chang, B. Ke, and K. Lin, “Study of a GaN Schottky diode based H2 sensor with a H2 peroxide oxidation approach and platinum catalytic metal” International Journal of H2 Energy 44, 32351-32361 (2019). |
|
[86] | C. Wang, Z. Wang, R. Xi, L. Zhang, S. Zhang, L. Wang, and G. Pan, “In situ synthesis of flower-like ZnO on GaN using electrodeposition and its application as ethanol gas sensor at room temperature” Sensors & Actuators: B. Chemical 292, 270-276 (2019). |
|
[87] | B. Bartosewicz, P. Andersson, I. Dzięcielewski, B. Jankiewicz, and J. Weyher, “Nanostructured GaN sensors for Surface Enhanced Raman Spectroscopy” Materials Science in Semiconductor Processing 91, 270-276 (2019). |
|
[88] | A. Bag, D. Moon, K. Park, C. Cho, and N. Lee, “Room-temperature-operated fast and reversible vertical-heterostructure diode gas sensor composed of reduced graphene oxide and AlGaN/GaN” Sensors & Actuators: B. Chemical 296, 126684 (2019). |
|
[89] | G. Parish, F. Khir, F. Krishnan, J. Wang, J. Krisjanto, H. Li, G. Umana-Membreno, S. Keller, , U. Mishra, , M. Baker, D. Brett , S. Nener, and M. Myers, “Role of GaN cap layer for reference electrode free AlGaN/GaN-based Ph sensors” Sensors & Actuators: B. Chemical 287, 250-257 (2019). |
|
[90] | I. Liu, C. Chang, Y. Huang, and K. Lin, “Study of a GaN Schottky diode based H2 sensor with a H2 peroxide oxidation approach and platinum catalytic metal” International Journal of H2 Energy 44, 5748-5754 (2019). |
|
[91] | B. Shen, F. Li, Y. Xie, J. Luo, P. Fan, and A. Zhong, “High performance ammonia gas sensor based on GaN honeycomb nanonetwork” Sensors and Actuators A 312, 112172 (2020). |
|