American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
American Journal of Materials Science and Engineering. 2019, 7(1), 1-6
DOI: 10.12691/ajmse-7-1-1
Open AccessArticle

Physico-Chemical Behavior of Glycerol-Coated Cassava Starch Gels Incorporating Kaolin and Metakaolin

Namory Meite1, , Léon Koffi Konan1, , Bi Irie Hervé Goure Doubi2, Doudjo Soro3, Iuliana Mihaela Lazar4 and Samuel Oyetola1

1Laboratory of Materials Inorganic Chemistry, Felix Houphouet Boigny University, 22 Po box 582 Abidjan, Côte d’Ivoire

2Unit for training and research of Biological Sciences, Peleforo Gon Coulibaly University, Po box 1328 Korhogo, Côte d’Ivoire

3Laboratory of Industrial Processes, Synthesis, Environment and New Energies (LAPISEN), National Institute Polytechnic Houphouet Boigny (INP-HB) of Yamoussoukro, BP 1093 Yamoussoukro, Côte d'Ivoire

4Department of Environmental and Mechanical Engineering, Vasile Alecsandri University of Bacau, Calea Marasesti 157, 600115, Bacau, Romania

Pub. Date: January 28, 2019

Cite this paper:
Namory Meite, Léon Koffi Konan, Bi Irie Hervé Goure Doubi, Doudjo Soro, Iuliana Mihaela Lazar and Samuel Oyetola. Physico-Chemical Behavior of Glycerol-Coated Cassava Starch Gels Incorporating Kaolin and Metakaolin. American Journal of Materials Science and Engineering. 2019; 7(1):1-6. doi: 10.12691/ajmse-7-1-1


This study aims at analyzing the physico-chemical interactions in glycerol-coated cassava starch gels incorporating clay as mineral filler during heating. The physico-chemical and structural characterization of the clay used is composed of 75% kaolinite, 14% quartz and 11% illite. A thermal treatment at 700°C for 1 hour of this kaolinitic clay has allowed strong destructuring of the crystalline structure. The suspensions of glycerol plasticized cassava starch without charge or containing 5% by weight of clay were prepared and then heated at various temperatures between 30°C and 100°C. The suspensions viscosity increases according to the temperature up to a maximum following the penetration of the water molecules inside the starch grains. This phase is followed immediately by a sharp drop in the viscosity, resulting in a granular destructuring and solubilization of the starch grains. The suspensions incorporating metakaolin have a higher viscosity than those incorporating kaolin. The gels incorporating metakaolin have a hight ability to downgrade. The infrared spectroscopy of gels taken at different temperatures show the formation of the inter and intra molecular bonds within the starch granules.

bioplastic starch viscosity metakaolin

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Iovino R., Zullo R., MA R., Cassar L., Gianfreda L., "Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions" Polym Degrad Stab, 93(1). 147-157. January 2008.
[2]  Babaee M. J., M. Hamzeh Y., Ashori A., "Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers" Carbohydrates Polymers, 132. 1-8. June 2015.
[3]  Bordes P., Pollet E., Averous L., “Nano-biocomposites: Biodegradable polyester/nanoclay systems” Progress in Polymer Science, 34(2). 125-155. February 2009.
[4]  Chivrac F., Pollet E., Schmutz M., Avérous L., “Starch nano-biocomposites based on needle-like sepiolite clays” Carbohydrate Polymers, 80(1). 145-153. November 2010.
[5]  Sei J., Touré A. A., Olivier-Fourcade J., Quiquampoix H., Staunton S., Jumas J. C., Womes M., “Characterisation of kaolinitic clays from the Ivory Coast (West Africa)” Applied Clay Science, 27(3-4). 235-239. December 2004.
[6]  Konan K. L., Soro J., Soro N. S., Oyetola S., Gaillard J. -M., Bonnet J. -P., Kra G.,“Caractérisation de matériaux argileux du site d’Azaguié-Blida (Anyama, Côte d’Ivoire) et détermination des propriétés mécaniques de produits céramiques” J. Soc. Ouest–Afr. Chim., 021. 35-43. December 2006.
[7]  Sidibe D., Sako A., Ezoua P., Kouame C., Dally L. I., Kati-Coulibaly S.,“Hydrothermal behavior of starches of four varieties of cassava (Manihot esculenta Crantz) grown in Côte d'Ivoire” Int. J. Biol. Chem. Sci., 3(6). 1467-1479. 2009.
[8]  Mbey J. A., Thomas F., "Components interactions controlling starch-kaolinite composite films properties" Carbohydrates Polymers, 117. 739-745. March 2015.
[9]  Jafarzadeh S., Alias A. K., Ariffin F., Mahmud S., Najafi A., "Preparation and characterization of bionanocomposite films reinforced with nano kaolin" J Food Sci Technol, 53(2). 1111-1119. February 2016.
[10]  Njopwouo D., Orliac M., "Note sur le comportement de certains minéraux à l'attaque triacide" cah. ORSTOM-sér.pédol, XVII(4). 329-337. 1979.
[11]  Konan K. L., Soro J., Andji J. Y. Y., Oyetola S., Kra G., “Etude comparative de la déshydroxylation/amorphisation dans deux kaolins de cristallinité différente” J. Soc. Ouest-Afr. Chim., 030. 29-39. August 2010.
[12]  Madejová J., “FTIR techniques in clay mineral studies” Vibrational spectroscopy, 31(1). 1-10, January 2003.
[13]  Konan K. L., Peyratout C., Bonnet J. -P., Smith A., Jacquet A., Magnoux P., Ayrault P.,"Surface properties of kaolin and illite suspensions in concentrated calcium hydroxide medium" Journal of Colloid and Interface Science, 307(1). 101-108. March 2007.
[14]  Qing D., Zhong X. S., Willes F., Hongxiao, "Acid–Base Properties of Aqueous Illite Surfaces". J. Colloid Interface Sci., 187(1). 221-231. March 1997.
[15]  Malumba P., Janas S., Deroanne C., Masimango T., Béra F., "Structure de l’amidon de maïs et principaux phénomènes impliqués dans sa modification thermique " Biotechnol. Agron. Soc. Environ., 15(2). 315-326. October 2011.
[16]  Hajjaji M., Kacim S., Boulmane M.,"Mineralogy and firing characteristics of clay from the valley of Ourika (Morocco)" Applied Clay Science, 21(3-4). 203-212. June 2001.