American Journal of Energy Research
ISSN (Print): 2328-7349 ISSN (Online): 2328-7330 Website: http://www.sciepub.com/journal/ajer Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Energy Research. 2016, 4(1), 16-26
DOI: 10.12691/ajer-4-1-3
Open AccessArticle

Quasi Isothermal Heat Engine for Concentrating Solar Power Systems

E. Kussul1, , T. Baidyk1 and O. Olvera Tapia1

1Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, AP 70-186, CP 04510, México D. F. México

Pub. Date: June 27, 2016

Cite this paper:
E. Kussul, T. Baidyk and O. Olvera Tapia. Quasi Isothermal Heat Engine for Concentrating Solar Power Systems. American Journal of Energy Research. 2016; 4(1):16-26. doi: 10.12691/ajer-4-1-3

Abstract

Recently we developed new type of solar concentrators, which have parabolic dish surface approximated with flat facet mirrors. To create the solar power plant on the base of these concentrators it is necessary to develop efficient heat engine for the temperature difference that can be obtained with new concentrators. For this purpose we propose to create quasi isothermal heat engine based on the Ericsson cycle and designed as rolling piston engine. We present in this paper two types of such engines: one-valve heat engine and valve-less heat engine. The theoretical analysis shows that for high temperature 600 K and low temperature 300 K the thermal efficiency can be obtained 0.46-0.49 for one-valve heat engine and 0.36-0.46 for valve-less heat engines for compression rate 1.2-1.05. To obtain acceptable power-two-weight ratio of the engine it is necessary to maintain the mean pressure of the cycle equal to 100-200 bar as it is made in some Stirling engines.

Keywords:
Ericcson cycle engine quasi isothermal heat engine rolling piston heat engine solar power plant solar energy

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 14

References:

[1]  Kussul E., Baidyk T., Lara F., Saniger J., Bruce N., Estrada C., Micro facet solar concentrator, International Journal of Sustainable Energy, 2008, Vol.27, Issue 2, pp.61-71.
 
[2]  Kussul E., Baidyk T., Lara-Rosano F., Jose M. Saniger Blesa, Gabriel Ascanio, Neil Bruce, Method and Device for Mirrors Position Adjustment of a Solar Concentrator, USA Patent N US 8,631,995 B2, Jan.21, 2014.
 
[3]  Kussul E., Baidyk T., Lara-Rosano F., Jose M. Saniger Blesa, Neil Bruce, Concentrador Solar, Mexico, Patente No 309274, 26.04.2013.
 
[4]  Kussul E., Baidyk T., Lara-Rosano F., Jose M. Saniger Blesa, Gabriel Ascanio, Neil Bruce, Método y dispositivo de ajuste de posición de espejos de un concentrador solar, Mexico, Patente No 313963, 30.09.2013.
 
[5]  David G. Teraji, Concentrated Solar Power Hybrid Gas Turbine Demonstration Test Results, ASME 2015 Power Conference, San Diego, California, USA, June 28–July 2, 2015, Paper No. POWER2015-49572, pp. 6.
 
[6]  Bancha Kongtragool, Somchai Wongwises, A review of solar-powered Stirling engines and low temperature differential Stirling engines, Renewable and Sustainable Energy Reviews, 7 (2003) 131-154.
 
[7]  Abdou Touré, Pascal Stouffs Modeling of the Ericsson engine, Energy, Volume 76, 1, November 2014, Pages 445-452.
 
[8]  F. Lontsi, O. Hamandjoda, K. F. Djanna, P. Stouffs and J. Nganhou, Dynamic modeling of a small open Joule cycle reciprocating Ericsson engine: simulation results, Energy Science & Engineering, Vol. 1, Issue 3, pp. 109-117.
 
[9]  A. Fula, P. Stouffs and F.Sierra, In-Cylinder Heat Transfer in an Ericsson Engine Prototype, International Conference on Renewable Energies and Power Quality (ICREPQ’13) Bilbao (Spain), 20th to 22th March, 2013, No.11, March 2013, pp.6.
 
[10]  B. Kongtragool and S. Wongwises, A review of solar-powered Stirling engines and low temperature differential Stirling engines, Renewable and Sustainable Energy Reviews, 7(2) (2003) 131-154.
 
[11]  B. Kongtragool and S. Wongwises, Performance of lowtemperature differential Stirling engines, Renewable Energy, 32(4) (2007) 547-566.
 
[12]  E. Kussul, O. Makeyev, T. Baidyk, and O. Olvera, Design of Ericsson heat engine with micro channel recuperator, ISRN Renewable Energy, Article ID 613642, (2012), 8 pp.
 
[13]  GÖkhan Aran, Aerothermodynamic analysis and design of a rolling piston engine, Thesis Submitted to the Graduate School of Natural and Applied Sciences of Middle East Technical University for the Degree of Master of Science in Aerospace Engineering, June 2007, pp.124.
 
[14]  Geng Wei, Liu Chun Hui and Wang, Yan Zhen, The performance optimization of rolling piston compressors based on CFD simulation, Proc. of International Compressor Engineering Conference, Purdue, Paper 1621 (2004) http://docs.lib.purdue.edu/icec/1621.
 
[15]  Zhao Li, Li Minxia, Ma Yitai, and Liu Zhongyan, Simulation analysis of a two rolling piston expander replacing a throttling valve in a conventional refrigerant heat pump system, Proc. of International Compressor Engineering Conference, Purdue, July 16-19, 2012, N 1339, pp.1-10.
 
[16]  Ihn-Sung Cho, Jae-Youn Jung, The influence of vane on the lubrication characteristics between the vane and rolling piston of a rotary compressor, Journal of Mechanical Science and Technology, 20(12) (2006) 2242-2249.
 
[17]  Ihn-Sung Cho, Seok-Hyung Oh, and Jae-Youn Jung, The lubrication characteristics between the vane and rolling piston in rotary compressor used for refrigeration and air-conditioning systems, KSME International Journal, 15(5) (2001) 562-568.
 
[18]  S. Bonnet, M. Alaphilippe, and P. Stouffs, Energy, exergy and cost analysis of a micro-cogeneration system based on an Ericsson engine, International Journal of Thermal Sciences, 44(12) (2005) 1161-1168.
 
[19]  L.B. Erbay and H.Yavuz, Analysis of an irreversible Ericsson engine with a realistic regenerator, Applied Energy, 62(3) (1999) 155-167.
 
[20]  Yang Jun, Zhang Long, Zhang Li, and Li Hao Yuan, Development of a two-cylinder rolling piston CO2 expander, Proc. of International Compressor Engineering Conference at Purdue, July 12-15, 2010, Paper 2022, 1-5.
 
[21]  E. Sakurai, and J.F. Hamilton, Measurement of operating conditions of rolling piston type rotary compressors, Proc. of International Compressor Engineering Conference, 1982, Paper 373, pp.60-68.
 
[22]  N. Ishii, M. Yamamura, S. Muramatsu, S. Yamamoto, and M. Sakai, Mechanical efficiency of a variable speed scroll compressor, Proc. of International Compressor Engineering Conference. 1990, Paper 705, pp.192-199.