World Journal of Organic Chemistry
ISSN (Print): 2372-2150 ISSN (Online): 2372-2169 Website: http://www.sciepub.com/journal/wjoc Editor-in-chief: Subrata Shaw
Open Access
Journal Browser
Go
World Journal of Organic Chemistry. 2016, 4(1), 1-7
DOI: 10.12691/wjoc-4-1-1
Open AccessArticle

Synthesis, Characterization and Catalytic Properties of Magnetic Nano Supported Molybdat Sulfuric Acid (Fe3O4@MSA NPs) in Base Catalyzed Synthesized of 2-Substituted aryl(amino) and (indolyl) Kojic Acid Derivatives under Solvent-free Conditions

Mehdi Forouzani1,

1Department of Chemistry, Payame Noor University, Tehran, Iran

Pub. Date: February 27, 2016

Cite this paper:
Mehdi Forouzani. Synthesis, Characterization and Catalytic Properties of Magnetic Nano Supported Molybdat Sulfuric Acid (Fe3O4@MSA NPs) in Base Catalyzed Synthesized of 2-Substituted aryl(amino) and (indolyl) Kojic Acid Derivatives under Solvent-free Conditions. World Journal of Organic Chemistry. 2016; 4(1):1-7. doi: 10.12691/wjoc-4-1-1

Abstract

Magnetic nanoparticle-supported molybdate sulfuric acid (MNPs-MSA) was synthesized and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). The catalytic activity of MNPs-MSA was investigated as a recoverable catalyst for the one-pot synthesis of novel 2-substituted aryl (amino) and aryl (indolyl) kojic acid derivatives from the reaction of aldehydes with aniline or indole and kojic acid in high yield at room temperature under solvent-free conditions Abstract should briefly state the purpose of the research, the principal results, and the major conclusions of the study.

Keywords:
magnetic nanoparticle nanoparticle-supported molybdate sulfuric acid (MNPs-MSA) 2-substituted aryl (amino) kojic acid 2-substituted aryl (indolyl) kojic acid One-pot synthesis solvent-free

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 8

References:

[1]  Dalaigh, C. O.; Corr, S. A.; Ko, Y. G.; Connon, S. J. A Magnetic-Nanoparticle-Supported 4-N,N-Dialkylaminopyridine Catalyst: Excellent Reactivity Combined withFacile Catalyst Recovery and Recyclability. Angew. Chem. Int. Ed. 2007, 46, 4329-4332.
 
[2]  Shi, F.; Tse, M. K.; Pohl, A.; Bruckner, S. Zhang, M.; Beller, M. Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis: Improved Activity and Selectivity of Free Nano-Fe2O3 in Selective Oxidations. Angew. Chem. Int.Ed.2007, 46, 8866-8868.
 
[3]  Zhang, D. H.; Li, G. D.; Li, J. X.; Chen, J. S. One-pot synthesis of Ag–Fe3O4 nanocomposite: a magnetically recyclable and efficient catalyst for epoxidation of styrene. Chem. Commun. 2008, 3414-3416.
 
[4]  Guin, D.; Baruwati, B.; Manorama, S. V. Pd on amine-terminated ferrite nanoparticles: a complete magnetically recoverable facile catalyst for hydrogenation reactions. Org. Lett. 2007, 9, 1419-1421.
 
[5]  Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L.V. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2008, 108, 2064-2110.
 
[6]  Karimi, B.; Farhangi, E. A Highly Recyclable Magnetic Core-Shell Nanoparticle- Supported TEMPO catalyst for Efficient Metal- and Halogen-Free Aerobic Oxidation of Alcohols in Water. Chem. Eur. J. 2011, 17, 6056-6060.
 
[7]  Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.-M. Magnetically Recoverable Nanocatalysts. Chem. Rev. 2011, 111, 3036-3075.
 
[8]  Amoozadeh, A.; Kolvari, E.; Koukabi, N.; Otokesh, S. Synthesis of Pyrimidinone and 5-unsubstituted 4, 6-diarylpyrimidine-2(1H)-ones by Using Nano Magnetic Catalyst under Solvent Free Condition. J. Chin. Chem. Soc. 2015, 62, 968-973.
 
[9]  Bentley, R. From miso, sake and shoyu to cosmetics: a century of science for kojic acid. Nat. Prod. Rep. 2006, 23, 1046-1062.
 
[10]  Chang, T. S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 10, 2440-2475.
 
[11]  Leyden, J. J.; Shergill, B.; Micali, G.; Downie, J.; Wallo, W. Natural options for the management of hyperpigmentation. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 1140-1145.
 
[12]  Reddy, S. B. V.; Reddy, R. M.; Madan, Ch.; Kumar, P. K.; Srinivasa Rao, M. Indium (III) chloride catalyzed three-component coupling reaction: A novel synthesis of 2-substituted aryl(indolyl)kojic acid derivatives as potent antifungal and antibacterial agents. Bioorganic & Medicinal Chemistry Letters 2010, 20, 7507-7511.
 
[13]  Brtko, J.; Rondahl, L.; Ficková, M.; Hudecová, D.; Eybl, V.; Uher, M. Kojic acid and its derivatives: history and present state of art. Cent. Eur. J. Public Health 2004, 12, S16-8.
 
[14]  Kim, J. H.; Chang, P–K.; Chan, K. L.; Faria, N. C. G.; Mahoney, N.; Kim, Y. K.; Martins, M. de L.; Campbell, B. C. Enhancement of commercial antifungal agents by Kojic Acid. Int. J. Mol. Sci. 2012, 13, 13867-13880.
 
[15]  Jiang, Y.; Jiang, J.; Gao, Q.; Ruan, M.; Yu, H.; Qi, L. A novel nanoscale catalyst system composed of nanosized Pd catalysts immobilized on Fe3O4@SiO2–PAMAM. Nanotechnology 2008, 19, 75714-75719.
 
[16]  Rao, Z. M.; Wu, T. H.; Peng, S. Y. Preparation and Structural Features of Ultrafine Spinel Magnesium Ferrites. Acta Phys. Chim. Sin. 1995, 11, 395-400.
 
[17]  Waldron, R. D. Infrared Spectra of Ferrites. Phys. Rev. 1955, 99, 1727-1735.
 
[18]  Ghasemnejad-Bosra, H.; Faraje, M.; Habibzadeh, S.; Ramzaniyan-Lehmali, F. An efficient one-pot synthesis of highly substituted furans catalyzed by Nbromosuccinimid. J. Serb. Chem. Soc. 2010, 75, 299-305.
 
[19]  Forouzani, M.; Ghasemnejad-Bosra, H.; Habibzadeh, S.; 1,3-Dibromo 5,5-dimethylhydantoin (DBH): A novel and efficient catalyst for the synthesis of 14-aryl-14H-dibenzo[a, j] xanthenes under solvent-free conditions. Science China Chemistry 2011, 54, 957-960.
 
[20]  Ghasemnejad-Bosra, H.; Haghdadi, M.; Gholampour-Azizi, I. N-Bromo-succinimide (NBS) as promoter for acylation of sydnones in the presence of acetic anhydride under neutral conditions. Heterocycles 2008, 75, 391-395.
 
[21]  Ghasemnejad-Bosra, H.; Haghdadi, M.; Khanmohammadi, O.; Gholipour, M.; Asghari, G. Bis-Bromine-1,4-diazabicyclo[2.2.2]octane (Br2-DABCO) as an Efficient Promoter for One-Pot Conversion of N-Arylglycines to N-Arylsydnones in the Presence of NaNO2/Ac2O Under Neutral Conditions. J. Chin. Chem. Soc.2008, 55, 464-467.
 
[22]  Ghasemnejad-Bosra, H.; Faraje, M.; Habibzadeh, S. Efficient One-Pot 1,3-Dibromo- 5,5-dimethylhydantoin (DBH)-Catalyzed Synthesis of Highly Substituted Furans. Helv. Chim. Acta. 2009, 92, 575-578.
 
[23]  Habibzadeh, S.; Ghasemnejad-Bosra, H.; Faraji, M. Efficient one-pot 1,3-dibromo- 5,5-dimethylhydantoin (DBH)-catalyzed synthesis of highly substituted furans. Helv. Chim. Acta. 2011, 94, 429-432.
 
[24]  Habibzadeh, S.; Ghasemnejad-Bosra, H. 1,3-Dibromo 5,5-Dimethylhydantoin (DBH) Catalyzed, Microwave-assisted Rapid Synthesis of 1-Amidoalkyl-2-naphthols. J.Chin. Chem.Soc, 2012, 59, 193-198.
 
[25]  Montazerozohori, M.; Karami, B.; Azizi, M. Molybdate sulfuric acid (MSA): a novel and efficient solid acid reagent for the oxidation of thiols to symmetrical disulfides. Arkivoc (i) 2007, 99-104.
 
[26]  Kassaee, M. Z.; Masrouri, H.; Movahedi, F. Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water. Appl. Catal. A: Gen. 2011, 395, 28-33.