World Journal of Organic Chemistry
ISSN (Print): 2372-2150 ISSN (Online): 2372-2169 Website: http://www.sciepub.com/journal/wjoc Editor-in-chief: Subrata Shaw
Open Access
Journal Browser
Go
World Journal of Organic Chemistry. 2015, 3(1), 16-26
DOI: 10.12691/wjoc-3-1-4
Open AccessArticle

Cytotoxicity, 2D- and 3D- QSAR Study of some Halogen Containing Hydroxy and Amino Substituted Aromatic Compounds

M. Idrish Ali1 and M. Abul Kashem Liton1,

1Department of Chemistry, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh

Pub. Date: January 16, 2016

Cite this paper:
M. Idrish Ali and M. Abul Kashem Liton. Cytotoxicity, 2D- and 3D- QSAR Study of some Halogen Containing Hydroxy and Amino Substituted Aromatic Compounds. World Journal of Organic Chemistry. 2015; 3(1):16-26. doi: 10.12691/wjoc-3-1-4

Abstract

A set of 24 halogen containing hydroxy and amino substituted aromatic compounds were subjected to 2D- and 3D-QSAR studies. 3D-QSAR was studied at a 2.0 Ǻ 3D grid spacing using molecular interaction fields (MIFs) analysis. The best predictive models by MIFs gave the cross-validated correlation coefficient, Q2 of 0.668 and squared correlation coefficient, R2 of 0.979 and the models by MLR, PCR and PLSR methods for 2D-QSAR provided a highly significant squared correlation coefficient (R2) values of 0.904, 0.785, 0.903 and cross-validated correlation coefficients (Q2) of 0.824, 0.662 and 0.718 respectively. The statistically significant model was established from a training set of 18 molecules, which were validated by evaluation of test set of 6 compounds. The calculated cytotoxic activities through MIFs model showed a very good agreement with experimental values. The information provided by QSAR analysis may give valuable clues to design and find the new potential drugs.

Keywords:
QSAR LOO MLR PCR PLSR and MIFs

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 8

References:

[1]  Armarego, W. L. F.; Chai, C. L. L.; Purification of Laboratory Chemicals, 5th ed., Butterworth Heinemann, London, 2003.
 
[2]  Ullmanns Encyclopedia of Industrial Chemistry. 6th ed., Wiley-VCH: Weinheim. Electronic release; 1998.
 
[3]  Seevers, R. H.; Counsell, R. E.; Radioiodination Techniques for Small Organic Molecules, Chem. Rev., 82, 575-590, 1982.
 
[4]  (a) Corbet, J. P.; Mignani, G.; Selected patented cross-coupling reaction technologies, Chem. Rev., 106(7), 2651-2710, 2006. (b) Miyaura, N.; Suzuki, A.; Palladium-catalyzed Cross-coupling Reactions of Organoboron Compounds, Chem. Rev., 95, 2457-2483, 1995.
 
[5]  Zang, Y. B.; Research Advance of Phenol Adsorption of Modified Bentonite, Chinese. Agri. Sci. Bull., 28, 282-285, 2012.
 
[6]  Zhan, P. R.; Wang, H. T.; Chen, Z. X.; Extraction and Residue Analysis of Volatile Phenols in Fish, J. Agro-Environ. Sci. 27, 801-804, 2008.
 
[7]  Ju, Y.; Varma, R. S.; Aqueous N-heterocyclization of Primary Amines and Hydrazines with Dihalides: Microwave-assisted Syntheses of N-Azacycloalkanes, Isoindole, Pyrazole, Pyrazolidine, and Phthalazine Derivatives, J. Org. Chem.,71(1), 135-141, 2006.
 
[8]  Lokhande, P. D.; Waghamare, B. Y.; Sakate, S. S.; Regioselective One-pot Synthesis of 3,5-Diarylpyrazoles, Indian. J. Chem., 44(11), 2338-2342, 2005.
 
[9]  García-Valverde, M.; Torroba, T.; Special issue: Sulfur-Nitrogen Heterocycles, Molecules, 10(2), 318-320, 2005.
 
[10]  Hou, T.; Xu, X.; A new molecular simulation software package -Peking University Drug Design System (PKUDDS) for structure-based drug design, J. Mol. Graph. Model. 19, 455-465, 2001.
 
[11]  He, L.; Jurs, P. C.; Assessing the reliability of a QSAR model’s predictions, J. Mol. Graph. Model. 23, 503-523, 2005.
 
[12]  Eldred, D. V.; Weikel, C. L.; Jurs, P. C.; Kaiser, K. L. E.; Prediction of fathead minnow acute toxicity of organic compounds from molecular structure, Chem. Res. Toxicol. 12, 670-678, 1999.
 
[13]  Merifield, R. B.; Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide, J. Am. Chem. Soc., 85, 2149-2154, 1963.
 
[14]  Kirschning, A.; Monenschein, H.; Wittenberg, R.; Functionalized Polymers-Emerging Versatile Tools for Solution-Phase Chemistry and Automated Parallel Synthesis, Angew. Chem. Int. Ed. Engl.,40(4), 650-679, 2001.
 
[15]  Khan, M. A. E.; Ali, M. I.; Hashem, M. A.; Polymer-supported Ammonium Dichlorobromide(I) Reagent Promoted Halogenation of Hydroxy and Amino Substituted Aromatic Compounds, J. Bang. Chem. Soc., 22(1), 55-65, 2009.
 
[16]  Finney, J. D.; Probit Analysis. Cambridge University Press, UK., 1971.
 
[17]  Rickman, R.; Mitchell, N; Dingman, J.; Dalen, J. E.; Changes in serum cholesterol during the Stillman Diet, J. Am. Med. Assoc., 228, 54-58, 1974.
 
[18]  Martin, T. M.; Harten, P.; Venkatapathy, R.; Das, S.; Young, D. M; A Hierarchical Clustering Methodology for the Estimation of Toxicity, Toxicol. Mech. Meth., 18, 251-66, 2008.
 
[19]  Islam, M. K.; Eti, I.Z.; Chowdury, J. A.; Cytotoxic studies on two Meliaceae plants: Chukrasiatabularis and Aglaia roxburghiana, J. Sci. Res., 1, 399-403, 2009.
 
[20]  Wang, H. H. K.; Xia, Y.; Yang, Z.Y.; Morris-Natschke, S. L.; Lee, K. H.; A recent advances in the discovery and development of flavonoids and their analogues as antitumor and anti-HIV agents, Plenum Press, New York, 1998, 191-225.
 
[21]  McLaughlin, J. L.; Rogers, L. L.; Anderson, J. E.; The use of biological assays to evaluate botanicals, Drug. Inform. J., 32, 513-524, 1998.
 
[22]  Middleton, P.; Stewart, F.; Al-Qahtani, S.; Egan, P.; Rourke, C. O.; Sarker, S. D.; Antioxidant, antibacterial activities and general toxicity of Alnus glutinosa, Fraxinus excelsior and Papaver rhoeas, Iranian. J. Pharm. Res.2, 81-86, 2005.
 
[23]  Meyer, B. N.; Ferrigni, N. R.; Putnam, J. E.; Brine shrimp: a convenient general bioassay for active plant constituents, Planta. Medica., 45, 31-34, 1982.
 
[24]  Golbraikh, A.; Tropsha, A.; Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection, Mol. Divers., 5, 231-243, 2002.
 
[25]  a) Stewart, J. J. P.; Optimization of parameters for semiempirical methods I. Math., J. Comp. Chem., 10, 209-220, 1989. b) Stewart, J. J. P.; Optimization of parameters for semiempirical methods II. Applications., J. Comp. Chem., 10, 22-64, 1989.
 
[26]  Stewart, J. J. P.; Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements, J. Mol. Model. 13, 1173-1213, 2007.
 
[27]  Frisch, M. J. et al.; Gaussian 03, Revision B.01, Gaussian Inc, Pittsburgh PA. 2003.
 
[28]  Becke, A. D.; Density-Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 98, 5648-5652, 1993.
 
[29]  a) Steinbeck, C.; Hoppe, C.; Kuhn, S.; Floris, M.; Guha, R.; Willighagen, E. L.; Recent developments of the chemistry development kit (CDK) - an open-source java library for chemo- and bioinformatics, Curr. Pharm. Des., 12(17), 2111-2120, 2006. b) Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E. L.; The Chemistry Development Kit (CDK): an open-source Java library for Chemo- and Bioinformatics, J. Chem. Inf. Comput. Sci., 43(2), 493-500, 2003.
 
[30]  Richmond, N. J.; Willett, P.; Clark, R. D.; Alignment of three-dimensional molecules using an image recognition algorithm, J. Mol. Graph. Model., 23(2), 199-209, 2004.
 
[31]  Taminau, J.; Thijs, G.; De Winter, H.; Pharao: pharmacophore alignment and optimization, J. Mol. Graph. Model., 27, 161-169, 2008.
 
[32]  Petitjean, M.; Interactive maximal common 3D substructure searching with the combined SDM/RMS algorithm, Computers. Chem., 22(6), 463-465, 1998.
 
[33]  Cramer, III R. D.; Milne, M.; The Lattice Model: A general paradigm for shape-related structure/activity correlation. Abstracts of Papers of the Am. Chem. Soc., Computer Chemistry Section: no. 44, 1979.
 
[34]  Stahle, L.; Wold, S. J.; Partial least squares analysis with cross-validation for the two-class problem: A Monte Carlo study, J. Chemom., 1, 185-196, 1987.
 
[35]  Centner, V.; Massart, D. L.; de Noord, O. E.; de Jong, S.; Vandeginste, B. M.; Sterna, C.; Elimination of uninformative variables for mutivariate calibration, Anal. Chem., 68, 3851-3858, 1996.
 
[36]  Grohmann, R.; Schindler, T.; Toward robust QSPR models: Synergistic utilization of robust regression and variable elimination, J. Comput. Chem., 29(6), 847-860, 2008.
 
[37]  De Oliveira, D. B.; Gaudio, A. C.; Build QSAR: a new computer program for QSAR analysis, Quant. Struct-Activ. Relat., 19 (6), 599-601, 2001.
 
[38]  MATLAB and Statistics Toolbox Release 2008a, The MathWorks, Inc., Natick, Massachusetts, United States. 2008.
 
[39]  Tosco, P.; Balle, T.; Open3DQSAR: a new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields, J. Mol. Mod., 17, 201-208, 2011.
 
[40]  Wold, S.; Sjöström, M.; Eriksson, L.; PLS-regression: a basic tool of chemometrics, Chemom. Intell. Lab. Syst., 58,109-130, 2001.
 
[41]  (a) Kier, L. B.; Hall, L. H.; Molecular Connectivity in Structure-Activity Analysis, John Wiley and Sons, New York, 1986. (b) Kier, L. B.; Hall, L. H.; Moleculer Structure Description: The Electrotopological State, Academic Press, New York, 1999.
 
[42]  Wang, R.; Gao, Y.; Lai, L.; Calculating partition coefficient by atom-additive Method, Perspectives in Drug Discovery and Design, 19, 47-66, 2000.
 
[43]  Stanton, D. T.; Jurs, P. C.; Development and Use of Charged Partial Surface Area Structural Descriptors in Computer Assissted Quantitative Structure Property Relationship Studies, Anal. Chem., 62, 2323-2329, 1990.
 
[44]  Cartier, A.; Rivail, J. L.; Electronic descriptors in quantitative structure-activity relationships, Chemom. Intell. Lab. Syst., 1(4), 335-347, 1987.
 
[45]  Brown, R. E.; Simas, A. M.; On the applicability of CNDO indices for the prediction of chemical reactivity, Theor. Chim. Acta., 62, 1-16, 1982.
 
[46]  Gruber, C.; Buss, V.; Quantum-mechanically calculated properties for the development of quantitative structure-activity relationships (QSAR'S). pKa-values of phenols and aromatic and aliphatic carboxylic acids, Chemosphere, 19, 1595-1609, 1989.
 
[47]  Bodor, N.; Gabanyi, Z.; Wong, C. K.; A new method for the estimation of partition coefficient, J. Am. Chem. Soc., 111, 3783-3786, 1989.
 
[48]  Cocchi, M.; Menziani, M. C.; De Benedetti, P. G.; Cruciani, G.; Theoretical versus empirical molecular descriptors in monosubstituted benzenes—a chemometric study, Chemom. Intell. Lab. Syst., 14, 209-224, 1992.
 
[49]  Hanai, T.; Hatano, H.; Nimura, N.; Kinoshita, T.; Computational chemical analysis of the retention of phenols in reversed-phase liquid chromatography, Analyst., 119, 1167-1170, 1994.
 
[50]  Clare, B. W.; Structure-Activity Correlations for Psychotomimetics. III. Tryptamines, Aust. J. Chem., 48, 1385-1400, 1995.
 
[51]  Osmialowski, K.; Halkiewicz, J.; Radecki, A.; Kaliszan, R.; Quantum chemical parameters in correlation analysis of gas liquid chromatographic retention indices of amines, J. Chromatogr., 346, 53-60, 1985.
 
[52]  Osmialowski, K.; Halkiewicz, J.; Kaliszan, R.; Quantum chemical parameters in correlation analysis of gas liquid chromatographic retention indices of amines. II. Topological electronic index, J. Chromatogr., 361, 63-69, 1986.
 
[53]  Saura-Calixto, F; Garcı´a-Raso, A.; Raso, M. A.; Study of the Applications of Magnitudes of Energy and Charge of Molecular Orbitals to GC Retention-Esters, J. Chromatogr. Sci., 22(1), 22-26, 1984.
 
[54]  Geladi, P.; Kowalski, B. R.; Partial least-squares regression: a tutorial, Anal. Chim. Acta., 185, 1-17, 1986.
 
[55]  Cramer, R. D.; Bunce, J. D.; Patterson, D. E.; Frank, I. E.; Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies, Quant. Struct-Act. Relat., 7, 18-25, 1988.
 
[56]  McNaught, A. D.; Wilkinson, A.; Compendium of Chemical Terminology: IUPAC Recommendations (online version). 2nd ed., Oxford: Blackwell Science; 1997.
 
[57]  a) Sjoberg, P.; Murray, J. S.; Brinck, T.; Politzer, P.; Average local ionization energies on the molecular surfaces of aromatic systems as guides to chemical reactivity, Can. J. Chem., 68(8), 1440-1443, 1990. b) Politzer, P.; Murray, J. S.; Grice, M. E.; Brinck, T.; Ranganathan, S.; Radial behavior of the average local ionization energies of atoms, J. Chem. Phys., 95(9), 6699-6704, 1991. c) Politzer, P.; Murray, J. S.; Concha, M. C.; The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes, Int. J. Quant. Chem., 88(1), 19-27, 2002.
 
[58]  Ehresmann, B.; Martin, B.; Horn, A. H. C.; Clark, T.; Local molecular properties and their use in predicting reactivity, J. Mol. Model., 9, 342-347, 2003.
 
[59]  Schürer, G.; Gedeck, P.; Gottschalk, M.; Clark, T.; Accurate parametrized variational calculations of the molecular electronic polarizability by NDDO-based methods, Int. J. Quant. Chem., 75(1), 17-31, 1999.
 
[60]  Wang, R.; Fu, Y.; Lai, L.; A New Atom-Additive Method for Calculating Partition Coefficients, J. Chem. Inf. Comput. Sci., 37, 615-621, 1997.
 
[61]  a) Ghose, A. K.; Crippen, G. M.; Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships. I. Partition coefficients as a measure of hydrophobicity, J. Comput. Chem., 7, 565-577, 1986. b) Ghose, A. K.; Crippen, G. M.; Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions, J. Chem. Inf. Comput. Sci., 27, 21-35, 1987.
 
[62]  Liton, M. A. K.; Salma, U.; Bhowmick, A. C.; Cytotoxicity and 2D-QSAR study of some heterocyclic compounds, Arabian. J. Chem., 7, 639-646, 2014.
 
[63]  Liton, M. A. K.; Bhowmick, A. C.; Ali, M. A.; 3D-QSAR MIFs Studies on 3,5-substituted-1,4,2-dioxazoles Derivatives Using Open3DQSAR Tools, Univers. J. Chem. 1(2), 71-76, 2013.