World Journal of Organic Chemistry
ISSN (Print): 2372-2150 ISSN (Online): 2372-2169 Website: Editor-in-chief: Subrata Shaw
Open Access
Journal Browser
World Journal of Organic Chemistry. 2014, 2(1), 18-27
DOI: 10.12691/wjoc-2-1-3
Open AccessArticle

Synthesis and Biological Evaluation of Novel Sulfone Derivatives Containing 1,3,4-Oxadiazole Moiety

Shihu Su1, Xia Zhou1, Yan Zhou1, Guoping Liao1, Li Shi1, Xia Yang1, Xian Zhang1 and Linhong Jin1,

1State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Devel-opment Center for Fine Chemicals, Guizhou University, Guiyang, China

Pub. Date: November 06, 2014

Cite this paper:
Shihu Su, Xia Zhou, Yan Zhou, Guoping Liao, Li Shi, Xia Yang, Xian Zhang and Linhong Jin. Synthesis and Biological Evaluation of Novel Sulfone Derivatives Containing 1,3,4-Oxadiazole Moiety. World Journal of Organic Chemistry. 2014; 2(1):18-27. doi: 10.12691/wjoc-2-1-3


A series of novel sulfone derivatives containing 1,3,4-oxadiazole moiety were synthesized. All the target com-pounds were characterized by 1H and 13C nuclear magnetic resonance, infrared spectroscopy and elemental analysis. Their antifungal activities were tested in vitro with six important phytopathogenic fungi, namely, Gibberella zeae, Fusarium oxysporum, Cytospora mandshurica, Phytophthora infestans, Paralepetopsis sasakii and Sclerotinia sclerotiorum using the mycelium growth inhibition method. Their antibacterial activities were tested in vitro with two important phytopathogenic bacteria, namely, Xanthomonas oryzae and Ralstonia solanacearum from tobacco bacterial by the turbid meter test. Remarkably, compounds 5h, 5j, 5u and 5v exhibited the most potent inhibition against R. solanacearum and X. oryzae with 50% inhibition concentration (EC50) from 1.97 to 7.75 μg/mL and 0.45 to 0.52 μg/mL, respectively. Their antifungal tests indicated that among target compounds exhibited good antifungal activities against six kinds of fungi, especially against S. sclerotiorum with EC50 from 3.71 to 17.44 μg/mL. In vivo antibacterial activities tests demonstrated that the controlling effect of compounds 5u (81.9%) against rice bacterial leaf blight were better than that of bismerthiazol (50.8%) and thiodiazole-copper (44.7%). Our results also demonstrated that com-pounds 5h, 5u and 5v have a better antifungal and antibacterial activity, with good characteristics of broad spectrum. The structure−activity relationship (SAR) was also discussed.

antibacterial activity antifungal activities sulfone derivatives 134-Oxadiazole

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Hayward, C. “Biology and Epidemiology of Bacterial Wilt Caused by Pseudomonas Solanacearum”. Annu. Rev. Phytopathol. 29, 65-87. 1991.
[2]  Hiromichi, I.; Masakazu, T.; Ten, U.; Seiichi, K. “Preparation of disulfonylthiadiazoles and their use as agrochemical microbicides”. JP 94116252, 1994. [Chem. Abstr. 1994, 121, 127847].
[3]  Fitzjohn, S.; Robinson, M. P. “Benzoxazole and Benzothiazole Derivatives”. WO 9406783, 1994 [Chem. Abstr. 1994, 121, 9394f].
[4]  Richter, H. G. F.; Angehrn, P.; Hubschwerlen, C.; Kania, M.; Page, M. G. P.; Specklin, J. L.; Winkler, F. K. “Design, Synthesis, and Evaluation of 2β-Alkenyl Penam Sulfone Acids as Inhibitors of β-Lactamases”. J. Med. Chem., 39, 3712-3722. 1996
[5]  Andrew, P.; Jutta, E. B.; Janice, B.; Timothy, D. S. “Isoxazoline derivatives and their use as herbicides” WO 2006024820, 2006.
[6]  Kang, W.; Du, X. Q.; Wang, L. Z.; Hu, L. J.; Dong, Y. H.; Bian, Y. Q.; Li, Y. “Design, Synthesis, and Evaluation of 2β-Alkenyl Penam Sulfone Acids as Inhibitors of β-Lactamases”. Chin. J. Chem., 31, 1305-1314, 2013.
[7]  Tai, X. S.; Yin, X. H.; Tan, M. Y. “Crystal Structure and Antitumor Activity of Tri[2-[N-(4-methyl-benzylsulfonyl)amino]ethyl]-amine”. Chin. J. Struc. Chem., 22, 411-414, 2003.
[8]  Zhang, Q.; Deng, C. L.; Fang, L. S.; Xu, W. W.; Zhao, Q.; Zhang, J. G.; Wang, Y. P.; Lei, X. S. “Synthesis and Evaluation of the Analogues of Penicillide against Cholesterol Ester Transfer Protein”. Chin. J. Chem., 31, 355-370, 2013.
[9]  Gong, P.; Chai, H. F.; Zhao, Y. F.; Zhao, C. S. “Synthesis and in vitro anti-hepatitis B virus activities of some ethyl 5-hydroxy-1H-indole-3-carboxylates”. Bioorg. Med. Chem., 14, 2552-2558, 2006.
[10]  Fang, S. H.; Padmavathi, V.; Rao, Y. K.; Subbaiah, D. R. C.; Thriveni, P.; Geethangili, M.; Padaja, A.; Tzeng, Y. M. “Biological evaluation of sulfone derivatives as anti-inflammatory and tumor cells growth inhibitory agents”. Int. Immunopharmacol., 6, 1699-1705, 2006.
[11]  Somani, R. R.; Shirodksar, P. Y.; Kadam, V. J. “Synthesis and Antibacterial Activity of Some New 2,5-Disubstituted-1,3,4-oxadiazole Derivatives”. Chin. J. Chem., 26, 1727-1731, 2008.
[12]  Dogan, H. N.; Duran, A.; Rollas, S.; Sener, G.; Uysal, M. K.; Gülen, D. “Synthesis of new 2,5-Disubstituted-1,3,4-thiadiazoles and preliminary evaluation of anticonvulsant and antimicrobial”. Bioorg. Med. Chem., 10, 2893-2898, 2002.
[13]  Girt, S.; Singh, H.; Yadav, L. D. S. “Studies in Oxadiazoles Synthesis of Some 2-Mercapto-1, 3, 4-oxadiazoles and Related Compounds as Potential Fungicides”. Agr. Biol. Chem., 40, 17-21, 1976.
[14]  Kleefeld, G.; Diehr, H. J.; Haas, W.; Dehne, H. W.; Brandes, W. “Fungicidal agents based on heterocyclically substituted sulphones”. US 5166165, 1992 [Chem. Abstr. 1992, 84: 121736n].
[15]  Yuan, D. K.; Li, Z. M.; Zhao, W. G.; Chen, H. S. “Synthesis and bioactivity of 2-substituted amino-5-pyrazolyl-1,3,4-oxadiazoles” Chin. J. Appl. Chem., 20, 624-628, 2003.
[16]  Xu, W. M.; He, J.; He, M.; Han, F.; Chen, X.; Pan, Z.; Wang, J.; Tong, M. “Synthesis and Antifungal Activity of Novel Sulfone Derivatives Containing 1,3,4-Oxadiazole Moieties”. Molecules., 16, 9129-9141, 2011.
[17]  Xu, W. M.; Han, F. F.; He, M.; Hu, D. Y.; He, J.; Yang, S.; Song, B. A. “Inhibition of tobacco bacterial wilt with sulfone derivatives containing an 1,3,4-oxadiazole moiety”. J. Agric. Food. Chem., 60, 1036-1041, 2012
[18]  Chen, C. J.; Song, B. A.; Yang, S.; Xu, G. F.; Bhadury, P. S.; Jin, L. H.; Hu, D. Y.; Li, Q. Z.; Liu, F.; Xue, W.; Lu, P.; Chen, Z. “Synthesis and antifungal activities of 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-thiadiazole and 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives”. Bioorg. Med. Chem., 15, 3981-3989, 2007
[19]  Liu, F.; Luo, X. Q.; Song, B. A.; Bhadury, P. S.; Yang, S.; Jin, L. H.; Xue, W.; Hu, D. Y. “Synthesis and antifungal activity of novel sulfoxide derivatives containing trimethoxyphenyl substituted 1,3,4-thiadiazole and 1,3,4-oxadiazole moiety”. Bioorg. Med. Chem., 16, 3632-3640, 2008.
[20]  Xiao, Y.; Li, H. X.; Li, C.; Wang, J. X.; Li, J.; Wang, M. H.; Ye, Y. H. “Antifungal screening of endophytic fungi from Ginkgo biloba for discovery of potent anti-phytopathogenic fungicides”. FEMS. Microbiol. Lett., 339, 130-136, 2013.
[21]  Paw, D.; Thomas, R.; Laura, K.; Karina, N.; Thomas, A. M. “Estimation of bacterial growth rates from turbidimetric and viable count data”. Int. J. Food. Microbiol., 23, 391-404, 1994.