World Journal of Organic Chemistry
ISSN (Print): 2372-2150 ISSN (Online): 2372-2169 Website: Editor-in-chief: Subrata Shaw
Open Access
Journal Browser
World Journal of Organic Chemistry. 2019, 7(1), 19-30
DOI: 10.12691/wjoc-7-1-4
Open AccessReview Article

Review on 4-Hydroxycoumarin Chemistry: Synthesis, Acylation and Photochemical Properties

Jules Yoda1, 2, , Abdoulaye Djandé1, Lamine Cissé3, Akoun Abou4, Léopold Kaboré1 and Adama Saba1

1Laboratory of Molecular Chemistry and Materials, Research Team: Organic Chemistry and Phytochemistry, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso

2Department of Medicine, Traditional Pharmacopeia and Pharmacy (MEPHATRA/Ph)/ Research Institute for Health Sciences (IRSS), 03 BP 7192 Ouagadougou 03, Burkina Faso

3Laboratory of Photochemistry and Analysis (LPA), Department of Chemistry, Faculty of Science and Technology, University Cheikh Anta Diop BP 5005 Dakar, Sénégal

4Department of Training and Research in Electrical and Electronic Engineering, Reserach Team: Instrumentation, Image and Spectroscopy, Félix Houphouet –Boigny National Polythechnic Institute, 22 BP 582 Abidjan 22, Côte d’Ivoire

Pub. Date: November 18, 2019

Cite this paper:
Jules Yoda, Abdoulaye Djandé, Lamine Cissé, Akoun Abou, Léopold Kaboré and Adama Saba. Review on 4-Hydroxycoumarin Chemistry: Synthesis, Acylation and Photochemical Properties. World Journal of Organic Chemistry. 2019; 7(1):19-30. doi: 10.12691/wjoc-7-1-4


Hydroxycoumarins are important compounds exhibiting several physical, chemical and biological properties. These compounds represent a part of secondary metabolites that are natural compounds and are studied for their importance in organic synthesis. Among the most well-known hydroxycoumarins are 7-hydroxycoumarin and 4-hydroxycoumarin. The objective of this review is to raise awareness of the reactivity of 4-hydroxycoumarin and its applications. In this study, we review the methods of synthesis and acylation of this compound as well as studies on the photochemical properties of its derivatives. Several methods for the synthesis of 4-hydroxycoumarin have been described in the literature, most of which use simple phenol and 1-(2-hydroxyphenyl)ethanone or 2’-hydroxyacetophenone as starting compounds. Other synthesis pathways exist, but they are based on intermediate synthesis compounds. About 4-hydroxycoumarin acylation, the literature reports two main types of acylation such as C-acylation and O-acylation. Several authors have synthesized and studied C-acylation in liquid medium and the solvent free. As for O-acylation, its compounds are more recent and less studied. Some studies have also been conducted on the photochemical properties of 4-hydroxycoumarin and its derivatives. Some compounds have proven to be excellent UV absorbers, others have fluorescent properties. With regard to the photo-acid properties generally sought in the hydroxycoumarins group, studies have shown that 4-hydroxycoumarin, unlike 7-hydroxycoumarin, cannot be considered as an active photo-acid.

coumarin 4-hydroxycoumarin acylation photochemical properties fluorescence

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 29


[1]  Pierson J. T., Dumetre A., Hutter S., Delmas F., Laget M., Finet J.P., Azas N., Combes S. Synthesis and antiprotozoal activity of 4-arylcoumarins. Europ. J. Med. Chem. 2010, 45 (3): 864-869.
[2]  Huang L., Yuan X., Yu D., Lee K. H., Chen, C. H. Mechanism of action and resistant profile of anti- HIV-1 coumarin derivatives. Virology 2005, 332 (2): 623-628.
[3]  Goodman L. S. and Gilman A. The pharmacological basis of therapeutics. 5th Ed., MacMillan, New York, 1975.
[4]  Kostova I. Synthetic and natural coumarins as cytotoxic agents. Curr. Med. Chem. Anticancer Agents 2005, 5(1): 29-46.
[5]  Stefanou V., Matiadis D., Melagraki G., Afantitis A., Athanasellis G., Igglessi- Markopoulou O., McKee V., and Markopoulos J. Functionalized 4-Hydroxy Coumarins: Novel Synthesis, Crystal Structure and DFT Calculations. Molecules 2011, 16, 384-402.
[6]  Dekić B. R., Radulović N.S., Dekić V.S., Vukićević R.D., Palić R.M. Synthesis and antimicrobial activity of new 4-heteroarylamino coumarin derivatives containing nitrogen and sulfur as heteroatoms. Molecules 2010, 15, 2246-2256.
[7]  Clark G. S. Coumarin. An aroma chemical profile. Perfumer & Flavorist 1995, 20, 23-34.
[8]  Bedoukian P. Fougère Royale by Houbigant. Perfumer & Flavorist 1993, 18, 35-37.
[9]  Jaubert J. N., Tapiero C. & Doré J. C. The field of odors: Toward a universal language for odor relationships. Perfumer & Flavorist 1995, 20, 1-16.
[10]  Bettero A., & Benassi C. A. Determination of coumarin and 6-methylcoumarin in cosmetics by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis 1983, 1(2): 229-233.
[11]  Grundschober F. Coumarin - Determination in alcoholic beverages by high performance liquid chromatography. Zeitschrift fur Lebensmittel-Untersuchung und -Forschung 1997, 204(5): 399.
[12]  Izquierdo M. E. H., Granados J. Q., Mir V. M., Martinez M. C. L. Comparison of methods for determining Coumarins in distilled beverages. Food Chem. 2000, 70, 251-258.
[13]  O’Kennedy R., Thornes R. D. Coumarins: Biology, Applications and Mode of Action, Eds., John Wiley and Sons: Chichester, UK, 1997.
[14]  Liang C., Jiang H., Zhou Z., Lei D., Xue Y., Yao Q. Ultrasound-promoted greener synthesis of novel trifurcate 3-substituted-chroman-2,4-dione derivatives and their drug-likeness evaluation. Molecules 2012, 17, 14146-14158.
[15]  Key J. A., Koh S., Timerghazin Q. K., Brown A., and Cairo C. W. Photophysical characterization of triazolesubstituted coumarin fluorophores. Dyes and Pigments 2009, 82, (2) 196-203.
[16]  Ryu H. G., Singha S., Jun Y. W., Reo Y. J. and Ahn K. H. Two-photon fluorescent probe for hydrogen sulfide based on a red-emitting benzocoumarin dye. Tetrahedron Letters 2018, 59(1): 49-53.
[17]  Murata C., Masuda T., Kamochi Y., Todoroki K., Yoshida H., Nohta H., Yamaguchi M., Takadate A. Improvement of fluorescence characteristics of coumarins: syntheses and fluorescence properties of 6-methoxycoumarin and benzocoumarin derivatives as novel fluorophores emitting in the longer wavelength region and their application to analytical reagents. Chemical and Pharmaceutical Bulletin 2005. 53 (7): 750-758.
[18]  García-Beltrán O., Cassels B. K., Pérez C., Mena N., Núñez M. T., Martínez N. P., Pavez P., Aliaga M. E. Coumarin-based fluorescent probes for dual recognition of copper(II) and iron(III) ions and their application in bio-imaging. Sensors 2014, 14, 1358-1371.
[19]  Tasior M., Kim D., Singha S., Krzeszewski M., Ahn K. H., and Gryko D.T. π-expanded coumarins: synthesis, optical properties and applications. Journal of Materials Chemistry C 2015, 3 (7): 1421-1446.
[20]  Jones G., Griffin S. F., C. Y. Choi, and W. R. Bergmark. Electron donor-acceptor quenching and photoinduced electron transfer for coumarin dyes. Journal of Organic Chemistry 1984, 49 (15): 2705-2708.
[21]  Traven V. F., Manaev A.V., Safronova O. B., Chibisova T. A. Photoelectron spectra and structure of 4-hydroxycoumarin. J.Electron. Spectrosc. Relat. Phenom. 2002, 122 (1): 47-55.
[22]  Sousa C. C. S., Morais V. M. F., Matos M. A. R. Energetics of the isomers: 3- and 4-hydroxycoumarin. J. Chem. Thermodyn. 2010, 42(11): 1372-1378.
[23]  Au N., Rettie A. E. Pharmacogenomics of 4-hydroxycoumarin anticoagulants. Drug Metab. Rev. 2008, 40 (2): 355-375.
[24]  Joseph K. S., Moser A. C., Basiaga S. B. G., Schiel J. E., Hage D. S. Evaluation of alternatives to warfarin as probes for Sudlow site I of human serum albumin. J. Chromatogr. A 2009, 1216 (16): 3492-3500.
[25]  Vukovic N., Sukdolak S., Solujic S., Niciforovic N. Substituted imino and amino derivatives of 4-hydroxycoumarins as novel antioxidant, antibacterial and antifungal agents: synthesis and in vitro assessments. Food Chem. 2010, 120 (4): 1011-1018.
[26]  Chohan Z. H., Shaikh A. U., Rauf A., Supuran, C. T. Antibacterial, antifungal and cytotoxic properties of novel N-substituted sulfonamides from 4-hydroxycoumarin. J. Enzym. Inhib. Med. Chem. 2006, 21, 741-748.
[27]  Luchini A. C., Rodrigues-Orsi P., Cestari S. H., Seito L. N., Witaicenis A., Pellizzon C. H. Intestinal Anti-inflammatory Activity of Coumarin and 4-Hydroxycoumarin in the Trinitrobenzenesulphonic Acid Model of Rat Colitis. Biol. Pharm. Bull. 2008, 31, 1343-1350.
[28]  Dong Y., Nakagawa-Goto K., Lai C., Morris-Natschke S., Bastow K., Lee K. Antitumor agents 278. 4-Amino-2H-benzo[h]chromen-2-one (abo) analogs as potent in vitro anticancer agents. Bioorg. Med. Chem. Lett. 2010, 20, 4085-4087.
[29]  Stern P., Dezelic M., Kosak R. Analgesic & antipyretic effects of vitamin K & dicumarol with special reference to 4-hydroxycoumarin. Arch. Exp. Pathol. Pharmakol 1957, 232 (1): 356-359.
[30]  Chiang C. C., Mouscadet J. F., Tsai H. J., Liu C.T., Hsu L.Y. Synthesis and HIV-1 integrase inhibition of novel bis- or tetracoumarin analogues. Chem. Pharm. Bull. 2007, 55 (12): 1740-1743.
[31]  Cravotto G., Tagliapietra S., Cappello R., Palmisano G., Curini M., Boccalini M. Long-chain 3-acyl-4- hydroxycoumarins: Structure and antibacterial activity. Arch. Pharm. Chem. Life Sci. 2006, .339, 129-132.
[32]  Shah V. R., Bose J. L., Shah R. C. New Synthesis of 4-Hydroxycoumarins. J.Org .Chem. 1960, 25, 677.
[33]  Abdou M. M., El-Saeed A. R., Bondock S. Recent advances in 4-hydroxycoumarin chemistry. Part 1: Synthesis and reactions, Arabian Journal of Chemistry (2015) in press.
[34]  Naveen S., Adlakha P., Upadhyay K., Shah A., Anandalwar S. M., Prasad, S., Crystal structure of 3-nitro-4-hydroxycoumarin. X-Ray Struct. Anal. Online 2006, 22 (4): x103-x104.
[35]  Gao W.T., Hou W. D., Zheng M. R., Tang L. J. Clean and convenient one-pot synthesis of 4-hydroxycoumarin and 4-hydroxy- 2-quinolinone derivatives. Synth. Commun. 2010, 40 (5): 732-738.
[36]  Park S. J., Lee J. C., Lee K. I. A facile synthesis of 4-hydroxycoumarin and 4- hydroxy-2-quinolone derivatives. Bull.Korean Chem. Soc. 2007. 28 (7): 1203-1205.
[37]  Zhi Qiang D., Shi J. B., Song B. A., Liu X. H. Novel 2 Hchromenderivatives: design, synthesis and anticancer activity. Roy. Soc. Chem. Adv. 2014. 4 (11), 5607-5617.
[38]  Jung J. C., Jung Y. J., Park O. S. A. Convenient one-potsynthesis of 4-hydroxycoumarin, 4-hydroxythiocoumarin and 4-hydroxyquinolin-2(1H)-one. Synth. Commun 2001, 31 (8): 1195-1200.
[39]  Kasabe A., Mohite V., Ghodake J., Vidhate J. Synthesis, characterization and primary antimicrobial, antifungal activityevaluation of schiff bases of 4-chloro-(3-substituted-phenylimino)-methyl-[2H]-chromene-2-one. E-J. Chem. 2010, 7 (2): 377-382.
[40]  Payne S. L., Rodriguez-Aristegui S., Cano C., Golding B. T., Hardcastle I. R., Griffin, R. J., Bardos J., Peacock M., Parveen N. Mapping the ATP-binding domain of DNA-dependentprotein kinase (DNA-PK) with coumarin- and isocoumarinderivedinhibitors. Bioorg. Med. Chem. Lett 2010, 20 (12): 3649-3653.
[41]  Zhao P. L., Wang L., Zhu X. L., Huang X., Zhan, C. G., Wu, J. W., Yang, G. F. Subnanomolar inhibitor of cytochrome bc1complex designed by optimizing interaction with conformationallyflexible residues. J. Am. Chem. Soc. 2010, 132 (1): 185-194.
[42]  Sosnovskikh Ya. V., Kutsenko V. A., and Ovsyannikov S. I. Condensation of 2- hydroxyacetophenones with trichloroaeetonitrileas a route to 2-trichloromethylchromones and 4-hydroxycoumarins. Russian Chemical Bulletin, Fol. 2000, 49(3): 478-481.
[43]  Liao Y.-X., Kuo P-Y., Yang D.-Y. Efficient synthesis of trisubstituted [1]benzopyrano [4,3-b] pyrrol-4(1H)-one derivatives form 4-hydroxycoumarin. Tetrahedron Letters 2003, 44, 1599-1602.
[44]  Ganguly N.C., Dutta S., Datta M. Mild and efficient deprotection of allyl ethers of phenols and hydroxycoumarins using a palladium on charcoal catalyst and ammonium formate. Tetrahedron Lett. 2006, 47 (32): 5807-5810.
[45]  Nawghare B. R., Sakate S. S., Lokhande P. D. A new methodfor the facile synthesis of hydroxylated flavones by using allylprotection. J. Heterocyclic Chem. 2014, 51 (2): 291-302.
[46]  Jung J. C., Kim J. C., Park O. S. Simple and cost effective syntheses of 4-hydroxycoumarin. Synth. Commun. 1999, 29 (20): 3587-3595.
[47]  Kawata H., Kumagai T., Niizuma S. Photooxygenationof chromone-2-carboxylic Acid: identification of ketohydroperoxideusing a chemiluminescence technique. Chem. Lett. 1999, 9, 985-986.
[48]  Tapase B. A, Suryawanshi V. S., Shinde D N., Shinde B. D. Solvent Free Microwave Assisted O - Alkylation and Acylation of 4 - Hydroxy Coumarin. Bull. Environ. Pharmacol. Life Sci. 2012, 1 (7) : 30 - 33.
[49]  Dupont R., & Cotelle P. Reaction of aryl-2-hydroxypropenoic derivatives with boron tribromide. Tetrahedron Letters 2001, 42(4): 597-600.
[50]  AL-AYED A. S. Synthesis of New Substituted Chromen[4,3-c]pyrazol-4-ones and Their Antioxidant Activities. Molecules 2011, 16(12): 10292 - 10302.
[51]  Cravotto G., Tagliapietra S., Cappello R., Palmisano G., Currini M. and Bocalini M. Long-Chain 3-Acyl-4-hydroxycoumarins: Structure and Antibacterial Activity. Archiv der. Pharmazie 2006, 338(3): 129-132.
[52]  Cravotto G., Balliano G., Tagliapietra S., Oliaro-Bosso S., Nano G. M. Novel squalene-hopene cyclase inhibitors derived from hydroxycoumarins and hydroxyacetophenones. Chem. Pharm. Bull. 2004a 52 (10): 1171-1174.
[53]  Cravotto G., Balliano G., Tagliapietra S., Palmisano G., Penoni A. Umbelliferone aminoalkyl derivatives, a new class of squalene-hopene cyclase inhibitors. J. Med. Chem. 2004b, 39 (11): 917-924.
[54]  Stadlbauer W., Hojas G. Ring closure reactions of 3-arylhydrazonoalkyl-quinolin-2-ones to 1-aryl-pyrazolo[4,3-c]quinolin-2-ones. J. Heterocycl. Chem. 2004, 41(5): 681-690.
[55]  Kravchenko D.V., Chibisova T. A., Traven V. F. Intermolecular character of the Fris rearrangement in the series of acyloxycoumarins. Russ. J. Org.Chem. 1999, 35 (6): 899-909.
[56]  Traven V. F., Manaev A.V., Safronova O. B., Chibisova T. A., Lysenko K. A., Antipin M. Y. Electronic structure of π systems: XVIII. Photoelectron spectrum and crystal structure of 3-acetyl-4-hydroxycoumarin. Russ. J.Gen. Chem. 2000, 70(5): 798-808.
[57]  Dholakia V. N., Parekh M. G., Trivedi N. K., Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity . Aust. J. Chem. 1968, 22, 345-2347.
[58]  Akoun A., Djande A., Sessouma B., Saba A. and Kakou-Yao R. 4-[(4-Chlorophenyl)(hydroxy)methylidene]isochromane-1,3-dione. Acta Cryst., E 67, 2011: 20011, 2269-2270
[59]  Akoun A., Djande A., Kakou-Yao R., Saba A. and A. J. Tenon. 2-Oxo-2H-chromen-4-yl 4-methylbenzoate. Acta Cryst. E69, 2013, 1081-1082.
[60]  Rad-Maghadam K., Mohseni M., A Route to the Synthesis of Novel Coumarins. Monatshefte fur chemie 2004, 135 (7): 817-821.
[61]  Djandé A., Cissé L., Yoda J., Kaboré L. and Duvernay F. Synthesis and fluorescence study of a series of 4-hydroxycoumarin o-acylation derivatives. world journal of pharmacy and pharmaceutical sciences 2019, 8 (1):116-130.
[62]  Saba A. Recherche dans la série des sels de benzopyrylium: Synthèse et étude de la structure des sels de 2-benzopyrylium. Thèse d’Etat 1996, Université de Ouagadougou, Burkina Faso.
[63]  Saba A., Sib F. S., Faure R. and Aycard J. P. NMR and AM1 study of the tautomeric equilibrium of isochroman-i,3-diones. Spectrosc. Lett. 1996, 29(8): 1649-1657.
[64]  Pearson R. G. Hard. Soft Acids and Bases J. Amer. Chem. Soc. 1963, 85, 3583.
[65]  Djandé A., Cisse L., Kaboré L., Saba A., Tine A. and Aycard J. P. Synthesis and fluorescence properties of 4-acylisochroman-1,3-diones. Heterocyclic communications 2008 14(4): 237-244.
[66]  Abou A., Djandé A., Kakou-Yao R., Saba A. and Tenon A. J. 2-Oxo-2H-chromen-4-yl 4-methylbenzoate. Acta Cryst., E69, 2013, o1081-o1082.
[67]  Abou A., Sessouma B., Djandé A., Saba A. and Kakou-Yao R. 2-Oxo-2H-chromen-4-yl 4-tert-butylbenzoate. Acta Cryst., E68, 2012, o537-o538.
[68]  Abou A., Djandé A., Danger G., Saba A. and Kakou-Yao R. 2-Oxo-2H-chromen-4-yl 4-methoxybenzoate. Acta Cryst., E68, 2012, o3438-o3439.
[69]  Abou A., Djandé A., Sessouma B., Saba A. and Kakou-Yao R. 2-Oxochromen-4-yl 4-(dimethylamino) benzoate. Acta Cryst., E67 (2011): o2269-o2270.
[70]  Becic E., Sober M., Imamovic B., Zavrsnik D., Spirtovic-Halilovic S. UV/VIS absorption and fluorescence spectroscopic study of some 3-substituted derivatives of 4-hydroxycoumarin. Pigment & Resin Technology 2011, 40 (5): 292-297.
[71]  Al-Haiza M., Mostafa M. S. and El-Kady M. Y. Synthesis and biological evaluation of some new coumarin derivatives. Molecules 2003, 8 (2): 275-86.
[72]  Fylaktakidou K. C., Hadjipavlou-Litina D. J., Litinas K. E.and Nicolaides D. N. Natural and synthetic coumarin derivatives with anti inflammatory/antioxydantactivities, Current Pharmaceutical Design 2004, 10 (30): 3813-33.
[73]  Al-MajedyY. K., Al-Amiery A. A., Kadhum A. A. H., Mohamad A. B. 4-Hydroxycoumarins as New Fluorescent Compounds: Synthesis and Characterization. American Journal of Chemistry 2015, 5 (3A): 48-51.
[74]  Salvador A. and Chisvert A. Analysis of Cosmetic Products, Elsevier, Amsterdam, (2007):83-121.
[75]  Sosso S., Yoda J., Djandé A., Coulomb B. (Coumarin-3-yl)-benzoates as a Series of New Fluorescent Compounds: Synthesis, Characterization and Fluorescence Properties in the Solid State. American Journal of Organic Chemistry 2018, 8(2): 17-25.
[76]  Gikas E., Parissi-Poulou M., Kazanis M. and Vavagiannis A., Properties of a new fluorescent coumarin derivatization reagent employing molecular modelling techniques. Journal of Molecular Structure: THEOCHEM 2005, 724 (1-3): 135-42.
[77]  Luís Pinto da Silva, Ron Simkovitch, Dan Huppertb, Joaquim C.G. Esteves da Silva. Combined experimental and theoretical study of the photochemistry of 4- and 3-hydroxycoumarin. Journal of Photochemistry and Photobiology A: Chemistry 338 (2017): 23-36
[78]  Simkovitch R., Huppert D. Photoprotolytic processes of umbelliferone and proposed function in resistance to fungal infection. J. Phys. Chem. 2015, B 119, 14683-14696.