World Journal of Environmental Engineering
ISSN (Print): 2372-3076 ISSN (Online): 2372-3084 Website: http://www.sciepub.com/journal/wjee Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
World Journal of Environmental Engineering. 2015, 3(4), 95-110
DOI: 10.12691/wjee-3-4-1
Open AccessArticle

Kinetic Thermal Degradation of Cellulose, Polybutylene Succinate and a Green Composite: Comparative Study

Benarbia Abderrahim1, , Elidrissi Abderrahman1, Aqil Mohamed1, Tabaght Fatima1, Tahani Abdesselam2 and Ouassini Krim3

1Laboratory of Applied Chemistry and Environment- Department of Chemistry, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco

2Laboratory of Physical Chemistry of Natural Resources and Environment - Department of Chemistry, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco

3The chemical measuring room - Department of Chemistry, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco

Pub. Date: November 06, 2015

Cite this paper:
Benarbia Abderrahim, Elidrissi Abderrahman, Aqil Mohamed, Tabaght Fatima, Tahani Abdesselam and Ouassini Krim. Kinetic Thermal Degradation of Cellulose, Polybutylene Succinate and a Green Composite: Comparative Study. World Journal of Environmental Engineering. 2015; 3(4):95-110. doi: 10.12691/wjee-3-4-1

Abstract

Polybutylene succinate (PBS), classed as biopolymer, was synthesized by condensation of succinic acid with a lower excess of (1, 4) butanediol. The synthesized polymer was analyzed by FTIR, RMN, DSC and ATG/ATD. Thermal degradation kinetics was investigated for cellulose, polybutylene succinate, physical blend of both polymers (cellulose (80%) + PBS (20%)) and compared with polycaprolactone by dynamic thermogravimetry, under nitrogen atmosphere from room temperature to 480 °C, at constant nominal heating rates: 5, 10 and 15 °C/min, respectively. The Kissinger, Friedman, Flynn-Ozawa-Wall and Coatse - Redfern (modified) methods were developed and the corresponding activation energies, frequency factors and reaction orders were determined.

Keywords:
polybutylene succinate synthesis characterization cellulose blend polycaprolactone thermogravimetry

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Dilami, A, “Journal of Economist Morocco”, 14. January 2011.
 
[2]  Dilami, A, “Journal of Economist Morrocco”, 8. January 2013.
 
[3]  Someya, Y., Nakazato, T., Teramoto, N., Shibata, M, “Thermal and mechanical properties of poly(butylene succinate) nanocomposites with various organo-modified montmorillonites”, Appl. Polym, 91(3). 1463-1475. February 2004.
 
[4]  Ray, S.S., Bousmina, M, “Biodegradable polymers and their layered silicate nanocomposites: in green the 21st century materials word”, Prog. Mater. Sci, 50(8). 962-1079.September 2005.
 
[5]  Pérez, S., Samain, D, “Structure and engineering of celluloses”, Advances in Carbohydrates Chemistery and Biochymestry, 64. 25-116. 2010.
 
[6]  Li, H.Y., Chang, J., Cao, A.M., Wang, J.Y, “In vitro evaluation of biodegradable poly(butylene succinate) as a novel biomaterial”, Macromol. Biosci, 5(5). 433- 440. 2005.
 
[7]  Fujimaki, T, “Processability and properties of aliphatic polyesters”, Polym. Degrad. Stab, 59 (1-3). 209-214. 1998.
 
[8]  Chrissafis, K., Paraskevopoulos, K.M., Bikiaris, D.N, “Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): Comparative study”, Thermochim Acta, 435(2).142-150. September 2005.
 
[9]  Gan, Z., Kuwabara, K., Abe, H., Iwata, T., Doi, Y, “The role of polymorphic crystal structure and morphology in enzymatic degradation of melt-crystallized poly (butylenes adipate) ”, Polym. Degrad. Stabil, 87(1).191-199. January 2005.
 
[10]  Gan, Z., Abe, H., Kurokawa, H., Doi, Y, “Solid-state microstructures, thermal properties, and crystallization of biodegradable poly (butylene succinate) (PBS) and its copolyesters”, Biomacromolecules, 2 (2). 605-613.Summer 2001.
 
[11]  Nikolic, M.S., Djonlagic, “Synthesis and characterization of biodegradable poly (butylene succinate-co-butylene adipate)”, Polym. Degradat.Stabil, 74.263-270. 2001.
 
[12]  Qiu, Z., Komura, M., Ikehara, T., Nishi, T, “DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate) ”, Polymer, 44(5). 7781-7785. December 2003.
 
[13]  Cao, A., Okamura, T., Nakayama, K., Inoue, Y., Masuda, T, “Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co-ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate) ”, Polym. Degradat, 78(1).107-117. 2002.
 
[14]  Song, H., Lee, S.Y, “Production of succinic acid by bacterial fermentation”, Enzyme. Microb. Tech, 39. 352-361. November 2006.
 
[15]  Xu, J., Guo, B.H, “Microbial Succinic Acid,. Its Polymer Poly (butylene succinate), and. Applications”, Plastics from Bacteria, Springer Berlin Heidelberg, 14. 347-388. 2010.
 
[16]  Bechthold, I., Bretz, K., Kabasci, S., Kopitzky, R, “ Succinic acid: a new platform chemical for bio-based polymers from renewable resources”, Chem.Eng.Technol, 31(5). 647-654.2008.
 
[17]  Xu, J., Guo, B.H, “Poly(butylene succinate) and its copolymers: research, development and industrialization”, Biotechnol, 5 (11). 1149-1163. November 2010.
 
[18]  Lee, P.C., Lee, W.G., Kwon, S., Lee, S.Y., Chang, H.N, “ succinic acid production by anaerobiosprillum succiniciproducens”, Enzyme.Microb.Tech, 24.549-554.1999.
 
[19]  Samuelov, N.S., Lamed, R., Lowe, S., Zeikus, J.G, “ Influence of CO2-HCO3 Levels and pH on Growth, Succinate Production, and Enzyme Activities of Anaerobiospirillum succiniciproducens”, Appl.Environ.Microb, 57(10).3013-3019. October 1991.
 
[20]  Der, W., Guettler, M.K., Jain., Zeikus, J.G, “Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z”, Arch Microbiol, 167(6). 332-334.june 1997.
 
[21]  Lee, P.C., Lee, S.Y., Hong, S.H., Chang, H.N, “Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E for the production of succinic acid from whey and corn steep liquor”, Bioprocess. Biosyst.Eng, 26(1). 63-67. October 2003.
 
[22]  Cukalovic, A., Stevens, C.V, “Feasibility of production methods for succinic acid derivatives: a marriage of renewable resources and chemical technology”, Biofuel Bioprod. Bior, 2(6). 505-529. October (2008).
 
[23]  Yim, H., Haselbeck, R., Niu, W., Pujol, B.C., Burgard, A., Boldt, J., Khandurina, J., Trawick, J.D., Osterhout, R.E., Stephen, R., Estadilla, J., Teisan, S., Schreyer, H.B., Andrae, S., Yang, T.H., Lee, S.Y, “Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol”, Nat.Chem.Biol, 7(7). 445-452. May 2011.
 
[24]  Weitz, H.M., Schnabel, R., Platz, R, U.S. Patent 4361710.1982.
 
[25]  Okamoto K., Ray, S.S., Okamoto, M, “New Poly(butylene succinate)/Layered SilicateNanocomposites. II. Effect of Organically Modified Layered Silicates on Structure, Properties, Melt Rheology, and Biodegradability”, Advanced Polymeric Materials Engineerin, 41(24). 3160-3172.July 2003.
 
[26]  Someya, Y., Nakazato, T., Teramoto, N., Shibata, M, “Thermal and mechanical properties of poly(butylene succinate) nanocomposites with various organo modified montmorillonites”, Appl.Polym Sci, 91(3).1463-1475.February 2004.
 
[27]  Ray, S.S., Okamoto, M, “Polymer/layered silicate nanocomposites: a review from preparation to processing”, Prog. Polym. Sci, 28(11).1539-1641. August 2003.
 
[28]  Zainuddin., Razzak, M.T., Yoshii, F., Makuuchi K, “Radiation effect on the mechanical stability and biodegradability of CPP/Bionolle blend”, Polym.Degradat.Stabil, 63(2). 311-320. February1999.
 
[29]  Nugroho, P., Mitomo, H., Yoshii, F., Kume, T., Nishimura, K, “Polymer degradation of poly (lactic-acid) by γ-irradiation ”, Macromol Mater, 72(2). 337-343. 2001.
 
[30]  Kim, D.J., Kim, W.S., Lee, D.H., Min, K.E., Park, L.S., Kang, I.K, “Modification of poly(butylene succinate) with peroxide: Crosslinking, physical and thermal properties, and biodegradation”, J.Appl.Polym Sci, 81(5). 115–1124. August 2001.
 
[31]  Khalil, A., Bhat, A., Ireana, Y, “Green composites from sustainable cellulose nanofibrils Carbohydrate Polymers”, Carbohydrate Polymers, 87(2). 963-979.January 2012.
 
[32]  Allan, P, “Polymer crystallinity determinations by DSC”, Thermochimica Acta, 1(6).563-579. Decembre 1970.
 
[33]  Soni, R.K., Soam, S., Dutt, K, “Studies on biodegradability of copolymers of lactic acid, Terephthalic acid and ethylene glycol”, Polymer Degradation and Stability, 94(3).432-437.March 2009.
 
[34]  Kissinger, H.E, “Variation of peak temperature with heating rate in differential thermal analysis”, J Res.Natl.Bur.Stand, 57(4).217-221.October 1956.
 
[35]  Friedman, H.L, “Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic”, J. Polym. Sci, 6(1). 183-195. Mars 1964.
 
[36]  Flynn, J.H., Wall, L.A, “Isoconversional Kinetics of Thermally Stimulated Processes”, Res. Nat. Bur. Standards A, 70. 487.December 1966.
 
[37]  Brown, M.E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnham, A, “Computational aspects of kinetic analysis : Part A: The ICTAC kinetics project-data, methods and results”, Thermochim Acta, 355(1-2).125-143.July 2000.
 
[38]  Ozawa, T, “A new method of analyzing thermogravimetric data”, Chem. Soc. Jpn, 38(11). 1881-1886. 1965.
 
[39]  Ozawa, T, “ Kinetic analysis of derivative curves in thermal analysis”, Therm. Anal, 2(3).301-324.1970.
 
[40]  Chrissafis, K., Paraskevopoulos, K.M., Bikiaris, D.N, “Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): Comparative study”, Thermochimica Acta, 435(2).142-150. September 2005.
 
[41]  Phua, Y.J., Chow, W. S., Mohd, Z.A, “ Mechanical properties and structure development in poly(butylene succinate)/organo-montmorillonite nanocomposites under uniaxial cold rolling”, Polymer Letters, 5(2). 93 -103. 2011.
 
[42]  Papageorgiou, G.Z., Bikiaris, D.N, “Biodegradable poly(alkylene succinate) blends: thermal behavior and miscibility study”, Polym Sci, 44(3).584-597. Dcember 2006.
 
[43]  Ping, J., Lin., Chang, Y.C., Wu, H.C., Shih, M.S, “Thermal degradation kinetics of polybutadiene rubber”, Polymer Degradation and Stability, 53(3).295-300.September 1996.
 
[44]  Persenaire, O., Alexandre, M., Degee, P., Dubois P.h, “Mechanisms and kinetics of thermal degradation of poly(epsilon-caprolactone) ”, Biomacromolecules, 2(1), 288-294, 2001.
 
[45]  Draye, A., Persenaire, O., Brozek, O., Roda, J., Kosek, T., Dubois P.h, “Thermogravimetric analysis of poly(ε-caprolactam) and poly[(ε-caprolactam)-co-(ε-caprolactone)] polymers”, Polymer, 42(20). 8325–8332.September 2001.
 
[46]  Aoyagi, Y., Yamashita, K., Doi, Y, “Thernal degradation of poly[(R)-3-hydroxybutyrate], poly[3-caprolactone], and poly[(S)-lactide”, Polym Degrad Stab, 76.53-59.2002.