World Journal Control Science and Engineering
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: http://www.sciepub.com/journal/wjcse Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
World Journal Control Science and Engineering. 2013, 1(1), 1-8
DOI: 10.12691/wjcse-1-1-1
Open AccessArticle

Optimal Wind Turbine Planetary Gearbox Replacement Decision Using Vibration Monitoring and Hazard Model

Shawki A. Abouel-seoud1 and Mohamed I. Khalil1,

1Automotive Engineering Department, Helwan University, Cairo, Egypt

Pub. Date: July 25, 2013

Cite this paper:
Shawki A. Abouel-seoud and Mohamed I. Khalil. Optimal Wind Turbine Planetary Gearbox Replacement Decision Using Vibration Monitoring and Hazard Model. World Journal Control Science and Engineering. 2013; 1(1):1-8. doi: 10.12691/wjcse-1-1-1

Abstract

A reliable machine fault prognostic system can be used to forecast damage propagation trend in rotary machinery and to provide an alarm before a fault reaches critical levels. Wind turbine planetary gearbox components have no exception, where hazard rate model was used. The objective of this paper is focused specifically on the use of a generalized statistical method for characterizing and predicting system Weibull density function hazard rate that best corresponds to the given set of filtered vibration data. The prognostic performance was illustrated using five types of gearbox faults. Faults have been artificial made in the wind turbine gearbox components, where the details and dimensions of these faults are presented. The failure hazard rate in terms of RMS value of rotational vibration acceleration prediction was considered. The information incurred in this paper can help for prognostic procedure. The results show that the predicted RMS of vibration acceleration response at failure based on the Weibull distribution with assured reliability was quite close to the healthy value for planet gear tooth spalling followed by planet gear tooth breakage, planet gears carrier crack and main bearing inner race crack with the less close of planet gear tooth crack. The results show that the predictive failure hazard rates are effective in estimating the progress of the prognostic process well in advance of the impending catastrophic failure. Moreover, the results also show the effectiveness of using the hazard rate model in estimating the variations of the failure hazard rate.

Keywords:
optimization reliability hazard rate prognostic failure Weibull distribution deterioration

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 13

References:

[1]  Heng, A., Zhang S., Tan A. and Mathew, J., Queensland University of Technology, Australia " Rotating machinery prognostics: State of the art, challenges and opportunities" Mechanical Systems and Signal Processing 23, pp. 724-739, 2009.
 
[2]  Hontelez, J. A. M., Burger, H. H. and Wijnmalen, J. D., TNO Physics and Electronics Laboratory, Netherlands “Optimum condition- based maintenance policies for deteriorating systems with partial information,” Reliability Engineering and System Safety, vol. 51, pp. 267-274, 1996.
 
[3]  Berbera, F.,Schneider, H. and Kelle, P., Southeastern Louisiana University and Louisiana State University, USA "A condition based maintenance model with exponential failures and fixed inspection intervals" Journal Of Operational Research Society, Vol. 47, pp.1037-1045, 1996.
 
[4]  Brotherton T., Jacobs J., Janhns, G. and Wroblewski, D., Intelligent Autom. Corp., USA " Prognosis of faults in gas turbine engines" in Proc. IEEE International Conference on Aerospace, Vol. 6, pp. 163-171, 2000.
 
[5]  Chiang, L. H.,Russel, E. and Braatz, R., University of Dlinois, USA "Fault detection and diagnosis In industrial systems" London: Springer-Verlag, 2001.
 
[6]  Abouel-Seoud, S. A., Khalil, M., Ahmed, I and Allam, E., Helwan University, Egypt "Remaining Lifetime Evaluation for crankshaft main bearings" SAE Paper No. 2008-01-1654, 2008.
 
[7]  Tian, Z., Jin, T. Wu, B. and Ding, F., Concordia University, USA "Condition based maintenance optimization for wind power generation systems under continuous monitoring" Renewable Energy 36, pp. 1502-1509, 2011.
 
[8]  Lin, D., Wiseman, M., Banjevic, D., Jardine A. S., University of Toronto, Canada "An approach to signal processing and condition-based maintenance for gearboxes subject to tooth failure" Mechanical Systems and Signal Processing 18, pp. 993-1007, 2004.
 
[9]  Lin, D., Zuo, M. J. and Yam, R. C. M., University of Toronto, and University of Alberta, Canada " General sequential imperfect preventive maintenance models" International Journal of Reliability, Quality and Safety Engineering, Vol. 7, No. 3, pp. 253-266, 2000.
 
[10]  Abouel-seoud, S. A., Elmorsy, M. S. and Dyab, E. S., Helwan University, Egypt "Robust Prognostics Concept for Gearbox With Artificially Induced Gear Crack Utilizing Acoustic Emission" Journal of Energy and Environment Research, Canada, Vol. 1, No. 1, pp. 81-93, 2011.
 
[11]  Abouel-seoud, S. A., Khalil, M. I. and Elmorsy, M. S., Helwan University, Egypt "Optimization of Gearbox Replacement Policy Using Vibration Measurement Data" International Journal of Vehicle Noise and Vibration, Accepted to be published in 2012.
 
[12]  Abouel-Seoud, S. A., Elmorsy, M. and Ahmed Saad, A., Helwan University, Egypt "A Laboratory Apparatus for Investigation of Vibration Performance of Wind Turbine Planetary Gearbox" International Journal of Current Research, Vol. 3, Issue, 12, pp.214-219, 2011.
 
[13]  Baydar, N. and Ball, A. A., University of Manchester, UK "comparative study of acoustic and vibration signals in detection of gear failures using Wigner-Ville distribution"Mechanical Systems Signal Processing 15, pp.1091-1107, 2001.
 
[14]  Shensa, M. J., Naval Ocean Systems Center, USA “The discrete wavelet transform: wedding the a trous and Mallat Algorithms”, IEEE Transaction on Signal Processing 40, pp. 2464-2482, 1996.
 
[15]  Ireson, G. W, Coombs,C. F. and Moss, R. Y. " Handbook of reliability engineering and management" McGraw-Hill, 2nd Edition, 1996.
 
[16]  Rausand, M. and Hoyland, A. A." System reliability theory: Models and statistic methods" John Wiley and Sons Inc., 2 edition, ISBN 0-471- 47133-X, January 2004.