World Journal Control Science and Engineering
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: http://www.sciepub.com/journal/wjcse Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
World Journal Control Science and Engineering. 2014, 2(1), 1-5
DOI: 10.12691/wjcse-2-1-1
Open AccessArticle

Automatic Speech Recognition for Tamazight Enchained Digits

A. EL GHAZI1, , C. DAOUI1 and N. IDRISSI2

1Laboratory of Modeling and Calculation, Faculty of Sciences and Technics, BeniMellal

2Team of Information Processing and Telecommunication, Faculty of Sciences and Technics, BeniMellal

Pub. Date: February 06, 2014

Cite this paper:
A. EL GHAZI, C. DAOUI and N. IDRISSI. Automatic Speech Recognition for Tamazight Enchained Digits. World Journal Control Science and Engineering. 2014; 2(1):1-5. doi: 10.12691/wjcse-2-1-1

Abstract

The evolution of humane-machines dialogue involved the apparition of a new security management technique. For this reason, there are a lot of systems that uses voice stamps and signal processing. In this work, we have treated a first stage of a security system that consists on password validation devoted to Tamazight dialect. In this context, an automatic speech recognition system for Tamazight enchained digits is established. We have based on construction rules of these digits to minimize a training database and to avoid the overlap between different numbers to increase a recognition rate.

Keywords:
HMM (Hidden Markov Model) ASRS (Automatic Speech Recognition System) Tamazight security systems

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  AbedllahBoumalek, ’Variation syntaxique en Amazighe’, publication IRCAM, 2008.
 
[2]  A. Chan, EvandroGouvêa& Rita Singh "Building Speech Applications Using Sphinx and Related Resources": http://docpp.sourceforge.net, August 2005.
 
[3]  A. Cornijeol and L. Miclet, "Apprentissage Artificielle-méthode et concept" editioneyrolles 1988.
 
[4]  S. DERRODE "Introduction au modele Markovienne pour signal et image", Institut Fresnel - UMR, jaune 2012.
 
[5]  Ali sadiqui& Noureddine chenfour "Reconnaissance de la parole arabe basé sur CMU Sphinx", Séria Informatica. Vol VIII fasc. 1 2010.
 
[6]  B. Resch "Automatic Speech Recognition with HTK" 2003.
 
[7]  Divejver and J. Killer, “Pattern recognition” in Pattern Recognition: a statistical approach"; Edition: Prentice Hall 1982.
 
[8]  G. SEMET & G. TREFFOT "La reconnaissance de la parole avec les MFCC" TIPE juin 2002.
 
[9]  H. Satori & M. Harti. “Système de la reconnaissance de la reconnaissance automatique de la parole", Faculté des Sciences, DharMehraz Fès, Maroc.
 
[10]  B. TOUNSI, ‘ Inférence d’identité dans le domaine forensique en utilisant un système de reconnaissance automatique du locuteur adapté au dialecte Algérien ’ 2008
 
[11]  M. Amour, A. Bouhjar& F. Boukhris IRCAM: publication: "initiation à la langue Amazigh" 2004.
 
[12]  R. Gonzales and M. Thomson, "Syntactic pattern recognition" 1986.
 
[13]  Reweis, “Hidden Markov-Modele-Sam” 1980.
 
[14]  Robinerand Juang. “Fundamentales of speech recognition” 1993.
 
[15]  Benjamin LECOUTEUX ‘Reconnaissance automatique de la parole guidée par des transcriptions a priori’ Thesis in Avignon university of vaucluse countries 2008.
 
[16]  ChunshengFang "From Dynamic Time Warping (DTW) to Hidden Markov Model" (HMM) University of Cincinnati article 2009.
 
[17]  P. Galley, B. Grand & S. Rossier, "reconnaissance vocale Sphinx-4" EIA de Fribourg mai 2006.
 
[18]  S. Sigurdsson, Kaare Brandt Petersen and Tue Lehn-Schiøler "Mel Frequency Cepstral Coefficients: An Evaluation of Robustness of MP3Encoded Music", Informatics and Mathematical Modelling Technical University of Denmark article 2006.
 
[19]  S. Jamoussi, "Méthodes statistiques pour la compréhension automatique de la parole", Ecole doctorale IAEM Lorraine, 2004.
 
[20]  SEMET Gaetan& TREFFO, ’Grégory,’Reconnaissance de la parole avec les coefficients MFCC’ TIPE june 2002.
 
[21]  T. AL ANI "Modèles de Markov Cachés (Hidden Markov Models (HMMs))", Laboratoire A2SI-ESIEE-Paris / LIRIS 2006.
 
[22]  T. Pellegrini et R. Duée “Suivi de la voix parlée grâce aux modèles de Markov Caché“, lieu: IRCAM 1 place Igor Stravinsky 75004 PARIS june 2003.
 
[23]  RICHARD DUFOUR,’t ranscription automatique de laparole spontanée’, thesis in Maine University, 2010.
 
[24]  A. EL GHAZI, C. DAOUI, N. IDRISSI, ‘Speech recognition sytem concerning the morrocan dialect’, IJEST Vol. 4 No.03 March 2012.
 
[25]  A. El Ghazi, C. Daoui, N. Idrissi, M. Fakir, B. Bouikhalene, ‘Speech Recognition System Based On Hidden Markov Model Concerning the Moroccan Dialect DARIJA’, Global Journal of Computer Science and Technology Volume 11 Issue 15 Version 1.0 September 2011.