World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
World Journal of Chemical Education. 2018, 6(5), 204-211
DOI: 10.12691/wjce-6-5-1
Open AccessArticle

The Analgesic Metamizol (Dipyrone). Part 2: Adsorption, Oxidative and Reductive Degradation

Vithushan Ambalavanar1 and Achim Habekost1,

1University of Ludwigsburg, Department of Chemistry, Ludwigsburg, Germany

Pub. Date: October 15, 2018

Cite this paper:
Vithushan Ambalavanar and Achim Habekost. The Analgesic Metamizol (Dipyrone). Part 2: Adsorption, Oxidative and Reductive Degradation. World Journal of Chemical Education. 2018; 6(5):204-211. doi: 10.12691/wjce-6-5-1


A drastic increase in pharmaceuticals consumption has resulted in a high load of pharmaceuticals in wastewater, resulting in an obvious need for detoxification. Metamizol is a typical representative of an analgesic non-steroidal agent that hydrolyzes into 4-Methylantipyrine (4-MAA). In this article, we show some simple adsorption, oxidation and reduction experiments that can either collect or degrade 4-MAA and some of its related metabolism products. The main successful method in detoxifying these substances is shown to be reduction at moderate temperature.

metamizol (dipyrone) adsorption oxidative and reductive degradation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 9


[1]  S. Wiegel, A. Aulinger, R. Brockmeyer, H. Harms, J. Löffler, H. Reineke, R. Schmidt, B. Stachel, W. von Tumpling, A. Wanke, Pharmaceuticals in the river Elbe and its tributaries, Chemospere, 57, 107- (2004).
[2]  E.Z. Katz, L. Granit, M. Levy, Formation and excretion of dipyrone metabolites in man, Eur. J. Clin. Pharmacol. 42, 187-191 (1992).
[3]  V.V. Arkhipchuk, V.V. Goncharuk, V.P. Chernykh, L.N. Maloshtan, I.S. Gritsenko, Use of a complex approach for assessment of metamizol sodium and acetylsalicylic acid toxicity, genotoxicity and cytotoxicity, J. Appl. Toxicol. 24, 401-407 (2004).
[4]  A.S. Giri, A.K. Golder, Fenton, Photo-Fenton, H2O2 Photolysis, and TiO2 Photocatalysis for Dipyrone Oxidation: drug Removal, Mineralization, Biodegradability, and Degradation Mechanism, Ind. Eng. Chem. Res. 53, 1351-1358 (2014).
[5]  W.R.P. Baros, M.P. Borges, R.M. Reis, R.S. Rocha, R. Bertazzoli, M.R.V. Lanza, Degradation of Dipyrone by the Electro-Fenton Process in an Electrochemical Flow Reactor with a Modified Gas Diffusion Electrode, J. Braz. Chem. Soc. 22, 1673-1680 (2014).
[6]  W.R.P. Baros, M.P. Borges, J.R. Steter, J.C. Forti, R.S. Rocha, M.R.V. Lanza, Degradation of Dipyrone byElectrogenerated H2O2 Combined with Fe2+ Using a Modified Gas Diffusion Electrode, J. Electrochem. Soc. 161, H867-H873 (2014).
[7]  R.M. Reis, J.A.F. Baio, F.L.Migliorini, R da Silva Rocha, M.R. Baldan, N.G. Ferreira, M.R. de Vasconcelos Lanza, Degradation of dipyrone in an electrochemical flow-by reactor using anodes of boron-doped diamond (BDD) supported titanium, J. Electroanal. Chem. 690, 89-95 (2013).
[8]  M.H.M.T. Assumpcao, A. Moraes, R.F.B. De Souza, R.M. Reis, R.S. Rocha, I. Gaubeur, M.L. Calegaro, P. Hammer, M.R.V. Lanza, M.C. Santos, Degradation of dipyrone via advanced oxidation processes using a cerium nanostructured electrocatalyst material, Appl. Cat. A: General 462-463, 256-261 (2013).
[9]  V.R. Chelli, A.K. Golder, Ag-doping on ZnO support mediated by bio-analytes rich in ascorbic acid for photocatalytic degradation of dipyrone drug, Chemosphere 208, 149-158 (2018).
[10]  L. de Melo da Silva, F. Gozzi, I. Sires, E. Brillas, S.C de Oliveira, A.M. Junior, Degradation of 4-aminoantipyrine by electro-oxidation with boron-doped diamond anode: optimization by central composite design, oxidation products and toxicity, Sci. tot. Environ. 631-632, 1079-1088 (2018):
[11]  A. Habekost, The Analgesic Metamizol (Dipyrone) and Its Related Products Antipyrine, 4-Aminoantipyrine and 4-Methylaminoantipyrine. Part 1: Mass Spectrometric and Electrochemical Detection, World J. Chem. Educ. 6, 134-144 (2018).
[12]  L.A. Perez-Estrada, S. Malato, A. Agüera, A.R. Fernandez-Alba, Degradation of dipyrone and its main intermediated by solar AOPs. Identification of intermediate products and toxicity assessment, Catal. Today, 129, 207-214 (2007).
[13]  R.P. Bacil, R.M. Buoro, O.S. Campos, M.A. Ramos, C.G. Sanz, S.H.P. Serrano, Electrochemical behavior of dipyrone (metamizol) and others pyrazolones, Electrochim. Act. 273, 358-366, (2018).
[14]  R.P. Bacil, R.M. Buoro, R.P. da Silva, R.P., D.B. Medinas, A.W.G. Lima, S.H.P. Serrano, Mechanism of electro-oxidation of metamizol using cyclic voltammetry at a glassy carbon electrode, ECS Trans. Electrochem. Soc. 43, 251-258 (2012).
[15]  N. Aristov, A. Habekost, Heterogeneous dehalogenation of PCBs with iron/toluene or iron/quicklime, Chemosphere 80, 113-115, (2010).
[16]  A. Habekost, N. Aristov, Heterogeneous reductive dehalogenation of PCB contaminated transformer oil and brominated diphenyl ethers with zero valent iron, Chemosphere 88, 11, 1283-1287 (2012).