World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
World Journal of Chemical Education. 2018, 6(1), 36-42
DOI: 10.12691/wjce-6-1-7
Open AccessSpecial Issue

Photosensitizers for Photogalvanic Cells in the Chemistry Classroom

Claudia Bohrmann-Linde1, and Diana Zeller1

1Department of Chemistry Education, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

Pub. Date: January 27, 2018

Cite this paper:
Claudia Bohrmann-Linde and Diana Zeller. Photosensitizers for Photogalvanic Cells in the Chemistry Classroom. World Journal of Chemical Education. 2018; 6(1):36-42. doi: 10.12691/wjce-6-1-7


Alternative solar cells on the basis of titanium dioxide are subject of intense research. For the integration of this topic into the chemistry curriculum a set of experiments with photogalvanic cells has been developed. Titania phototelectrodes need to be irradiated with UV light, but the spectrum of solar light contains only little UV radiation. Thus photosensitizers are needed that harvest visible light. Here we present a series of experiments with different dye solutions that can serve as an alternative to the priorly used anthocyanins in the chemistry classroom. The dyes presented are more stable and also work as sensitizers in titania-based photogalvanic cells.

titanium dioxide titania photogalvanic cells photosensitization light natural dyes semiconductor solar cells hands-on chemistry-lab sustainable development education

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 10


[1]  C. Bohrmann-Linde, M.W. Tausch, Photogalvanic Cells for Classroom Investigations - A Contribution for the Ongoing Curriculum Modernization, J.Chem.Educ., 80 (2003), 1471-1473.
[2]  B. O´Reagan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991), 737-740.
[3]  G.P. Smestad, M. Grätzel, Demonstrating Electron Transfer and Nanotechnology: A Natural Dye–Sensitized Nanocrystalline Energy Converter; J.Chem.Educ., 75 (1998), 752-756.
[4]  C. Bohrmann, M. Twellmann, M. W. Tausch, Vom galvanischen Element zur Solarzelle, NiU Chemie, 66 (2001), 12-16.
[5]  C. Bohrmann-Linde, D. Zeller, Solarzellen ohne Silicium für den Chemieunterricht, Nachr. Chem., 65 (2017), 1236-1239.
[6]  M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Grätzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J.Am. Chem. Soc., 115 (1993), 6382-6390.
[7]  S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelle, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chem 6 (2014), 242-247.
[8]  J.-J. Cid, J.-H. Yum, S.-R. Jang, M.K. Nazeeruddin, E. Martínez-Ferrero, E. Palomares, J. Ko, M. Grätzel, T. Torres, Phtalocyanines: Molecular Cosensitization for Efficient Panchromatic Dye-Sensitized Solar Cells, Angew. Chem. 119 (2007), 8510-8514.
[9]  B. E. Hardin, H. J. Snaith, M. D. McGehee, The renaissance of dye-sensitized solar cells, Nature Photonics, 6 (2012), 162-169.
[10]  C. Bohrmann-Linde, S. Krees, Anthocyane als Photosensibilisatoren für Titandioxid, PdN-ChiS, 54 (2005), 24-30.
[11]  M. W. Tausch, C. Bohrmann-Linde, S. Krees, N. Meuter, J. Ibanez, I. Fernandez-Gallardo, I. Loblez-Leyzaola, G. Alesso-Roblez, The Basis for Photocatalytic Writing, J.Chem.Educ., 88 (2011), 1116-1118.
[12] (12.12.17).
[13] (12.12.17).