World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
World Journal of Chemical Education. 2017, 5(2), 37-45
DOI: 10.12691/wjce-5-2-3
Open AccessArticle

The Analysis of Paracetamol – A Comparison between Electrochemistry, Electrochemiluminescence and GC-MSD

A. Habekost1,

1Department of Chemistry, Ludwigsburg University of Education, Reuteallee 46, D-71634 Ludwigsburg, Germany

Pub. Date: March 17, 2017

Cite this paper:
A. Habekost. The Analysis of Paracetamol – A Comparison between Electrochemistry, Electrochemiluminescence and GC-MSD. World Journal of Chemical Education. 2017; 5(2):37-45. doi: 10.12691/wjce-5-2-3


We present two electrochemical methods—cyclic voltammetry and electrogenerated chemiluminescence—to qualitatively and quantitatively detect paracetamol, a pharmaceutical preparation. The results are compared to those achieved with GC-MSD.

four-year undergraduate beginner PhD student analytical electrochemistry electrochemiluminescence mass spectrometry hands-on learning/manipulatives

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Mutschler, E. Arzneimittelwirkungen, 7th edition, Wissenschaftliche Verlagsgesellschaft, Stuttgart, Germany, 1997.
[2]  Wegner, C.; Pulka, S; Risch, B. Synthese und Analyse des Arzneistoffes Paracetamol im Schülerlabor, Chemkon, 2016, 3, 131-141.
[5]  Joncour, R.; Dugue, N.;Métay, E.; Ferreira, A.; Lemaire, M.Amidationofphenol derivatives: a directsynthesisofparacetamol (acetaminophen) fromhydroquinone, Green Chem. 2014,16, 2997-3002.
[7]  Habekost, A.Rapid and sensitive spectroelectrochemical detection of lidocainehydrochloride and caffeine with screen-printed electrodes, World Journal of Chemical Education, 2016, 4, 107-113.
[8]  Bard, A. J. (ed.) Electrogenerated Chemiluminescence. Marcel Dekker, New York, 2004.
[9]  Richter, M.M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003-3036.
[10]  Parveen, S.; Aslam, M.S.; Hu, L.; Xu, G. Electrogenerated Chemiluminescence. Protocols and Applications. Springer, Heidelberg, Germany, 2013.
[11]  Habekost, A. Investigations of some reliable electrochemiluminescence systems on the basis of tris(bipyridyl)ruthenium(II) for HPLC analysis, World J. Chem. Educ. 2016, 4, 13-20.
[12]  Crispim, D.V.F.S.; Lino, F.M.A.; Benjamin, S.R.; Cubillana-Aguilera, L.M.; Palacios-Santander, J.M.; Gil, E.S. Differential pulse voltammetric determination of paracetamol formulations at a sonogel-carbon electrode, Latin Amer. J.Pharmacy (2015), 34, 344-350.
[13]  Santos, A.M.; Vicentini, F.C.; Deroco, P.B.; Rocha-Filho, R.C.; Fatibello-Filho, O. Square-wave voltammetric determination of paracetamol and codeine in pharmaceutical and human body fluid samples using a cathodically pretreated boron-doped diamond electrode, J. Brazilian Chem. Soc. (2015), 26, 2159-2168.
[14]  Eisele, AA.P.P.; Clausen, D.N.; Tarley, C.R.T.; Dall' Antonia, L.H.; Sartori, E.R. Simultaneous Square-Wave Voltammetric Determination of Paracetamol, Caffeine and Orphenadrine in Pharmaceutical Formulations Using a Cathodically Pretreated Boron-Doped Diamond Electrode, Electroanalysis (2013), 25, 1734-1741.
[15]  Tyszczuk-Rotko, K.; Beczkowska, I.; Wojciak-Kosior, M.; Sowa, I. Simultaneous voltammetric determination of paracetamol and ascorbic acid using a boron-doped diamond electrode modified with Nafion and lead films, Talanta (2014), 129, 384-391.
[16]  Fan, Y.; Liu, J-H.; Lu, H.-T.; Zhang, Q. Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode, Colloids and Surfaces, B: Biointerfaces (2011), 85, 289-292.
[17]  Atta, N.F.; Galal, A.; Azab, S.M. Electrochemical determination of paracetamol using gold nanoparticles - application in tablets and human fluids, Intern. J. Electrochem. Sci. (2011), 6, 5082-5096.
[18]  Yuan, J.; Wei. H.; Jin, W.; Yang, X.; Wang, E. Kinetic study of paracetamol on prolidase activity in erthrocytes by capillary electrophoresis with Ru(bpy)32+ electrochemiluminescence detection, Electrophoresis (2006), 27, 4047-4051.
[19]  Haslag, C. S.; Richter, M. M.Electrogenerated chemiluminescence quenching of Ru(bpy)32+ (bpy=2,2'-bipyridine) in the presence of acetaminophen, salicylic acid and their metabolites, Journal of Luminescence, 2012, 132, 636–640.
[20]  Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Chemistry), Wiley and Sons, 2001.
[21]  Mabbott, G. A. An Introduction to Cyclic Voltammetry, J. Chem. Educ. 1983, 60, 607-702.
[22]  Kissinger, P. T.; Heineman, W. R. Cyclic Voltammetry, J. Chem. Educ. 1983, 60, 702-706.
[23]  van Benschoten, J. J.; Lewis, Y. T.; Heineman, W. R.; Roston, D. A.; Kissinger, P. T. Cyclic Voltammetry Experiments,J.Chem. Educ. 1983, 60, 772-776.
[24]  Mohamed, H. M. Screen-printed disposable electrodes: Pharmaceutical applications and recent developments, Trend in Anal. Chem. 2016, 82, 1-11.
[25]  Renedo, O. D.; Alonso-Lomillo, M. A.; Martinez, M. J. A.Recent developments in the field of screen-printed electrodes and their related applications, Talanta 2007, 73, 201-219.
[27]  Miao, W.; Choi, J.P.; Bard, A. J. Electrogenerated Chemiluminescence 69: The Tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System Revisited—A New Route Involving TPrA•+ Cation Radicals, J. Am. Chem. Soc., 2002, 124, 14478-14485.
[28]  Kapturkiewicz, A. Electrogenerated chemiluminescence from the tris(2,2'-bipyridine)ruthenium(II) complex, Chem. Phys. Lett.1995, 236, 389-394.
[29]  Hercules, D. M.; Lytle, F. E. Chemiluminescence from reduction reactions, J. Am. Chem. Soc., 1966, 88, 4795-4796.