World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
World Journal of Chemical Education. 2016, 4(4), 76-79
DOI: 10.12691/wjce-4-4-2
Open AccessArticle

Chemical Vapor Deposition of Aluminum Oxide Thin Films Using a Low-cost Direct Liquid Injection Delivery System: An Educational Laboratory Experiment

Serrano Pérez Edgar1, , Serrano Pérez Javier2, José Manuel Juárez García3 and Juárez López Fernando1

1Instituto Politécnico Nacional, CIITEC, Cerrada de Cecati, Sta. Catarina, D.F. 02250, México

2Universidad Tecnológica de Tecámac, Carretera Federal México - Pachuca, Predio Sierra Hermosa, Tecámac, Estado de México

3Centro Nacional de Metrología, Km 4.5 Carretera a Los Cués, CP 76246 Municipio El Marqués, Querétaro, México

Pub. Date: July 15, 2016

Cite this paper:
Serrano Pérez Edgar, Serrano Pérez Javier, José Manuel Juárez García and Juárez López Fernando. Chemical Vapor Deposition of Aluminum Oxide Thin Films Using a Low-cost Direct Liquid Injection Delivery System: An Educational Laboratory Experiment. World Journal of Chemical Education. 2016; 4(4):76-79. doi: 10.12691/wjce-4-4-2


The chemical vapor deposition is an attractive technique for the growth of thin films and coatings, mainly focused in applications of wear protection, corrosion and microelectronic. This technique has received special attention because allows to deposit thin films and coatings on complex substrates with irregular geometry. The laboratory experiment presented includes a delivery system based on an electro mechanical injector, denominated direct liquid injection, an updated variant of the classical chemical vapor deposition process with the aim of providing a more constant vapor phase for the process. Although it’s numerous advantages, the high price for this equipment represents a barrier for the widespread of this technique in academic environments. The accessible materials used for this experiment setup allows building the setup in laboratories and facilities of universities and research centers focused on nanotechnology and materials science. The experiment setup has been successfully build and is used as a compressive hands-on tool to teach undergraduate, master and doctorate students the direct liquid injection chemical vapor deposition technique.

direct liquid injection chemical vapor deposition alumina

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Pedersen, H., Simple Chemical Vapor Deposition Experiment. Journal of Chemical Education, 2014. 91(9): p. 1495-1497.
[2]  Vohs, J.K., A. Bentz, K. Eleamos, J. Poole, and B.D. Fahlman, Chemical Vapor Deposition of Aluminum Oxide Thin Films. Journal of Chemical Education, 2010. 87(10): p. 1102-1104.
[3]  Mungkalasiri, J., L. Bedel, F. Emieux, J. Doré, F.N.R. Renaud, and F. Maury, DLI-CVD of TiO2–Cu antibacterial thin films: Growth and characterization. Surface and Coatings Technology, 2009. 204(6–7): p. 887-892.
[4]  Na, J.S., D.-H. Kim, K. Yong, and S.-W. Rhee, Direct Liquid Injection Metallorganic Chemical Vapor Deposition of ZrO2 Thin Films Using Zr ( dmae ) 4 as a Novel Precursor. Journal of The Electrochemical Society, 2002. 149(1): p. C23-C27.
[5]  Balcaen, Y., N. Radutoiu, J. Alexis, J.D. Beguin, L. Lacroix, D. Samélor, and C. Vahlas, Mechanical and barrier properties of MOCVD processed alumina coatings on Ti6Al4V titanium alloy. Surface and Coatings Technology, 2011. 206(7): p. 1684-1690.
[6]  Guidi, F., G. Moretti, G. Carta, M. Natali, G. Rossetto, Z. Pierino, G. Salmaso, and V. Rigato, Electrochemical anticorrosion performance evaluation of Al2O3 coatings deposited by MOCVD on an industrial brass substrate. Electrochimica Acta, 2005. 50(23): p. 4609-4614.
[7]  Morssinkhof, R.W.J., T. Fransen, M.M.D. Heusinkveld, and P.J. Gellings, The protective properties of thin alumina films deposited by metal organic chemical vapour deposition against high-temperature corrosion of stainless steels. Materials Science and Engineering: A, 1989. 120–121, Part 2(0): p. 449-455.
[8]  van Corbach, H.D., V.A.C. Haanappel, T. Fransen, and P.J. Gellings, Al2O3 coatings against high temperature corrosion deposited by metal-organic low pressure chemical vapour deposition. Thin Solid Films, 1994. 239(1): p. 31-36.
[9]  Sovar, M.M., D. Samélor, A.N. Gleizes, and C. Vahlas, Aluminium tri-iso-propoxide: Shelf life, transport properties, and decomposition kinetics for the low temperature processing of aluminium oxide-based coatings. Surface and Coatings Technology, 2007. 201(22-23): p. 9159-9162.
[10]  Vergnes, H., D. Samélor, A.N. Gleizes, C. Vahlas, and B. Caussat, Local Kinetic Modeling of Aluminum Oxide Metal-Organic CVD From Aluminum Tri-isopropoxide. Chemical Vapor Deposition, 2011. 17(7-9): p. 181-185.
[11]  P.L. Etchepare , H.V., D. Samélor, D. Sadowski, C. Brasme, B. Caussat, C. Vahlas, Amorphous Alumina Coatings on Glass Bottles Using Direct Liquid Injection MOCVD for Packaging Applications. Advances in Science and Technology, 2014. 91: p. 117-122.