[1] | Kuehner, A. L. Long-Lived Soap Bubbles: The use of sodium 9,10-dibromostearate solutions. J. Chem. Educ. 1958, 35(7), 337. |
|
[2] | Grosse, A. V. Soap Bubbles: Two Years Old and Sixty Centimeters in Diameter. Science 1969, 164, 291-293. |
|
[3] | Douglas, J. Solution of the Problem of Plateau. Trans. Amer. Math. Soc. 1931, 33 (1), 263-321. |
|
[4] | Marangoni, C. G. M. Ueber die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfl?che einer anderen. Ann. Phys. Chem. 1871, 143, 337-354. |
|
[5] | DuPont Specialty Chemicals Technical Information, “QUILON Chrome Complex for Improved Performance of Polyvinyl Alcohol Paper Coatings, Films, and Adhesives” (http://zaclon.com/pdf/elvanol_quilon_paper.pdf), 25 July 2015 access; Miyoshi, R.; Nakanishi, T., J. Human Environ. Engin. (Japanese) 2000, 2, 72-73. |
|
[6] | Bercea, M.; Morariu, S.; Rusu, D. In-situ Gelation of Aqueous Solutions of Entangled Poly(vinyl alcohol). Soft Matter 2013, 9, 1244-1253. |
|
[7] | Chattopadhyay, A. Time−Dependent Changes in a Shampoo Bubble. J. Chem. Educ. 2000, 77, 1339-1342. |
|
[8] | Sarma, T. K.; Chattopadhyay, A. Simultaneous Measurement of Flowing Fluid Layer and Film Thickness of a Soap Bubble using a UV−visible Spectrometer. Langmuir 2001, 17, 6399-6403. |
|
[9] | Afanasyev, Y. D.; Andrews, G. T.; Deacon, C. G. Measuring Soap Bubble Thickness with Color Matching. Am. J. Phys. 2011, 79, 1079-1082. |
|
[10] | Marangoni, C. G. M. Ueber die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen. Ann. Phys. Chem. 1871, 143, 337-354. |
|
[11] | Parkinson, L.; Sedev, R.; Fornasiero, D.; Ralston, J. The Terminal Rise Velocity of 10–100 µm Diameter Bubbles in Water, J. Colloid.Interface Sci. 2008, 322, 168-172. |
|
[12] | Isenberg, C. The Science of Soap Films and Soap Bubbles, Dover Publications: New York, 1992; p 14. |
|
[13] | Sun, J.; Bhushan B.; Tonga, J. Structural Coloration in Nature, RSC Adv. 2013, 3, 14862-14889. |
|
[14] | Douglas, J. Solution of the Problem of Plateau. Trans. Amer. Math. Soc. 1931, 33(1), 263-321. |
|
[15] | Pepling, R. Soap Bubbles. The Simple Interaction between Soap and Water Molecules Leads to Bubble Formation. C&EN 2003, 81(17), 34. |
|
[16] | Miller, R.; Joos, P; Fainerman, V. B. Dynamic Surface and Interfacial Tensions of Surfactant and Polymer Solutions. Adv. Colloid and Interface Sci. 1994, 49, 249-302. |
|
[17] | Harkins, W. D.; Brown, F. E. The Determination of Surface Tension (Free Surface Energy), and the Weight of Falling Drops: The Surface Tension of Water And Benzene by the Capillary Height Method. J. Am. Chem. Soc. 1919, 41, 499–524. The correlation factor in Table IX (p. 519) was used for this experiment. |
|
[18] | Isenberg, C. The Science of Soap Films and Soap Bubbles; Dover Publications: New York, 1992; p 14. |
|
[19] | Vargaftik, N. B.; Volkov, B. N.; Voljak, L. D. International Tables of the Surface Tension of Water. J. Phys. Chem. Ref. Data 1983, 12 (3), 817-820. |
|
[20] | Witte, P.; Dijkstra, P. J.; Berg, J. W. A.; Feijen, J. Phase Separation Processes in Polymer Solutions in Relation to Membrane Formation. J. Membrane Sci. 1996, 117, 1-31. |
|
[21] | Komiya, S.; Otsuka, E.; Hirashima, Y.; Suzuki, A. Salt Effects on Formation of Microcrystallites in Poly(vinyl alcohol) Gels Prepared by Cast-Drying Method. Prog. Nat. Sci.: Mater. Int. 2011, 21, 375-37. |
|
[22] | Hassan, C. M.; Peppas, N. A. Structure and Morphology of Freeze/Thawed PVA Hydrogels. Macromol., 2000, 33, 2472-2479. |
|
[23] | Bird, J. C.; de Ruiter, R.; Courbin, L.; Stone, H. A. Daughter Bubble Cascades Produced by Folding of Ruptured Thin Films. Nature, 2010, 465, 759-762. |
|