World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: http://www.sciepub.com/journal/wjce Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
Go
World Journal of Chemical Education. 2015, 3(6), 127-133
DOI: 10.12691/wjce-3-6-1
Open AccessArticle

Teaching Chemical Equilibria Using Open Source Software OCTAVE

Juan José Baeza-Baeza1, , Francisco Fernando Pérez-Pla2 and María Celia García-Álvarez-Coque1

1Departament de Química Analítica, Universitat de València, c/Dr. Moliner, Burjassot, Spain

2Institut de Ciencia dels Materials (ICMUV), c/Catedrático Beltrán, Paterna, Spain

Pub. Date: December 01, 2015

Cite this paper:
Juan José Baeza-Baeza, Francisco Fernando Pérez-Pla and María Celia García-Álvarez-Coque. Teaching Chemical Equilibria Using Open Source Software OCTAVE. World Journal of Chemical Education. 2015; 3(6):127-133. doi: 10.12691/wjce-3-6-1

Abstract

The use of computational software can greatly facilitate the teaching of chemical equilibria. It allows the treatment of complex problems without the need of simplifications, and the outcome of a very large number of calculations in a short time. Two practical examples of different complexity are proposed in this work to show the application of a general systematic approach for the numerical calculation of multi-equilibria problems, regardless of the number or types of equilibria involved. The method consists in writing down a system of non-linear equations formed by equilibrium constant expressions and the needed number of conservation balances so to match the number of chemical species involved. The exact solution of the system of non-linear equations describing the multiple equilibria is obtained by means of the fsolve tool of the open source software OCTAVE. The approach also allows multiple calculations by automatic changing of the initial conditions. The graphical representation of the concentration of chemical species is also possible as a function of selected variables, such as the initial concentration or the volume of a given reagent.

Keywords:
chemical equilibrium multi-equilibria problems non-linear equations diprotic acid carbonate solubility; OCTAVE software

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Burgot, J. L. Ionic Equilibria in Analytical Chemistry, Springer, New York, 2012.
 
[2]  Skoog, D. A., West, D. M., Holler, F. J., Crouch, S. R., Fundamentals of Analytical Chemistry, Cengage Learning, Boston, MA, 2014.
 
[3]  Stumm, W., Morgan, J. J., Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Wiley, New York, 1995.
 
[4]  Baeza-Baeza, J. J., García-Alvarez-Coque, M. C., “Systematic Approach to Calculate the Concentration of Chemical Species in Multi-Equilibrium Problems”, J. Chem. Educ., 88, 169-173, 2011.
 
[5]  Baeza-Baeza, J. J., García-Alvarez-Coque, M. C., “Extent of Reaction Balances: A Convenient Tool to Study Chemical Equilibria”, World J. Chem. Educ., 2, 54-58, 2014.
 
[6]  Salvatore, M. M., Guida, M., Salvatore F., “pH and Acid-Base Equilibrium Calculations via a Matrix Representation of Solutions of Acids and/or Bases”, World J. Chem. Educ., 3, 93-110, 2015.
 
[7]  Wall, T. W., Greening, D., Woolsey, R. E. D., “Solving Complex Chemical Equilibria Using a Geometric-Programming Based Technique”, Oper. Res., 34, 345-355, 1986.
 
[8]  Paz-García, J. M., Johannesson, B., Ottosen, L. M., Ribeiro, A. B., Rodríguez-Maroto, J. M., “Computing Multi-Species Chemical Equilibrium with an Algorithm based on the Reaction Extents”, Comput. Chem. Eng., 58, 135-143, 2013.
 
[9]  Van Driel, J. H., De Vos, W., Verloop, N., Dekkers, H., “Developing Secondary Students’ Conceptions of Chemical Reactions: the Introduction of Chemical Equilibrium”, Int. J. Sci. Educ., 20, 379-392, 1998.
 
[10]  Quilez J., “Changes in Concentration and in Partial Pressure in Chemical Equilibria: Students' and Teachers' Misunderstandings”, Chem. Educ. Res. Pract., 5, 281-300, 2004.
 
[11]  Glaser, R. E., Delarosa, M. A., Salau, A. O., Chicone, C., “Dynamical Approach to Multi-Equilibria Problems for Mixtures of Acids and their Conjugated Bases”, J. Chem. Educ., 91, 1009-1016, 2014.
 
[12]  Cutlip, M. B., Shacham, M., Problem Solving in Chemical and Biochemical Engineering with POLYMATH, EXCEL, and MATLAB, Prentice Hall, Upper Saddle River, NJ, 2008.
 
[13]  Eaton, J. W., “GNU Octave and Reproducible Research”, J. Process Control, 22, 1433-1438, 2012.
 
[14]  Available: http://www.gnu.org/software/octave/ [Accessed Oct. 23, 2015].
 
[15]  Quarteroni, A., Saleri, F., Gervasio, P., Scientific Computing with MATLAB and OCTAVE, 4th Ed., Springer, Heidelberg, 2014.
 
[16]  Attaway, S., MATLAB. A Practical Introduction to Programming and Problem Solving, Elsevier, Amsterdam, 2013.
 
[17]  Doney, S. C., Fabry, V. J., Feely, R. A., Kleypas, J. A., “Ocean Acidification: The Other CO2 Problem”, Annu. Rev. Mar. Sci., 1, 169-92, 2009.
 
[18]  Millero, F. J., “Thermodynamics of the carbon dioxide system in the oceans”, Geochim. Cosmochim. Acta, 59, 661-677, 1995.