World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
World Journal of Chemical Education. 2015, 3(4), 82-86
DOI: 10.12691/wjce-3-4-1
Open AccessArticle

Electrochromism of Methylviologen (Paraquat)

N. Aristov1 and A. Habekost1,

1Department of Chemistry, University of Education, Reuteallee 46, D-71634 Ludwigsburg, Germany

Pub. Date: July 23, 2015

Cite this paper:
N. Aristov and A. Habekost. Electrochromism of Methylviologen (Paraquat). World Journal of Chemical Education. 2015; 3(4):82-86. doi: 10.12691/wjce-3-4-1


The herbicide paraquat, N, N’-dimethyl-4,4‘-bipyridiunium dication (N,N’-methyl viologen), is electrochromic. Experiments are described that investigate its redox chemistry (cyclic voltammetry), its optical properties (photometry and UV/Vis spectrophotometry), and its potential as a system for electrical “photoswitching” and as an accumulator for rechargeable devices. This set of teaching laboratory experiments closely reflects true procedures in commercial research and development endeavors, because the same system is probed with several quite different, but complementary, analytical methods.

third-year undergraduate analytical electrochemistry electrochromism hands-on learning/manipulatives

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Monk, P. M. S., Mortimer, R. J., Rosseinsky, D. R. Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, 2007.
[2]  Monk, P. M. S, The Viologens, Wiley, Chichester, 1998.
[3]  Granquist, C. G., Pehlivan, I. B., Green, S. V., Lansaker, P. C., Niklasson, G. A, Oxide-based Electrochromism: Advances in materials and devices, Mater. Res. Soc. Symp. Proc. 2011, 1328, 11-22.
[4]  Pang, Y., Chen, Q., Shen, X., Tang, L., Qian, H, Size-controlled Ag nanoparticle modified WO3 composite films for adjustment of electrochromic properties, Thin Solid Films, 2010, 518, 1920-1924.
[5]  Galiote, N. A., Parreira, R. L. T., Rosolen, J. M., Huguenin, F, Self-assembled films from WO3: Electrochromism and lithium ion diffusion, Electrochem. Commun., 2010, 12, 733-736.
[6]  Hepel, M, Electrochromic WO3 Films: Nanotechnology Experiments in Instrumental Analysis and Physical Chemistry Laboratories, J. Chem. Educ., 2008, 85, 125-127.
[7]  Forslund, B. A, Simple Laboratory Demonstration of Electrochromism, J. Chem. Educ., 1997, 74, 962-963.
[8]  Duek, E. A. R., De Paoli, M. A., Mastragostino, M, An electrochromic device based on polyaniline and Prussian blue, Adv. Mater., 1992, 4, 287-291.
[9]  Jelle, B. P., Hagen, G, Transmission spectra of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide, J. Electrochem. Soc., 1993, 140, 3560-3564.
[10]  Barbero, C., Miras, M. C., Koetz, R., Haas, O, Comparative study of the ion exchange and electrochemical properties of sulfonated polyaniline (SPAN) and polyaniline (PANI), Synth. Met., 1993, 55, 1539-1544.
[11]  Ram, M. K., Maccioni, E., Nicolini, C, The electrochromic response of polyaniline and its copolymeric systems, Thin Solid Films, 1997, 303, 27-33.
[12]  Beden, B.; Enea, O.; Hahn, F.; Lamy, C. Investigations of the absorption of Methyl Viologen on a platinum electrode by voltammetry coupled with “in situ” UV-Visible reflectance spectroscopy, J. Electroanal. Chem., 1984, 170, 357-361.
[13]  Bird, C. L., Kuhn, A. T, Electrochemistry of the Viologens, Chem. Soc. Rev., 1981, 10, 49-82.
[14]  Barclay, D. J., Bird, C. L., Martin, D. H, Speed considerations for electrochromic displays, J. Electron. Mater. 1979, 8, 311-315.
[15]  Ruff, A., Speiser, B., Dreiling, J, Redox-active silica nanoparticles. Part 7. Redox behavior of core/shell structured viologen modified silica particles immobilized at paraffin impregnated graphite electrodes, J. Electroanal. Chem., 2013, 710, 10-16.
[16]  Passon, M., Ruff, A., Schuler, P., Speiser B., Dreiling, I, Redox-active Silica Nanoparticles. Part 8. Stepwise solid-phase synthesis and solid state electrochemistry of redox active viologen core/shell structured modified silica materials, ChemElectroChem, 2014, 1, 263-80.
[17]  Saricayir, H., Uce, M., Koca, A, In Situ Techniques for Monitoring Electrochromism, J. Chem. Educ. 2010, 87, 205-207.
[18]  DeAngelis, T. P., Heineman, W. R, An Electrochemical Experiment Using an Optically Transparent Thin Layer Electrode, J. Chem. Educ. 1976, 53, 594-597.
[19]  Heineman, W. R, Spectroelectrochemistry, J. Chem. Educ., 1983, 60, 305-308.
[20]  Viswanathan, B., Scibioh, M.A, Photoelectrochemistry. Principles and Practices, Alpha Science, Oxford, 2014.
[21]  Bard, A. J., Faulkner, L. R, Electrochemical Methods: Fundamentals and Applications, Wiley and Sons, New York, 2001.
[22]  Gosser, Jr, D. K, Cyclic Voltammetry. Simulation and Analysis of Reaction Mechanism, VCH, Weinheim, Germany, 1993.
[23]  Compton, R. G., Banks, C. E, Understanding Voltammetry, 2nd Edition, Imperial College Press, 2011.
[24]  Mabbott, G. A, An Introduction to Cyclic Voltammetry, J. Chem. Educ. 1983, 60, 607-702.
[25]  Kissinger, P. T.; Heineman, W. R. Cyclic Voltammetry, J. Chem. Educ. 1983, 60, 702-706.
[26]  van Benschoten, J. J., Lewis, Y. T., Heineman, W. R., Roston, D. A., Kissinger, P. T, Cyclic Voltammetry Experiments, J. Chem. Educ. 1983, 60, 772-776.
[27]  Monk, P. M. S., Turner, C., Akhtar, S. P, Electrochemical behavior of methyl viologen in a matrix of paper, Electrochim. Acta, 1999, 44, 4817-4826.
[28]  Rueda, M., Compton, R. G., Alden, J. A., Prieto, F, Impedance voltammetry of electro-dimerization mechanisms: Application to the reduction of the methyl viologen di-cation at mercury electrodes and aqueous solutions, Electroanal. Chem. 1998, 443, 227-235.