World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
World Journal of Chemical Education. 2015, 3(2), 30-35
DOI: 10.12691/wjce-3-2-1
Open AccessReview Article

Metallic Structure and Bonding

Peter F. Lang1, and Barry C. Smith1

1Birkbeck College (University of London), Malet Street, London, UK WC1E 7HX

Pub. Date: March 26, 2015

Cite this paper:
Peter F. Lang and Barry C. Smith. Metallic Structure and Bonding. World Journal of Chemical Education. 2015; 3(2):30-35. doi: 10.12691/wjce-3-2-1


This article briefly describes the current physical model of metallic structure and bonding. An alternative soft-sphere model of metal structure is introduced. Limitations of the current model are given and properties of metals which can be accounted for by the soft-sphere model are discussed. A simple soft-sphere formula, which calculated internuclear distances of Group 1 and Group 2 crystalline binary salts to a remarkable degree of accuracy, is applied to calculate metallic radii (equal to half the internuclear distances) of Group 1 and Group 2 metals precisely. A simple expression previously used to calculate lattice energies using the soft-sphere radii concept is used to calculate enthalpies of formation of Group 1 and Group 2 metal ions and results compare well with observed values. The work functions of Group 1 and Group 2 metals are shown to be inverse functions of the soft sphere ionic radii.

metals metallic bonding metallic structure band theory metallic radii enthalpy of formation lattice energies work function free electron in metals electron sea model chemical bonding

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Wells A. F.; Structural Inorganic Chemistry, 4th edn., Oxford University Press, , 1975; pp. 1014-1015.
[2]  Drude P.; Zur Elektronentheorie der Metalle das die Elektricitatsleitung. Ann. der Physik, 306, 566-613, 1900.
[3]  Hall. E. H.; The number of free electrons within a metal. Proc. Natl. Acca. Sci. USA, 11, 36-38, 1925.
[4]  Coulson C. A.; Valence, 2nd edn., OUP, 1961, pp. 322-332.
[5]  Pauling L.; The Nature of the Chemical Bond, 3rd edm., Cornell University, Ithaca NY, 1960, pp. 393-442.
[6]  Cox P. A.; Instant Notes in Inorganic Chemistry, 2nd edn., BIOS Scientific, New York, 2004, p 26.
[7]  Zumdahl S. S., Zumdahl S. A.; Chemistry, 8th edn., Cengage Learning, Belmont CA, 2010, p. 455.
[8]  Matsuoka T., Shimizu K.; Direct observation of a pressure induced metal to semiconductor transition in lithium. Nature, 458, 186-189, 2009.
[9]  Lang P. F., Smith B. C.; Ionic radii for Group 1 and Group 2 halide, hydride, fluoride, oxide, sulfide, selenide and telluride crystals. Dalton Trans, 39, 7786-7791, 2010.
[10]  Bunn C. W.; Chemical Crystallography, OUP, London, 1961, pp. 14-18.
[11]  Mingos D. M. P.; Essentials of Inorganic Chemistry 1, OUP, Oxford, 1995, p. 11.
[12]  Lang P. F., Smith B. C.; A new model of metallic structure and bonding, Eur. Chem. Bull.,3(4),390-395, 2014.
[13]  Donohue J.; The Structures of the Elements, Wiley, New York, 1974, pp. 28-47.
[14]  Heisenberg W.; The physical principles of the quantum theory, Dover, London, 157-161, 1930.
[15]  Lang P. F., Smith B. C.; Methods of calculating ionization energies of multielectron (five or more) isoelectronic atomic ions Scientific World Journal, 157412, 2013.
[16]  CRC Handbook of Chemistry and Physics, Lide D.R. ed. 89th edn., CRC Boca Raton, FL. 2008-2009.
[17]  Ma Y., Eremets M., Oganov A. R., Xie Y., Trojan I., Medvedev S., Lyakhov A. O., Valle M., Prakapenka V.; Transparent dense sodium. Nature, 458, 182-185, 2009.
[18]  Holleman A. F., Wiberg E., Wiberg W., Inorganic Chemistry; Academic Press, San Diego CA., 2001, p136.
[19]  Sears F.W., Zemansky M.W., Young H.D.; University Physics, 5th edn.; Addison-Wesley, Reading Mass., pp475-477, 1980.
[20]  Hall E. H.; The four transverse effects and their relations in certain metals. Proc. Natl. Acca. Sci. USA, 11, 416-423, 1925.
[21]  Greenwood N.N., Earnshaw A., Chemistry of the Elements, Pergamon, Oxford, 1984, p 129.
[22]  Fishbane. P.M., Gasiorowicz S., Thornton S.T., Physics for Scientists and Engineers, 2nd edn., Prentice Hall, Upper Saddle River NJ, 1996, p733.
[23]  Girifalco L.A., Statistical Mechanics of Solids, OUP, Oxford, 2000, pp. 143-144.
[24]  Lang P. F., Smith B. C.; An equation to calculate internuclear distances of covalent, ionic and metallic Lattices. Phys.Chem.Chem.Phys., 2014.