World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
World Journal of Chemical Education. 2022, 10(1), 23-37
DOI: 10.12691/wjce-10-1-4
Open AccessArticle

In-situ Surface Enhanced Electrochemical Chemiluminescence and Raman Scattering with Screen-printed Gold- and Silver-Electrodes

Achim Habekost1,

1Ludwigsburg University of Education, Department of Chemistry, Reuteallee 46, Ludwigsburg, DE 71634

Pub. Date: February 11, 2022

Cite this paper:
Achim Habekost. In-situ Surface Enhanced Electrochemical Chemiluminescence and Raman Scattering with Screen-printed Gold- and Silver-Electrodes. World Journal of Chemical Education. 2022; 10(1):23-37. doi: 10.12691/wjce-10-1-4


Redox reactions on gold- and silver screen-printed electrodes (SPE) can be monitored electrochemically using cyclic voltammetry (CV) and spectroscopically by electrochemical chemiluminescence (ECL). Alongside conventional anionic ECL, cathionic ECL with in-situ generated, finely-dispersed Au as a co-reagent is also presented. Raman spectroscopy is a powerful technique that can be employed for the detection of ultralow concentrations when promoted by an enhancement of the scattering process. Simple in-situ electrochemical modification of the electrode leads to surface-enhanced Raman intensities.

graduate education / research electrochemistry Raman spectroscopy

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 18


[1]  Taleat Z.; Khoshroo, A.; Mazloum-Ardakani M. Screen-printed electrodes for biosensing: A review (2008-2013), Microchimica Acta 2014,181, 865.
[2]  Schmidt, H-J.; Marohn, A.; Harrison, A.G. Factors that prevent learning in Electrochemistry. J. Res. in Sci. Teach. 2007, 44, 258-283.
[3]  Garnet P.J.; Treagust, D.F. Conceptual difficulties experienced by senior high school students of electrochemistry: Electrochemical (galvanic) and electrolysis cells. J. Res. in Sci. Teach. 1992, 29, 1079-1099.
[4]  Ogude, N.A.; Bradley, J.D. Electrode processes and aspects relating to cell EMF, current, and cell components in operating electrochemical cells. J. Chem. Educ. 1996, 73, 1145-1149.
[5]  Sanger, M.J.; Greenbowe, T.J. Addressing student misconceptions concerning electron flow in aqueous solutions with instruction including computer animations and conceptual change strategies. Intern. J. Sci. Educ. 2000, 22, 521-537.
[6]  Huddle, A.H.; White, M.D.; Rodgers, F. Using a teaching model to correct known misconceptions in electrochemistry. J. Chem. Educ. 2000, 77, 104-110.
[7]  Acar, B.; Tarhan, L. Effect of cooperative learning strategies on students’ understanding of concepts in electrochemistry. Int. J. Sci. and Math. Educ. 2007, 5, 349-373.
[8]  Bard A. J. (Ed.), Electrogenerated Chemiluminescence, Marcel Dekker: New York, 2004.
[9]  Smith E.; Dent G. Modern Raman Spectroscopy. A practical approach. 2 ed.; Wiley: Hoboken NJ, 2019; pp 119-151.
[10]  Miao, W.; Choi, J. P.; Bard, A. J. Electrogenerated Chemiluminescence 69: The Tris(2,2'- bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System Revisited - A NewRoute Involving TPrA•+ Cation Radicals, J. Am. Chem. Soc. 2002, 124(48), 14478.
[11]  Zu Y.; Bard A. J. Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the Ruthenium tris[2,2’)bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity, Anal. Chem. 2000, 72, 3223.
[12]  Lu X.; Liu D.; Du J.; Wang H.; Xue Z.; Liu X.; Zhou X. Novel cathodic electroluminescence of tris(bipyridine)ruthenium(II) on a gold electrode in acidic solution, Analyst 2012, 137, 588.
[13]  Lasia A. Electrochemical Impedance Spectroscopy and its Applications. Springer: New York, 2014; pp 7-64.
[14]  Fleischmann, M.; Hendra P.J.; McQuillan, A.J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode, Chemical Physics Letters 26 (2), 163.
[15]  Martin-Yerga D.; Perez-Junquera A.; Gonzalez-Garcia M. B.; Perales-Rondon J. V.; Heras A.; Colina A.; Hernandez-Santos D.; Fanjul-Bolado P. Quantitative Raman spectroelectrochemistry using silver screen-printed electrodes, Electrochim. Act. 2018, 264, 183.
[16]  Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A: Theory and Applications in Inorganic Chemistry. 5 ed.; Wiley: New York, 1997: p 207.