World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
World Journal of Chemical Education. 2021, 9(4), 121-129
DOI: 10.12691/wjce-9-4-4
Open AccessSpecial Issue

Surveys on the Energy Concept - implications on Curricular Adaptions in Teaching (Light) Energy in the Science Classroom

Rebecca Grandrath1, , Matthias Teeuwen1 and Claudia Bohrmann-Linde1

1Department of Chemistry Education, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany

Pub. Date: November 28, 2021
(This article belongs to the Special Issue Photoprocesses in Chemical Education)

Cite this paper:
Rebecca Grandrath, Matthias Teeuwen and Claudia Bohrmann-Linde. Surveys on the Energy Concept - implications on Curricular Adaptions in Teaching (Light) Energy in the Science Classroom. World Journal of Chemical Education. 2021; 9(4):121-129. doi: 10.12691/wjce-9-4-4


Various questionnaire-based studies were carried out to get an impression of the (pre-)concepts and understanding of the scientific term “energy” in different age groups. In addition to primary school pupils, secondary school pupils and pre-service teachers, the impressions of in-service teachers were also obtained using similar questionnaires. In this article, the results of the studies are brought together in order to identify a need for action at school teaching the scientific energy concept.

energy pre-concepts misconceptions energy conversion forms of energy learning progression

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Barke, H.-D., Hazari, A., Yitbari, S. (2009). Misconceptions in Chemistry. Addressing Perceptions in Chemical Education. Springer, Berlin, Heidelberg.
[2]  Kubsch, M., Nordine, J., Fortus, D., Krajcik, J., Neumann, K. (2020). Supporting Students in Using Energy Ideas to Interpret Phenomena: The Role of an Energy Representation. International Journal of Science and Mathematics Education, 1635-1654.
[3]  Pelte, D. (2010). Die Zukunft unserer Energieversorgung. Eine Analyse aus mathematisch-naturwissenschaftlicher Sicht, 1. Aufl. Vieweg+Teubner, Wiesbaden.
[4]  Neumann, K., Viering, T., Boone, W. J., Fischer, H. E. (2013). Towards a learning progression of energy. J. Res. Sci. Teach. 50/2, 162-188.
[5]  Schmidkunz, H., Parchmann, I. (2011). Basiskonzept Energie. Naturwissenschaften im Unterricht Chemie 22/121, 2-7.
[6]  Yao, J.-X., Guo, Y.-Y., Neumann, K. (2017). Refining a learning progression of energy. International Journal of Science Education 39/17, 2361-2381.
[7]  Transforming our world: the agenda 2030 for sustainable development, A/RES/70/1, 2015.
[8]  Tausch, M. (2019). Chemie mit Licht. Innovative Didaktik für Studium und Unterricht, 1. Aufl. Springer Berlin Heidelberg; Imprint: Springer Spektrum, Berlin, Heidelberg.
[9]  Wagner, T., Flint, A. (2018). Energie für Chemie oder Chemie für Energie? CHEMKON 25/3, 98-103.
[10]  Guidelines and curricula for primary schools in NRW (2008). (letzter Zugriff am 3.8.2021).
[11]  Curriculum for the Grammar School - Secondary Education (grade 5-10) in North Rhine-Westphalia. Chemistry (2008). (letzter Zugriff am 3.8.2021).
[12]  Curriculum for the Grammar School /Comprehensive School - Secondary Education (grade 10 - 13) in North Rhine-Westphalia. Chemistry (2014). (letzter Zugriff am 3.8.2021).
[13]  Zeller, D., Bohrmann-Linde, C. (2017). Solarzellen ohne Silicium für den Chemieunterricht. Nachr. Chem. 65/12, 1236-1239.
[14]  Bohrmann-Linde, C., Zeller, D. (2018). Photosensitizers for Photogalvanic Cells in the Chemistry Classroom. WJCE 6/1, 36-42.
[15]  Grandrath, R., Zeller, D., Kremer, R., Venzlaff, J., Tausch, M. W., Bohrmann-Linde, C. (2019). E hoch drei - Energieumwandlung experimentell erleben. Naturwissenschaften im Unterricht Chemie 30/4, 29-33.
[16]  Brunnert, R., Yurdanur, Y., W. Tausch, M. (2019). Towards Artificial Photosynthesis in Science Education. WJCE 7/2, 33-39.