World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
World Journal of Chemical Education. 2019, 7(2), 185-188
DOI: 10.12691/wjce-7-2-19
Open AccessSpecial Issue

Experiment on the Self-Aggregation of Amphiphiles

Elena von Hoff1, Silan Toy1, Thomas Waitz1 and Ingo Mey2,

1Institute of Inorganic Chemistry, Department of Chemistry Education, Georg-August-University, Göttingen, Germany

2Institute of Organic and Biomolecular Chemistry, Georg-August-University, Göttingen, Germany

Pub. Date: April 10, 2019

Cite this paper:
Elena von Hoff, Silan Toy, Thomas Waitz and Ingo Mey. Experiment on the Self-Aggregation of Amphiphiles. World Journal of Chemical Education. 2019; 7(2):185-188. doi: 10.12691/wjce-7-2-19


Formation of supramolecular aggregates such as micelles and vesicles is governed by hydrophobic and hydrophilic interaction as well as the geometric shapes of the aggregating molecules. Here we present an experiment for upper secondary chemistry class to show how structural properties of molecules such as fatty acids govern the shapes of aggregates. For fatty acids, the pH value controls whether micelles or vesicles are formed. Using a size exclusion column and the possibility to encase fluorescing dye molecules in vesicles, the properties of micelles and vesicles are explored and compared to typical micelle building surfactants from dish detergent and the vesicle building lecithin.

self-aggregation size exclusion column surfactants lipids vesicles micelles

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  D. Marsh, Handbook of lipid bilayers, 2nd ed. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2013.
[2]  J.-L. Rigaud und D. Lévy, “Reconstitution of Membrane Proteins into Liposomes”, in Methods in Enzymology, 372, 65-86, 2003.
[3]  M. K. Domanska, V. Kiessling, und L. K. Tamm, “Docking and fast fusion of synaptobrevin vesicles depends on the lipid compositions of the vesicle and the acceptor SNARE complex-containing target membrane”, Biophys. J., 99 (9), 2936-2946, 2010.
[4]  C. D. Bianco, D. Torino, und S. S. Mansy, „Vesicle Stability and Dynamics: An Undergraduate Biochemistry Laboratory“, J. Chem. Educ., 91 (8), 1228-1231, Aug. 2014.
[5]  Y. A. Chen und R. H. Scheller, “SNARE-mediated membrane fusion”, Nat. Rev. Mol. Cell Biol., 2 (2), 98-106, Feb. 2001.
[6]  W. C. Breckenridge, G. Gombos, und I. G. Morgan, “The lipid composition of adult rat brain synaptosomal plasma membranes”, Biochim. Biophys. Acta BBA - Biomembr., 266 (3), 695-707, 1972.
[7]  W. C. Breckenridge, I. G. Morgan, J. P. Zanetta, und G. Vincendon, “Adult rat brain synaptic vesicles II. Lipid composition”, Biochim. Biophys. Acta BBA - Gen. Subj., 320 (3), 681-686, 1973.
[8]  A. A. Spector und M. A. Yorek, “Membrane lipid composition and cellular function”, J Lipid Res, 26 (9), 21, 1985.
[9]  T. H. Haines, „Anionic lipid headgroups as a proton-conducting pathway along the surface of membranes: a hypothesis“, Proc. Natl. Acad. Sci., 80 (1), 160-164, Jan. 1983.
[10]  J. M. Gebicki und M. Hicks, “Ufasomes are Stable Particles surrounded by Unsaturated Fatty Acid Membranes”, Nature, 243 (5404), 232-234, Mai 1973.
[11]  P. L. Luisi, “Are Micelles and Vesicles Chemical Equilibrium Systems?”, J Chem Educ, 78 (3), 380, 2001.