World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: http://www.sciepub.com/journal/wjce Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
Go
World Journal of Chemical Education. 2019, 7(2), 153-165
DOI: 10.12691/wjce-7-2-15
Open AccessSpecial Issue

From Current Science to School – the Facets of Green Chemistry on the Example of Ionic Liquids

Daniel Rauber1, 2, Frederik Philippi1, Johann Seibert1, Johannes Huwer1, 3, Harald Natter1 and Rolf Hempelmann1, 2,

1Department of Physical Chemistry and Didactics of Chemistry, Saarland University, 66123 Saarbrücken, Germany

2Transfercenter Sustainable Electrochemistry, Saarland University and Kist Europe, 66125 Saarbrücken, Germany

3Department of Chemistry and its Didactics, School of Education Weingarten, 88250 Weingarten, Germany

Pub. Date: April 11, 2019

Cite this paper:
Daniel Rauber, Frederik Philippi, Johann Seibert, Johannes Huwer, Harald Natter and Rolf Hempelmann. From Current Science to School – the Facets of Green Chemistry on the Example of Ionic Liquids. World Journal of Chemical Education. 2019; 7(2):153-165. doi: 10.12691/wjce-7-2-15

Abstract

Ionic liquids (ILs) are a widely investigated topic in various technical disciplines at the present time. A main focus of the research on ILs lies on applications in the field of a more sustainable, ‘greener’ chemistry that benefits from their unique property combination. This allows for the improvement of existing technologies and the use in novel, innovative processes. Especially the synergistic combination with other concepts of green chemistry is expected to lead to promising application of ILs. Regardless of their presence in current scientific research, they are covered rarely in the didactics of chemistry, although they represent an ideal subject to incorporate fundamental relationships or chemical concepts into teaching. They can also be included in various demonstration or hands-on experiments. Therefore, the topic of ILs is very promising for the transfer of knowledge from chemical research and industry into didactical experiments especially in the greater context of green chemistry. In this contribution, we present some simple experiments that utilize a multifunctional IL as recyclable catalyst in a biphasic homogenous catalysis. The experiments demonstrate the ecological and economic benefits offered by ILs in an intelligent process design compared to the conventional protocols for esterification. It is shown that exploiting the potential offered by the tunability of functional ILs as high-performance chemicals rather than ‘simple solvents’ offers many possibilities for a more sustainable chemical production.

Keywords:
ionic liquids green chemistry sustainable chemistry knowledge transfer esterification biphasic homogenous catalysis recycling

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 7

References:

[1]  Rauber, D., Huwer, J., Natter, H., Hempelmann, R., Nachhaltige Chemie mit Ionischen Flüssigkeiten in Experimenten für Schule und Schülerlabor, 184 pages, LernortLabor, Berlin, 2018.
 
[2]  MacFarlane, D.R., Tachikawa, N., Forsyth, M., Pringle, J.M., Howlett, P.C., Elliott, G.D., Davis, J.H., Watanabe, M., Simon, P., Angell, C.A., Energy applications of ionic liquids, Energy Environ. Sci., 7, 2014, 232-250.
 
[3]  Plechkova, N. V., Seddon, K.R., Ionic Liquids:“Designer” Solvents for Green Chemistry, in: Methods Reagents Green Chem., John Wiley & Sons, Inc., Hoboken, NJ, USA, n.d.: pp. 103-130.
 
[4]  Giernoth, R., Task-Specific Ionic Liquids, Angew. Chemie Int. Ed., 49, 2010, 2834-2839.
 
[5]  Jessop, P.G., Searching for green solvents, Green Chem., 13, 2011, 1391.
 
[6]  Ranke, J., Stolte, S., Störmann, R., Arning, J., Jastorff, B., Design of Sustainable Chemical Products - The Example of Ionic Liquids, Chem. Rev., 107, 2007, 2183-2206.
 
[7]  Pellowska, M., Handel, R., Bader, H.J., Flint, A., Ionische Flüssigkeiten im Schulunterricht, CHEMKON., 21, 2014, 117-122.
 
[8]  Stark, A., Ott, D., Kralisch, D., Kreisel, G., Ondruschka, B., Ionic Liquids and Green Chemistry: A Lab Experiment, J. Chem. Educ., 87, 2010, 196-201.
 
[9]  United Nations General Assembly, Transforming our world: the 2030 Agenda for Sustainable Development, 2015.
 
[10]  Reichardt, C., Welton, T., Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010.
 
[11]  Clark, J., Farmer, T., Hunt, A., Sherwood, J., Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources, Int. J. Mol. Sci., 16, 2015, 17101-17159.
 
[12]  Holbrey, J.D., Rogers, R.D., Green Chemistry and Ionic Liquids: Synergies and Ironies, in: Ion. Liq., 2002: pp. 2-14.
 
[13]  Anastas, P., Eghbali, N., Green Chemistry: Principles and Practice, Chem. Soc. Rev., 39, 2010, 301-312.
 
[14]  Clarke, C.J., Tu, W.-C., Levers, O., Bröhl, A., Hallett, J.P., Green and Sustainable Solvents in Chemical Processes, Chem. Rev., 2018, acs.chemrev.7b00571.
 
[15]  Earle, M.J., Seddon, K.R., Ionic liquids. Green solvents for the future, Pure Appl. Chem., 72, 2000, 1391-1398.
 
[16]  Plechkova, N. V, Seddon, K.R., Applications of ionic liquids in the chemical industry, Chem. Soc. Rev., 37, 2008, 123-150.
 
[17]  Warner, P.A.J., Green Chemistry: Theory and Practice, Oxford University Press, 2000.
 
[18]  Zhao, D., Liao, Y., Zhang, Z., Toxicity of Ionic Liquids, CLEAN – Soil, Air, Water., 35, 2007, 42-48.
 
[19]  Marr, P.C., Marr, A.C., Ionic liquid gel materials: applications in green and sustainable chemistry, Green Chem., 18, 2016, 105-128.
 
[20]  Liu, Q.-P., Hou, X.-D., Li, N., Zong, M.-H., Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass, Green Chem., 14, 2012, 304-307.
 
[21]  Markiewicz, M., Maszkowska, J., Nardello-Rataj, V., Stolte, S., Readily biodegradable and low-toxic biocompatible ionic liquids for cellulose processing, RSC Adv., 6, 2016, 87325-87331.
 
[22]  Chen, L., Mullen, G.E., Le Roch, M., Cassity, C.G., Gouault, N., Fadamiro, H.Y., Barletta, R.E., O’Brien, R.A., Sykora, R.E., Stenson, A.C., West, K.N., Horne, H.E., Hendrich, J.M., Xiang, K.R., Davis, J.H., On the Formation of a Protic Ionic Liquid in Nature, Angew. Chemie Int. Ed., 53, 2014, 11762-11765.
 
[23]  Jessop, P.G., Fundamental properties and practical applications of ionic liquids: concluding remarks, Faraday Discuss., 206, 2018, 587-601.
 
[24]  Welton, T., Ionic liquids in Green Chemistry, Green Chem., 13, 2011, 225.
 
[25]  Zhang, Y., Bakshi, B.R., Demessie, E.S., Life Cycle Assessment of an Ionic Liquid versus Molecular Solvents and Their Applications, Environ. Sci. Technol., 42, 2008, 1724-1730.
 
[26]  Handy, S.T., Greener Solvents: Room Temperature Ionic Liquids from Biorenewable Sources, Chem. - A Eur. J., 9, 2003, 2938-2944.
 
[27]  Varma, R.S., Namboodiri, V. V., An expeditious solvent-free route to ionic liquids using microwaves, Chem. Commun., 2001, 643-644.
 
[28]  Jordan, A., Gathergood, N., Biodegradation of ionic liquids – a critical review, Chem. Soc. Rev., 44, 2015, 8200-8237.
 
[29]  Thuy Pham, T.P., Cho, C.-W., Yun, Y.-S., Environmental fate and toxicity of ionic liquids: A review, Water Res., 44, 2010, 352-372.
 
[30]  Cvjetko Bubalo, M., Radošević, K., Radojčić Redovniković, I., Halambek, J., Gaurina Srček, V., A brief overview of the potential environmental hazards of ionic liquids, Ecotoxicol. Environ. Saf., 99, 2014, 1-12.
 
[31]  Kunz, W., Häckl, K., The hype with ionic liquids as solvents, Chem. Phys. Lett., 661, 2016, 6-12.
 
[32]  Zhang, J., Wu, J., Yu, J., Zhang, X., He, J., Zhang, J., Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends, Mater. Chem. Front., 1, 2017, 1273-1290.
 
[33]  Zhu, X., Peng, C., Chen, H., Chen, Q., Zhao, Z.K., Zheng, Q., Xie, H., Opportunities of Ionic Liquids for Lignin Utilization from Biorefinery, ChemistrySelect., 3, 2018, 7945-7962.
 
[34]  Rauber, D., Conrad, M., Huwer, J., Natter, H., Hempelmann, R., Demonstrating Sustainable Biomass Utilization and Processing Using Ionic Liquids – An Introduction to Undergraduate Chemistry Laboratories, World J. Chem. Educ., 5, 2017, 158-163.
 
[35]  Kohlpaintner, C.W., Fischer, R.W., Cornils, B., Aqueous biphasic catalysis: Ruhrchemie/Rhône-Poulenc oxo process, Appl. Catal. A Gen., 221, 2001, 219-225.
 
[36]  Hibbel, J., Wiebus, E., Cornils, B., 75 Jahre Hydroformylierung - Oxoreaktoren und Oxoanlagen der Ruhrchemie AG und der Oxea GmbH von 1938 bis 2013, Chemie Ing. Tech., 85, 2013, 1853-1871.
 
[37]  Maase, M., Massonne, K., Vagt, U., BASILTM—BASF’s Processes Based on Ionic Liquids, Chem Files., 2002, 4.
 
[38]  Gutowski, K.E., Industrial uses and applications of ionic liquids, Phys. Sci. Rev., 3, 2018, 1-10.
 
[39]  Saling, P., Maase, M., Vagt, U., Eco-efficiency Analysis of an Industrially Implemented Ionic Liquid-based Process - the BASF BASIL Process, in: Handb. Green Chem., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010.
 
[40]  Otera, J., Nishikido, J., Industrial Uses, in: Esterification Methods, React. Appl. Second Ed., Wiley-VCH, Weinheim, Germany, 2010: pp. 293-322.
 
[41]  Jander, G., Jahr, K.-F., Maßanalyse - Theorie und Praxis der Titrationen mit chemischen und physikalischen Indikationen, 17. Auflag, De Gruyter, Berlin, 2009.
 
[42]  Naydenov, D., Bart, H.-J., Ternary Liquid−Liquid Equilibria for Six Systems Containing Ethylacetate + Ethanol or Acetic Acid + an Imidazolium-Based Ionic Liquid with a Hydrogen Sulfate Anion at 313.2 K, J. Chem. Eng. Data., 52, 2007, 2375-2381.
 
[43]  Gui, J., Cong, X., Liu, D., Zhang, X., Hu, Z., Sun, Z., Novel Brønsted acidic ionic liquid as efficient and reusable catalyst system for esterification, Catal. Commun., 5, 2004, 473-477.
 
[44]  Fraga-Dubreuil, J., Bourahla, K., Rahmouni, M., Bazureau, J.P., Hamelin, J., Catalysed esterifications in room temperature ionic liquids with acidic counteranion as recyclable reaction media, Catal. Commun., 3, 2002, 185-190.
 
[45]  Tao, D.-J., Wu, J., Wang, Z.-Z., Lu, Z.-H., Yang, Z., Chen, X.-S., SO3H-functionalized Brønsted acidic ionic liquids as efficient catalysts for the synthesis of isoamyl salicylate, RSC Adv., 4, 2014, 1-7.
 
[46]  Wang, Q., Wu, Z.M., Li, Y., Tan, Y., Liu, N., Liu, Y., The efficient hydroxyalkylation of phenol with formaldehyde to bisphenol F over a thermoregulated phase-separable reaction system containing a water-soluble Brønsted acidic ionic liquid, RSC Adv., 4, 2014, 33466-33473.
 
[47]  Jasiak, K., Siewniak, A., Kopczyńska, K., Chrobok, A., Baj, S., Hydrogensulphate ionic liquids as an efficient catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides, J. Chem. Technol. Biotechnol., 91, 2016, 2827-2833.
 
[48]  Gao, H., Guo, C., Xing, J., Zhao, J., Liu, H., Extraction and oxidative desulfurization of diesel fuel catalyzed by a Brønsted acidic ionic liquid at room temperature, Green Chem., 12, 2010, 1220.
 
[49]  Mahmood, H., Moniruzzaman, M., Yusup, S., Welton, T., Ionic liquids assisted processing of renewable resources for the fabrication of biodegradable composite materials, Green Chem., 19, 2017, 2051-2075.