World Journal of Agricultural Research
ISSN (Print): 2333-0643 ISSN (Online): 2333-0678 Website: http://www.sciepub.com/journal/wjar Editor-in-chief: Rener Luciano de Souza Ferraz
Open Access
Journal Browser
Go
World Journal of Agricultural Research. 2016, 4(2), 49-55
DOI: 10.12691/wjar-4-2-3
Open AccessArticle

Natural Antidiabetic Potential of Salacia chinensis L. (Celastraceae) Based on Morphological, Phytochemical, Physico-chemical and Bioactivity: A Promising Alternative for Salacia reticulata Thw

Keeragalaarachchi K.A.G.P.1, R.M. Dharmadasa1, , Wijesekara R.G.S.2 and Enoka P Kudavidanage3

1Industrial Technology Institute, BauddhalokaMawatha, Colombo 7, Sri Lanka

2Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka

3Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka

Pub. Date: March 29, 2016

Cite this paper:
Keeragalaarachchi K.A.G.P., R.M. Dharmadasa, Wijesekara R.G.S. and Enoka P Kudavidanage. Natural Antidiabetic Potential of Salacia chinensis L. (Celastraceae) Based on Morphological, Phytochemical, Physico-chemical and Bioactivity: A Promising Alternative for Salacia reticulata Thw. World Journal of Agricultural Research. 2016; 4(2):49-55. doi: 10.12691/wjar-4-2-3

Abstract

Salacia reticulata Thw. (Celastraceae) is widely used in traditional systems of medicine for the natural control of diabetics. However, S. reticulate is obtained from the wild and hence its popular use creates a huge pressure on its limited supply. Therefore, in the present study we evaluated the potential of an alternative natural antidiabetic candidate, Salacia chinensis (Celastraceae), by means of morphological, physico-chemical, phytochemical and bioactivity analyses. Gross morphological characters were compared based on taxonomically important vegetative and reproductive characters of leaf and petiole of both plants. Physico-chemical and phytochemical parameters were performed according to methods described by WHO. Total phenol content (TPC) and, total flavonoid content (TFC) were determined by using Folin–Ciocaltueand aluminum chloride methods, respectively. Radical scavenging activity was investigated by means of 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) and ABTS+ radical scavenging assays. Results were analyzed by the General Linear Model (GLM) of ANOVA followed by Duncan’s Multiple Range Test (DMRT). LC50 values of brine shrimp toxicity were generated using probit analysis. The most distinguished morphological features were leaf length, width and leaf margin, which varied significantly between the two species. All tested physico-chemical parameters were within the acceptable levels. Qualitative phytochemical analysis and thin layer chromatographic profiles revealed the presence of all tested compounds and some common spots in both species, respectively. Moreover, both plants exhibited marked levels of radical scavenging activity, brine shrimp toxicity, TFC and TPC in varying levels. Results revealed that all monitored parameters displayed positive results in S. chinensis, thus partially justifying its use as an alternative natural antidiabetic source. This could promote the sustainable utilization of S. reticulata by easing its demand. Further, the generated findings could be effectively utilized for the standardization of S. reticulata and S. chinensis for upgrading the Sri Lankan pharmacopeia.

Keywords:
salacia reticulata salacia chinensis celastraceae cytotoxicity antioxidant activity antidiabetic properties

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Lucy Dey, Anoja S. Attele, Chun-Su Yuan. 2002. Alternative therapies for type 2 diabetes. Alternative Medicine Review, 45-57
 
[2]  Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes estimates for the year 2000 and projections for 2030.Diabetes care, 27(5), 1047-1053.
 
[3]  Andrade-Cetto, A., & Heinrich, M. (2005). Mexican plants with hypoglycaemic effect used in the treatment of diabetes. Journal of Ethnopharmacology, 99(3), 325-348.
 
[4]  Grover, J. K., Vats, V., Rathi, S. S., &Dawar, R. (2001). Traditional Indian anti-diabetic plants attenuate progression of renal damage in streptozotocin induced diabetic mice. Journal of Ethnopharmacology, 76(3), 233-238.
 
[5]  Deepak, K. G. K., Neelapu, N. R. R., &Challa, S. (2014). Role of Antidiabetic Compounds on Glucose Metabolism A Special Focus on Medicinal Plant: Salacia sps. Medicinal Chemistry, 2014.
 
[6]  Panda, A., Jena, S., Sahu, P. K., Nayak, S., &Padhi, P. (2013). Effect of Poly herbal Mixtures on the Treatment of Diabetes. ISRN endocrinology, 2013.
 
[7]  Morikawa, T., Akaki, J., Ninomiya, K., Kinouchi, E., Tanabe, G., Pongpiriyadacha, Y., & Muraoka, O. (2015). Salacinol and Related Analogs: New Leads for Type 2 Diabetes Therapeutic Candidates from the Thai Traditional Natural Medicine Salaciachinensis. Nutrients, 7(3), 1480-1493.
 
[8]  Dassanayake, M. D. Clayton WD (ed.). 1996 A revised handbook to the flora of Ceylon: volume X. Rotterdam: Balkema 426p.-. ISBN, 464168091.
 
[9]  Im, R., Mano, H., Matsuura, T., Nakatani, S., Shimizu, J., & Wada, M. (2009). Mechanisms of blood glucose-lowering effect of aqueous extract from stems of Kothalahimbutu (Salaciareticulata) in the mouse. Journal of ethnopharmacology, 121(2), 234-240.
 
[10]  Siddhuraju, P., & Becker, K. (2007). The antioxidant and free radical scavenging activities of processed cowpea (Vignaunguiculata (L.) Walp.) seed extracts. Food Chemistry, 101(1), 10-19.
 
[11]  Kishino, E., Ito, T., Fujita, K., &Kiuchi, Y. (2006). A mixture of the Salaciareticulata (Kotalahimbutu) aqueous extract and cyclodextrin reduces the accumulation of visceral fat mass in mice and rats with high-fat diet–induced obesity. The Journal of Nutrition, 136(2), 433-439.
 
[12]  Shimada, T., Nagai, E., Harasawa, Y., Watanabe, M., Negishi, K., Akase, T., &Aburada, M. (2011). Salaciareticulata inhibits differentiation of 3T3-L1 adipocytes. Journal of Ethnopharmacology, 136(1), 67-74.
 
[13]  Farnsworth, N. R. (1966). Biological and phytochemical screening of plants.Journal of pharmaceutical Sciences, 55(3), 225-276.
 
[14]  World Health Organization. (1998). Quality control methods for medicinal plant materials.
 
[15]  Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical.
 
[16]  Chang, C. C., Yang, M. H., Wen, H. M., &Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods.Journal of food and drug analysis, 10(3).
 
[17]  Shimada, K. Fujikawa, K. Yahara, T. Nakamura (1992) Antioxidative properties of xanthone on the auto oxidation of soybean in cylcodextrin emulsion J. Agr. Food Chem., 40, 945-948.
 
[18]  Dharmadasa, R. M., Hettiarachchi, P. L., &Premakumara, G. A. S. (2014). Anatomical Traits as an Additional Taxonomic Tool for Munroniapinnata (Wall.) Theob.(Meliaceae) Found in Sri Lanka. World Journal of Agricultural Research,2(4), 142-150.
 
[19]  Michael, A. S., Thompson, C. G., &Abramovitz, M. (1956). Artemiasalina as a Test Organism for Bioassay. Science, (123), 464.
 
[20]  Luxmini. K.P.A.M.K,Dharmadasa. R.M,Samarasinghe, K. Muthukumarana. P.R.M. 2015.Comparative. Comparative Pharmacognostic Study of Different Parts of Withaniasomnifera and its Substitute Ruelliatuberosa. World Journal of Agricultural Research, 3(1), 28-33.
 
[21]  Gami, B., & Parabia, M. H. (2010). Pharmacognostic evaluation of bark and seeds of Mimusopselengi L. Int J Pharm PharmSci, 2(Suppl 4), 110-3.
 
[22]  Tachakittirungrod, S., Okonogi, S., &Chowwanapoonpohn, S. (2007). Study on antioxidant activity of certain plants in Thailand: Mechanism of antioxidant action of guava leaf extract. Food Chemistry, 103(2), 381-388.
 
[23]  Dharmadasa, R. M., Samarasinghe, K., Adhihetty, P., &Hettiarachchi, P. L. (2013). Comparative Pharmacognostic Evaluation of Munroniapinnata (Wall.) Theob.(Meliaceae) and Its Substitute Andrographispaniculata (Burm. f.) Wall. Ex Nees (Acanthaceae). World journal of agricultural research, 1(5), 77-81.
 
[24]  Svicekova, M., Havranek, E., & Novak, V. (1993). [Determination of heavy metals in samples of herbal drugs using differential pulse polarography].Ceskoslovenskafarmacie, 42(2), 68-70.
 
[25]  Suhartono, E., Viani, E., Rahmadhan, M. A., Gultom, I. S., Rakhman, M. F., &Indrawardhana, D. (2012). Total flavonoid and antioxidant activity of some selected medicinal plants in South Kalimantan of Indonesian. APCBEE Procedia, 4, 235-239.
 
[26]  Yadav, R. N. S., &Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of Phytology, 3(12).
 
[27]  Nobori, T. (1994). Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Trends in Genetics, 10(7), 228.
 
[28]  Sharanabasappa, G. K., Santosh, M. K., Shaila, D., Seetharam, Y. N., &Sanjeevarao, I. (2007). Phytochemical Studies on Bauhinia racemosa Lam. Bauhinia purpurea Linn. and HardwickiabinataRoxb. Journal of Chemistry,4(1), 21-31.
 
[29]  Dharmadasa, R. M., Siriwardana, A., Samarasinghe, K., &Adhihetty, P. (2013). Standardization of Gyrinops Walla Gaertn.(Thymalaeaceae): Newly Discovered, Fragrant Industrial Potential, Endemic Plant from Sri Lanka. World Journal of Agricultural Research, 1(6), 101-103.
 
[30]  Halliwell, B., &Gutteridge, J. M. (1990). The antioxidants of human extracellular fluids. Archives of biochemistry and biophysics, 280(1), 1-8.
 
[31]  Shi, H., Sui, Y., Wang, X., Luo, Y., &Ji, L. (2005). Hydroxyl radical production and oxidative damage induced by cadmium and naphthalene in liver of Carassiusauratus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 140(1), 115-121.
 
[32]  Phipps, J. A., Wilkinson-Berka, J. L., & Fletcher, E. L. (2007). Retinal dysfunction in diabetic ren-2 rats is ameliorated by treatment with valsartan but not atenolol. Investigative Ophthalmology and Visual Science, 48(2), 927.
 
[33]  Gong, Y., Hou, Z., Gao, Y., Xue, Y., Liu, X., & Liu, G. (2012). Optimization of extraction parameters of bioactive components from defatted marigold (Tageteserecta L.) residue using response surface methodology. Food and Bioproducts Processing, 90(1), 9-16.
 
[34]  Yoshino, K., Kanetaka, T., & Koga, K. (2014). Antioxidant Activity of Salacia Plant (Salacia reticulata). Shokuhineiseigakuzasshi. Journal of the Food Hygienic Society of Japan, 56(4), 144-150.
 
[35]  Chavan, J. J., Jagtap, U. B., Gaikwad, N. B., Dixit, G. B., &Bapat, V. A. (2013). Total phenolics, flavonoids and antioxidant activity of Saptarangi (Salaciachinensis L.) fruit pulp. Journal of plant biochemistry and biotechnology, 22(4), 409-413.
 
[36]  Pelka, M., Danzl, C., Distler, W., &Petschelt, A. (2000). A new screening test for toxicity testing of dental materials. Journal of dentistry, 28(5), 341-345.
 
[37]  Harwig, J., & Scott, P. M. (1971). Brine shrimp (Artemiasalina L.) larvae as a screening system for fungal toxins. Applied microbiology, 21(6), 1011-1016.
 
[38]  Vivas, L., Easton, A., Kendrick, H., Cameron, A., Lavandera, J. L., Barros, D., & Croft, S. L. (2005). Plasmodium falciparum: stage specific effects of a selective inhibitor of lactate dehydrogenase. Experimental parasitology, 111(2), 105-114.
 
[39]  Dharmadasa, R. M., Premakumara, G. A. S., Hettiarachi, P. L., &Ratnasooriya, W. D. (2012). Cytotoxicity and in vivo antimalarial activity of aqueous whole plant extract of Munroniapinnata (Wall.) Theob.(Meliaceae) in mice. Res J Med Plant, 6, 267-273.
 
[40]  Braga Filho, J. R., Veloso, V. R. S., Naves, R. V., Ferreira, G. A.. Entomofauna associada aos frutos do bacupari, Salacia crassifolia (MART.) Peyr, nos cerrados do Brasil Central. Pesq. Agropec. Trop., 31 (1), p. 47-54, 2001.
 
[41]  Zandberg, W. F.; Mohan, S.; Kumarasamy, J.; Mario Pinto, B. Capillary zone electrophoresis method for the separation of glucosidase inhibitors in extracts of Salacia reticulata, a plant used in Ayurvedic treatments of type-2 diabetes. Anal. Chem., 82, p. 5323-5330, 2010.
 
[42]  Wagner, H., Bladt, S., 2001. Phytochemical screening” Plant Drug Analysis. A Thin Layer Chromatography Atlas, second ed. Springer, Berlin.
 
[43]  Dhanabalasingham, B., Karunaratne, V. Tezuka, Y., Kikuchi, T. Gunatilaka, A. A. L.. Biogenetically important quinonemethides and other triterpenoid constituents of Salacia reticulata. Phytochemistry, 42 (5), p. 1377-1385, 1996.
 
[44]  Tran, T. M.; Nguyen, T. H. A.; Vu, D. T.; Tran, V, S. Study on chemical constituents and cytotoxic activities os Salacia chinensis growing in Vietnam. J. Chem. Sci., 65 (10), p. 1284-1288, 2010.
 
[45]  Jihong, Y.; Shaozhong, L.; Jingfeng, S.; Kobayashi, M.; Akaki, J.; Yamashita, K.; Tamesada, M.; Umemura, T.. Effects of Salacia chinensis extract on reproductive outcome in rats. Food Chem. Toxicol., 49, p. 57-60, 2011.