World Journal of Agricultural Research
ISSN (Print): 2333-0643 ISSN (Online): 2333-0678 Website: Editor-in-chief: Rener Luciano de Souza Ferraz
Open Access
Journal Browser
World Journal of Agricultural Research. 2016, 4(1), 1-8
DOI: 10.12691/wjar-4-1-1
Open AccessArticle

Genetic Diversity and Potential High Temperature Tolerance in Barley (Hordeum vulgare)

Salah Fatouh Abou-Elwafa1, and Karam A. Amein2

1Agronomy Department, College of Agriculture, Assiut University, 71526 Assiut, Egypt

2Genetics Department, College of Agriculture, Assiut University, 71526 Assiut, Egypt

Pub. Date: January 04, 2016

Cite this paper:
Salah Fatouh Abou-Elwafa and Karam A. Amein. Genetic Diversity and Potential High Temperature Tolerance in Barley (Hordeum vulgare). World Journal of Agricultural Research. 2016; 4(1):1-8. doi: 10.12691/wjar-4-1-1


Heat stress is an important abiotic stress causing the major threat to the growth and development of most crop plants. A panel of 326 barley genotypes comprises of 320 wild barley accessions and six local cultivars were evaluated for days to heading (DTH), days to flowering (DTF), number of tillers per plant (NoT), plant height (PH), Chlorophyll content (CC), spike length (SL), thousand kernel weight (TKW) and single plant yield (SPY) under optimum sowing and heat-stressed conditions. All measured traits exhibited highly significant differences both among evaluated genotypes and between the optimum sowing and the heat-stressed conditions. Plants exposed to high temperatures flowered earlier. A drastic reduction in morphological and yield contributing traits, i.e., PH, NoT, SL, TKW, SPY and CC under heat stress conditions was observed. Cluster analysis revealed two distinct groups based on heat stress tolerance with substantial diversity among the heat tolerant genotypes.

barley Hordeum heat-stress temperature stress cluster analysis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Zohary, D., M. Hopf (1993) Domestication of plants in the Old World. The origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Clarendon Press, Oxford, England.
[2]  Forster, B.P., R.P. Ellis, J. Moir, V. Talamé, M.C. Sanguineti, R. Tuberosa, D. This, B. Teulat-Merah, I. Ahmed, S.A.E.E. Mariy, H. Bahri, M. El Ouahabi, N. Zoumarou-Wallis, M. ElFellah, M.B. Salem (2004) Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Ann ApplBiol 144:157-168.
[3]  Hori, K., K. Sato, N. Nankaku, K. Takeda (2005) QTL analysis in recombinant chromosome substitution lines and doubled haploid lines derived from a cross between Hordeum vulgare ssp. vulgare and Hordeum vulgare ssp. spontaneum. Mol Breed 16:295-311.
[4]  Purugganan, M.D., D.Q. Fuller (2009)The nature of selection during plant domestication. Nature 457 (7231):843-848.
[5]  Ivandic, V., W.T.B. Thomas, E. Nevo, Z. Zhang, B.P. Forster (2003) Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeumspontaneum. Plant Breed 122:300-304.
[6]  Matus, I., P.M. Hayes (2002) Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45:1095-1106.
[7]  Baum, M., S. Grando, G. Backes, A. Jahoor, A. Sabbagh, S.Ceccarelli (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ H. spontaneum 41-1. TheorAppl Genet 107:1215-1225.
[8]  Ellis, R., B. Foster, L. Handley, D. Gordon, J. Russell, W. Powell (2000) Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot 51:9-17.
[9]  Schmalenbach, I., J. Léon, K. Pillen (2008a) Identification and verification of QTLs for agronomic traits using wild barley introgression lines. TheorAppl Genet 118(3):483-97.
[10]  Schmalenbach, I., N. Körbe, K. Pillen (2008b) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. TheorAppl Genet 117(7):1093-106.
[11]  Talamé, V., M. Sanguineti, E. Chiapparino, H. Bahri, M. Salem, B. Forster, R. Ellis, S. Rhouma, W. Zoumarou, R. Waugh, R. Tuberosa (2004) Identification of Hordeumspontaneum QTL alleles improving field performance of barley grown under rainfed conditions. Ann ApplBiol 144:309-319.
[12]  Suzuki, N., R. M. Rivero, V. Shulaev, E. Blumwald, R. Mittler (2014) Abiotic and biotic stress combinations. New Phytol. 203:32-43.
[13]  IPCC, R.K. Pachauri, A. Reisinger (2008) Climate change 2007: Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report. Geneva: IPCC.
[14]  Salekdeh, G.H., M. Reynolds, J. Bennett, J. Boyer(2009) Conceptual framework for drought phenotyping during molecular breeding. Trends in Plant Science14:488-496.
[15]  Kruszka, K., A.Pacak, A. Swida-Barteczka, P. Nuc, S. Alaba, Z. Wroblewska, W. Karlowski, A. Jarmolowski, Z. Szweykowska-Kulinska (2014) Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J. Exp. Bot. 65:6123-6135.
[16]  Rollins, J.A., E. Habte, S.E. Templer, T. Colby, E. Schmidt, M.von Korff (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J. Exp. Bot. 64 (11):3201-3212.
[17]  Pandey, B., A. Kaur, O.P. Gupta, I. Sharma, P. Sharma (2015) Identification of HSP20 Gene Family in Wheat and Barley and Their Differential Expression Profiling Under Heat Stress. ApplBiochemBiotechnol 175:2427-2446.
[18]  Wahid, A., S. Gelani, M. Ashraf, M.R. Foolad (2007) Heat tolerance in plants: an overview. Environmental and Experimental Botany 61:199-223.
[19]  Gorantla, M., P.R. Babu, V.B.R. Lachagari, A.M.M. Reddy, R. Wusirika, J.L. Bennetzen, A.R. Reddy (2006) Identification of stressresponsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. J. Exp. Bot. 58:253- 265.
[20]  Kumar, J., S.Abbo (2001) Genetics of flowering time in chickpea and its bearing on productivity in the semi-arid environments. Adv. Agron. 72:107-138.
[21]  Turner, N.C., G.C. Wright, K.H.M. Siddique (2001) Adaptation of grain legumes (pulses) to water-limited environments. Adv. Agron. 71:123-231.
[22]  SAS (2008) SAS/STAT® 9.2 user’s guide. SAS Institute Inc., Cary, nC, USA.
[23]  Rohlf, F.J. (2000) NTSYS-pc, Version 2.1d. Exeter Software, Setauket, NY.
[24]  Nei, M., W.H. Li (1979) Mathematical model for studying genetic variation in terms of restriction endonucleasis. PNAS 76:5269-5273.
[25]  Howarth, C.J. (2005) Genetic improvements of tolerance to high temperature. In: Ashraf, M., Harris, P.J.C. (Eds.), Abiotic stresses: plant resistance through breeding and molecular approaches. Haworth Press Inc., New York, pp. 277-300.
[26]  Wang, W.X., B. Vinocur, A. Altman (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1-14.
[27]  Apel, K.H. Hirt (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55:373-399.
[28]  Zinn, E.K., M. Tunc-Ozdemir, J.F. Harper (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J. Exp. Bot. 61(7):1959-1968.
[29]  Strasser, B.J. (1997) Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients. Photosynthesis Research 52:147-155.
[30]  Law, R.D., S.J. Crafts-Brandner (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiology 120:173-181.
[31]  Gounaris, K., A.R.R. Brain, P.J. Quinn, W.P. Williams (1984) Structural reorganization of chloroplast thylakoid membranes in response to heat-stress. BiochimicaetBiophysicaActa.766:198-208.