World Journal of Agricultural Research
ISSN (Print): 2333-0643 ISSN (Online): 2333-0678 Website: Editor-in-chief: Rener Luciano de Souza Ferraz
Open Access
Journal Browser
World Journal of Agricultural Research. 2013, 1(4), 65-69
DOI: 10.12691/wjar-1-4-4
Open AccessArticle

Optimization of Culture Conditions Affecting Carboxy Methyl Cellulase Production by Aspergillus Species

K. V. Pavani1, , Gayathramma K.2 and N.Sunil kumar1

1Department of Biotechnology, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India

2Department of Biotechnology, Presidency College, Bangalore, India

Pub. Date: July 27, 2013

Cite this paper:
K. V. Pavani, Gayathramma K. and N.Sunil kumar. Optimization of Culture Conditions Affecting Carboxy Methyl Cellulase Production by Aspergillus Species. World Journal of Agricultural Research. 2013; 1(4):65-69. doi: 10.12691/wjar-1-4-4


The aim of this study was to determine the potential of new Aspergillus strain isolated from electroplating industry to produce Carboxymethyl Cellulase from agriculture waste. Agricultural wastes have great potential for the production of value added products with special reference to enzymes. Corn husk was used as substrate for Carboxymethyl Cellulase (CMCase) production by Aspergillus species through submerged fermentation. Optimization of parameters such as pH, temperature, substrate concentration was performed for the optimal production of CMCase. The fungal strain produced highest CMCase activity (3.3±0.01 IU/ml) at 5% (w/v) level of corn husk as substrate at 28°C and pH 8 over 72 hrs of incubation.

corn husk Carboxymethyl Cellulase agriculture waste Aspergillus species

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 15


[1]  Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T, “Biotechnological potential of agro- industrial residues: Sugarcane bagasse”, Biores Technol , 74 (1), 69-80, Aug, 2000.
[2]  Ahuja, S.K., Ferreira, G.M., Moreira, A.R, Utilization of enzymes for environmental applications, Crit. Rev. Biotechnol, 24 (2-3),125-154, Apr,2004.
[3]  Kaur, J., Chadha, B.S., Kumar, B.A., Saini, H.S, “Purification and characterization of two endoglucanases from Melanocarpus sp. MTCC 3922”, Bioresour. Technol, Jan, 2007, 98 (1),74-81.
[4]  Bhat, M.K, “Cellulases and related enzymes in biotechnology”, Biotech. Adv, 18 (5), 355-383, Aug, 2000.
[5]  Adsul,M.G., Bastawde, K.B., Varma, A.J., Gochale, D.V, “Strain improvement of Penicillium janthinellum M 1171 for increased cellulase production”, Bioresour. Technol , 98 (7),1467-1473, May,2007.
[6]  Harada, O., Lysenko, E.D., Edwards, N.M., Preston, K.R, “Effects of commercial hydrolytic enzyme additives on Japanese- style sponge and dough bread properties and processing characteristics”, Cereal Chem, 82 (3), 314-320, May/June, 2005.
[7]  Dogaris, I., Vakontios, G., Kalogeries, E., Mamma, D., Kekos, D, “Induction of cellulases and hemicellulases from Neurospora crassa under solid- state cultivation for bioconversion of sorghum bagasse into ethanol”, Ind. Crops Product, 29 (2-3), 404-411, Mar, 2009.
[8]  Acharya, P.B., Acharya, D.K., Modi, H.A, “Optimization for cellulase production by Aspergillus niger using sawdust as substrate”, Afr J Biotechnol, 7 (22), 4147 -4152, Nov, 2008.
[9]  Muhammad Irfan,Quratulain Syed,Muhammad Gulsher,Saijad Abbas, “Muhammad Nadeem,Shahjahan Baig. Pretreatment of corn cobs for the production of hydrolytic enzymes from Aspergillus niger-IR01”, IJAVMS, 4 (3), 81-87, Jul, 2010.
[10]  Muhammad Irfan, Saijad Abbas, Shahjahan Baig , Muhammad Gulshar,Muhammad Nadeem and Quratulain Syed, “Pretreatment: A Potential Technique to enhance the enzymatic hydrolysis”, World journal of Agricultural sciences, 6(4), 440- 445, Jul, 2010.
[11]  Sadia Aslam and Muhammad Asgher, “Partial purification and characterization of ligninolytic enzymes produced by Pleurotus ostreatusduring solid state fermentation”, African Journal of Biotechnology, 10 (77), 17875 - 17883, Dec,.2011.
[12]  Coral, G. B., Arikan, M. N., Unaldi and Guvenmez, H, “Some Properties of Crude Carboxymethyl Cellulase of Aspergillus Z10 Wild-Type Strain”, Turk. J. Biol, 26 (4), 209-213, Nov, 2002.
[13]  Pavani, K.V., Balakrishna, K.,Nagarjuna reddy Cheemarala, “Synthesis of zinc nanoparticles by Aspergillus species”, Int. j. of nanotechnology and applications, 51 (1),27-36,Jun,2011.
[14]  De-Moraes, L.M..P., Filho,. SA., and Ulhaa, C.J, “Purification and some properties of an alpha amylase and glucoamylase fusion protein from Saccharomyces cerevisiae”, World Journal of Microbiology and Biotechnology, World J. Microbiol. Biotechnol, 15 (5),561-564, Jul,1999.
[15]  Peshin, A and Mathur J.M.S., “Purification and characterization of β-glucosidase from Aspergillus nigerstrain 322”, Lett. Appl. Microb, 28 (5), 401-404, May, 1999.
[16]  Lowry, O.H., Rosebrough, N.J, Farr, A.L, Randall, R.J, Protein measurement with the Folin phenol reagent”, J. Biol. Chem. 193 (1) 265-275, Nov, 1951.
[17]  Ojumu, T.V., Solomon, B.O., Betiku, E., Layokun, S.K., Amigun, B, “Cellulase Production by Aspergillus flavus Linn Isolate NSPR 101 fermented in sawdust, bagasse and corncob”, Afr. J. Biotechnol, 2 (6), 150-152, Jun, 2003.
[18]  Fadel, M, “Production physiology of cellulases and β-glucosidase enzymes of Aspergillus niger grown under solid state fermentation conditions”, Online Biol. Sci, 1 (5) 401-411, Jun, 2000.
[19]  Ghada A. Youssef, Physiological studies of cellulase complex enzymes of Aspergillus oryzae and characterization of carboxymethyl cellulase, African Journal of Microbiology Research, 5(11) 1311-1321, Jun, 2011.
[20]  Akiba S, Kimura Y, Yamamoto K, Kumaga PH ., “Purification and characterization of a protease- resistant cellulase from Aspergillus niger”, J.Fermen. Bioengin, 79 (2), 125-132, Jun, 1995.
[21]  McCleary, B.V., Glennie- Holmes, M , “Enzymic quantification of (1-3) (1-4)-β-D-glucan in barley and malt”, J. Inst. Brew, 91 (3), 285-295, Jul, 1985.
[22]  Ahmed, S., Aslam, N., Latif, Farooq., Rajoka, M. I., Jamil, A, “Molecular cloning ofcellulase genes from Trichoderma harzianum”, Frontiers in natural product chemistry, 1 (1), 73-75, Jan, 2005.
[23]  Niranjane, A.P.,Madhou, P and Stevenson, T.W, The effect of carbohydrate carbon Sources on the production of cellulase by Phlebia gigantean. Enzyme and Microbial Technology Enzyme.Microbial.Technol. 40 (6), 1464-1468, May, 2007.