World Journal of Agricultural Research
ISSN (Print): 2333-0643 ISSN (Online): 2333-0678 Website: Editor-in-chief: Rener Luciano de Souza Ferraz
Open Access
Journal Browser
World Journal of Agricultural Research. 2014, 2(3), 93-100
DOI: 10.12691/wjar-2-3-2
Open AccessArticle

Nodulation Study and Characterization of Rhizobial Microsymbionts of Forage and Pasture Legumes in South Africa

Ahmed Idris Hassen1, , Francina Lebogang Bopape1 and Marike Trytsman2

1Agricultural Research Council - Plant Protection Research Institute Private bag X134, Queenwood, Pretoria, South Africa

2ARC-Animal Production Institute, Private bag X05, Lynn East, South Africa

Pub. Date: April 25, 2014

Cite this paper:
Ahmed Idris Hassen, Francina Lebogang Bopape and Marike Trytsman. Nodulation Study and Characterization of Rhizobial Microsymbionts of Forage and Pasture Legumes in South Africa. World Journal of Agricultural Research. 2014; 2(3):93-100. doi: 10.12691/wjar-2-3-2


Bacterial strains formerly isolated from the root nodules of indigenous and exotic forage legumes and preserved at the South African Rhizobium Culture Collection (SARCC) were tested for nodulation of their original host. The nodulation authentication trial was conducted following the Koch’s postulate experiment under glasshouse condition and revealed that all bacterial strains are root nodule micro-symbionts of the forage legumes from which they were initially isolated. Nodulation and improved growth of the legumes was achieved by the tested strains with statistically significant (p = 0.05) increase in plant biomass and nodule number in comparison with the un-inoculated controls. To elucidate their identity and phylogenetic relatedness, the effective strains were selected and characterized by means of the 16S ribosomal RNA sequence analysis. The analysis confirmed that the isolates nodulating Macrotyloma axillare, Desmodium uncinatum, Indigofera spicata var. spicata and Stylosanthus gracillis predominantly belong to the genus Bradyrhizobium. Vigna unguiculata and Vigna sp. were nodulated by strains belonging to members of the genus Bradyrhizobium, Sinorhizobium and Rhizobium. The results obtained in this study provide baseline information in the investigation of the legume-rhizobium interaction on South African soils, and are also of paramount importance in the selection and development of commercial rhizobium inoculants for sustainable production of forage and other essential legumes.

nodulation Rhizobium Bradyrhizobium sp. 16S rRNA Forage legumes Cross inoculation group

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 3


[1]  Anonymous, “First step to reduce plant need for nitrogen fertilizer uncovered”, Science Daily, September 2013. [Online]. Available: http: // [Accessed Apr 3, 2014].
[2]  Bloem, J.F., Trytsman, G., Smith, H.J, “Biological nitrogen fixation in resource poor agriculture in South Africa”, Symbiosis, 48: 18-24. 2009.
[3]  De Lajudie, P., Laurent-Fulele, E., Willems, A., Torck, U., Coopman, R., Collins, M.D., Kersters, K., Dreyfus, B., Gills, M, “Allorhizobium undicola gen. nov., nitrogen fixing bacteria that efficiently nodulates Neptunia natans in Senegal”, Int J Syst Bacteriol, 48: 1277-1290. 1998.
[4]  Diognon-Bourcier, F., Willems, A., Coopman, R., Laguerre, G., Gills, M., De Lajudie, P., “Genotypic Characterization of Bradyrhizobium Strains Nodulating Small Senegalese Legumes by 16S-23S rRNA Intergenic Gene Spacers and Amplified Fragment Length Polymorphism Fingerprint Analyses”, Appl Environ Microbiol, 66: 3987-3997. 2000.
[5]  Fuentes, J.B., Abe, M., Uchiumi, T., Suzuki, A., Higashi, S., “Symbiotic root nodule bacteria isolated from yam bean (Pachyrhizus erosus)”, J Gen Appl Microbiol, 48: 181-191. 2002.
[6]  Garau, G., Yates, R. J., Deiana, P., Howeison J.G., “Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid infertile soils”, Soil Biol Biochem. 41: 125-134. 2009.
[7]  Giller, K.E., Wilson, K.J, “Nitrogen fixation in tropical systems”, CAB International, Redwood Press Ltd. UK, Melksham, Wiltshire, 1991, 136-153.
[8]  Gyaneshwar, P., Hirsh, A.M., Moulin, L., Chen, W.M., Elliot, G.N., Bontemps, C., Estrada de-los Santos, P., Gross, E., Bueno dos Reis, F. Jr., Sprent, J., Young, J.P.W., James, E.K., “Legume nodulating beta-Proteobacteria: diversity, host range and future prospects”, Mol Plant Microbe Interac, 24: 1276-1288. 2011.
[9]  Howieson, J. G., “The host-rhizobia relationship. In: Beneth SJ, Cook PS (eds.) Genetic Resources of Mediterranean Pasture and Forage Legumes”, Kluwer Academic Publisher, Netherlands, 1999, 96-106.
[10]  Howieson, J.G., Yates, R.J., Foster, K.J., Real, D., Besiel, R.D., In: Dilworth MJ, James EK., Sprent JI, Newton WE (eds.) Prospects for future use of legumes., Springer, Dordrecht, Netherlands, 2008, 363-393.
[11]  Jaramillo, P.M.D., Guimaraes, A.Z., Florentino, L.A., Silva, K. B., Noberga, R.S.A., de Souza Moreira, F., “Symbiotic nitrogen fixing bacterial populations trapped under agroforestry systems in the Western Amazone”, Scientia Agricola, 70: 397-404. 2013.
[12]  Kala, T.C., Christi, R. M., Bai, R. N, ‘Effect of rhizobium inoculation on the growth and yield of Horse gram (Dolichos biflorus linn)”, Plant Archives, 11: 97-99. 2011.
[13]  Keyser, H.M., Munns. D.N., “Tolerance of rhizobia to acidity aluminium and phosphate”, Soil Sci Soc Am J, 43: 519-523. 2011.
[14]  Laguerre, G., Allard, M.R., Revoy, F., Amarger, N., “Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes”, Appl Environ Microbiol, 60: 56-63.1994.
[15]  Laguerre, G, Nour, S.M., Macheret, V., Sanjuan, J., Droiun, P., Amarger, N., “Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetics relationship among Phaseolus vulgaris symbionts”, Microbiol, 147: 981-993. 2001.
[16]  Law, I.J., Botha, W.J., Majaule, U.C., Phalane, F.L., “Symbiotic and genomic diversity of “cowpea” bradyrhizobia from soils in Botswana and South Africa”, Biol Fertil Soils, 43: 653-663, 2007.
[17]  Leelahawonge, C., Nuntagig, A., Teaumroong, N., Boonkerd, N., Pongslip, N., “Characterization of root nodule bacteria isolated from the medicinal legume Indigofera tinctoria” Ann Microbiol, 60: 65-74. 2010.
[18]  Lindstrom, K.., Murwira, M., Willems, A., Altier, N., “The biodiversity of beneficial microbe-host mutualism: the case of rhizobia”, Res in Microbiol, 161: 453-463. 2010.
[19]  Lupwayi, N.Z., Haque, I., “Legume Rhizobium Technology Manual”, No. 19, International Livestock Centre for Africa, Addis Ababa, Ethiopia, 1994, 27-28.
[20]  Lupwayi, N.Z., Kennedy, A.C., Chirwa, R.M., “Grain legume impacts on soil biological processes in Sub-Saharan Africa”, African J. Plant Sci, 5: 1-7. 2011.
[21]  McFarland, J, “The nephilometer: An instrument for estimating the number of bacterial suspensions used in calculating the opsonic index of vaccines”, J Am Med Asso, 49: 1176-1178. 1907.
[22]  Menna, P., Hungaria, M., Barcellos, F.G., Bangel, E.V., Hess, P.N., Martinez-Romero, E., “Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazillian commercial inoculants”, Syst Appl Microbiol, 29: 315-332. 2006.
[23]  O’Hara, G., Yates, R., Howieson, J., “Selection of strains of root nodule bacteria to improve inoculants performance and increase legume productivity in stressful environments”. In: D. Herridge (ed.) Inoculants and nitrogen fixation of legumes in Vietnam, 2002.
[24]  Peoples, M.B., Craswell, E.T., “Biological nitrogen fixation: Investments, expectations and actual contribution to agriculture”, Plant Soil, 141: 13-39. 1992.
[25]  Pongslip, N., Nuntagij, A., “Genetic diversity and metabolites production of root nodule bacteria isolated from medicinal legumes of Indigofera tinctoria, Pueraria mirifica and Derris elliptica Benth. grown in different geographical origins across Thailand”, American Eurasian J Agric Environ Sci, 6: 26-34. 2009.
[26]  Sarr, P.S., Yamakawa, T., Fujimuto, S., Saeki, Y., Thao, H.T.B., Myint, K., Phylogenetic diversity and symbiotic effectiveness of root nodule bacteria associated with cowpea in South West area of Japan. Microbes Environ, 24: 105-112. 2009.
[27]  SAS Institute, “SAS/STAT guide for personal computers”, SAS Institute, Cary, 2003.
[28]  Singh, B.B., Mohan Raj, D. R., Dashiel, K.E., Jackie, L., “Advances in cowpea research”, ITTA-JIRCAS, Ibadan, Nigeria, 1997.
[29]  Somasegaran, P., Hoben, H.J., “Hand book for rhizobia: Methods in Legume-Rhizobium Technology,” Springer-Verlag, New York, 1994.
[30]  Strijdom, B.W., “South African studies on biological nitrogen fixing systems and the exploitation of the nodule bacterium legume symbiosis”, S Afr J Sci, 94: 11-23. 1998.
[31]  Tamura, K., Dudley, J., Nei M, Kumar, S., “MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0”, Mol Biol Evol, 24: 1596-1599. 2007.
[32]  Thies, J. E., Bohlool, B. B., Singleton, P. W., “Subgroups of cow pea miscellany: symbiotic specificity within Bradyrhizobium spp. for Vigna unguiculata, Phaseolus lunatus, Arachis hypogeal, and Macroptillium artropurpureum, Appl Environ Microbiol, 57: 1540-1545. 1991.
[33]  Trinick, M. J., Hadobas, P. A., “Effectiveness and competition for nodulation of Vigna unguiculata and Macroptillium atropurpureum with Bradyrhizobium spp. from Parasponia”, Can J Microbiol, 35: 1156-1163. 1989.
[34]  Vincent, J. M., “A manual for the practical study of root nodule bacteria” In: International Biological Programme Handbook No. 15, Blackwell Scientific Publications Ltd, Oxford, 1970. 73-97.
[35]  Wei, G. H., Wang, E. T., Tan, Z. Y., Zhu, M. E., Chen, W. X., “Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea”, Int J Syst And Evol Microbiol, 52: 2231-2239, 2002.
[36]  Weir, B.S., Turner, S.J., Silvester, W. B., Park D-C., Young, J. M., “Unexpectedly diverse Mesorhizobium strains and Rhizobium leguminosarum nodulate native legume genera of NewZealand while introduced legume weeds are nodulated by Bradyrhizobium species”, Appl Environ Microbiol 70: 5980-5987. 2004.
[37]  Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D. J., “16S Ribosomal DNA Amplification for Phylogenetic study”, J Bacteriol, 173: 697-703. 1991.
[38]  Young, J.P.W., Haukka, K. “Diversity and phylogeny of rhizobia”, New Phytol, 133: 87-94. 1996.
[39]  Zhang, W.T., Yang, J.K., Yuan, T. Y., Zhou, C. J., “Genetic diversity and phylogeny of indigenous rhizobia from cowpea [Vigna unguiculata (L.) Walp]”, Biol Fert Soils, 44: 201-210. 2007.
[40]  Zilli, J. E., Valisheski, R. R., Filho, F. R. F., Neves, M. P. C., Rumjanek, N. G., “Assessment of cowpea rhizobium diversity in Cerrado areas of Northeast Brazil”, Brazil J Microbiol, 35: 281-287, 2004.